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Abstract

This paper gives an overview of
the stochastic modelling approach to
machine translation. Starting with
the Bayes decision rule as in pattern
classification and speech recognition,
we show how the resulting system
architecture can be structured into three
parts: the language model probability,
the string translation model probability
and the search procedure that gener-
ates the word sequence in the target
language. We discuss the properties
of the system components and report
results on the translation of spoken
dialogues in theVERBMOBIL project.
The experience obtained in theVERB-
MOBIL project, in particular a large-
scale end-to-end evaluation, showed
that the stochastic modelling approach
resulted in significantly lower error
rates than three competing translation
approaches: the sentence error rate was
29% in comparison with 52% to 62%
for the other translation approaches.

1 Introduction

The use of statistics in computational linguistics
has been extremely controversial for more than
three decades. The controversy is very well
summarized by the statement of Chomsky in 1969
(Chomsky 1969):

“It must be recognized that the notion of
a ‘probability of a sentence’ is an entirely
useless one, under any interpretation of this
term”.

This statement was considered to be correct by
the majority of experts from artificial intelligence

and computational linguistics, and the concept
of statistics was banned from computational
linguistics for many years.

What is overlooked in this statement is the
fact that, in an automatic system for speech
recognition or language translation, we are faced
with the problem of taking decisions. It is
exactly here where statistical decision theory
comes in. In automatic speech recognition (ASR),
the success of the statistical approach is based on
the equation:

ASR = Acoustic–Linguistic Modelling

+ Statistical Decision Theory

Similarly, for machine translation (MT), the
statistical approach is expressed by the equation:

MT = Linguistic Modelling

+ Statistical Decision Theory

For the ‘low-level’ description of speech and
image signals, it is widely accepted that the
stochastic framework allows an efficient coupling
between the observations and the models, which
is often described by the buzz word ‘subsymbolic
processing’. But there is another advantage in
using probability distributions in that they offer an
explicit formalism for expressing and combining
hypothesis scores:

• The probabilities are directly used as scores:
These scores are normalized, which is a
desirable property: when increasing the
score for a certain element in the set of all
hypotheses, there must be one or several
other elements whose scores are reduced at
the same time.

• It is evident how to combine scores:
depending on the task, the probabilities are
either multiplied or added.



• Weak and vague dependencies can be
modelled easily. Especially in spoken and
written natural language, there are nuances
and shades that require ‘grey levels’ between
0 and 1.

Even if we think we can manage without
statistics, we will need models which always
have some free parameters. Then the question is
how to train these free parameters. The obvious
approach is to adjust these parameters in such
a way that we get optimal results in terms of
error rates or similar criteria on a representative
sample. So we have made a complete cycle and
have reached the starting point of the stochastic
modelling approach again!

When building an automatic system for speech
or language, we should try to use as much
prior knowledge as possible about the task
under consideration. This knowledge is used
to guide the modelling process and to enable
improved generalization with respect to unseen
data. Therefore in a good stochastic modelling
approach, we try to identify the common patterns
underlying the observations, i.e. to capture
dependencies between the data in order to avoid
the pure ‘black box’ concept.

2 Language Translation as Pattern
Classification

2.1 Bayes Decision Rule

Knowing that language translation is a difficult
task, we want to keep the number of wrong
translations as small as possible. The corre-
sponding formalism is provided by the so-called
statistical decision theory. The resulting decison
rule is referred to as Bayes decision rule and is
the starting point for many techniques in pattern
classification (Duda et al. 2001). To classify
an observation vectory into one out of several
classesc, the Bayes decision rule is:

ĉ = arg max
c
{Pr(c|y)}

= arg max
c
{Pr(c) · Pr(y|c)} .

For language translation, the starting point is the
observed sequence of source symbolsy = fJ

1 =
f1...fJ , i.e. the sequence of source words, for
which the target word sequencec = eI

1 = e1...eI

has to be determined. In order to minimize the

number of decision errors at the sentence level,
we have to choose the sequence of target words
êI
1 according to the equation (Brown et al. 1993):

êI
1 = arg max

eI
1

{
Pr(eI

1|fJ
1 )

}

= arg max
eI
1

{
Pr(eI

1) · Pr(fJ
1 |eI

1)
}

.

Here, the posterior probabilityPr(eI
1|fJ

1 ) is
decomposed into the language model probability
Pr(eJ

1 ) and the string translation probability
Pr(fJ

1 |eI
1). Due to this factorization, we have

two separate probability distributions which can
be modelled and trained independently of each
other.

Fig.1 shows the architecture that results from
the Bayes decision theory. Here we have already
taken into account that, in order to implement
the string translation model, we will decompose
it into a so-called alignment model and a lexicon
model. As also shown in this figure, we explicitly
allow for optional transformations to make the
translation task simpler for the algorithm.

In total, we have the following crucial
constituents of the stochastic modelling approach
to language translation:

• There are two separate probability distribu-
tions orstochastic knowledge sources:

– the language model distribution
Pr(eI

1), which is assigned to each
possible target word sequenceeI

1 and
which ultimately captures all syntactic,
semantic and pragmatic constraints
of the target language domain under
consideration;

– the string translation probability dis-
tribution Pr(fJ

1 |eI
1) which assigns a

score as to how well the source string
fJ
1 matches the hypothesized target

sequenceeI
1.

• In addition to these two knowledge sources,
we need another system component which is
referred to as a search or decision process.
According to the Bayes decision rule, this
search has to carry out the maximization
of the product of the two probability
distributions and thus ensures an optimal
interaction of the two knowledge sources.
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Figure 1: Bayes architecture for language
translation.

Note that there is aguaranteeof the minimization
of decision errors if we know thetrue probability
distributionsPr(eI

1) and Pr(fJ
1 |eI

1) and if we
carry out a full search over all target word
sequenceseI

1. In addition, it should be noted
that both the sequence of source wordsfJ

1 and
the sequence of unknown target wordseI

1 are
modelled as a whole. The advantage then is
that context dependencies can be fully taken into
account and the syntactic analysis of both source
and target sequences (at least in principle) can be
integrated into the translation process.

2.2 Implementation of Stochastic Modelling

To build a real operational system for language
translation, we are faced with the following three
problems:

• Search problem:
In principle, the innocent looking maximiza-
tion requires the evaluation of20 00010 =
1043 possible target word sequences, when
we assume a vocabulary of 20 000 target
words and a sentence length ofI =
10 words. This is the price we have
to pay for a full interaction between the
language modelPr(eI

1) and and the string
translation modelPr(fJ

1 |eI
1). In such a

way, however, it is guaranteed that there is
no better way to take the decisions about
the words in the target language (for the

given probability distributionsPr(eI
1) and

Pr(fJ
1 |eI

1)). In a practical system, we
of course use suboptimal search strategies
which require much less effort than a full
search, but nevertheless should find the
global optimum in virtually all cases.

• Modelling problem:
The two probability distributionsPr(eI

1)
and Pr(fJ

1 |eI
1) are too general to be used

in a table look-up approach, because there
is a huge number of possible valuesfJ

1

and eI
1. Therefore we have to introduce

suitable structures into the distributions
such that the number of free parameters is
drastically reduced by taking suitable data
dependencies into account.

A key issue in modelling the string transla-
tion probability Pr(fJ

1 |eI
1) is the question

of how we define the correspondence
between the words of the target sentence
and the words of the source sentence.
In typical cases, we can assume a sort
of pairwise dependence by considering all
word pairs (fj , ei) for a given sentence
pair (fJ

1 ; eI
1). Typically, the dependence is

further constrained by assigning each source
word to exactly onetarget word. Models
describing these types of dependencies are
referred to asalignment mappings(Brown et
al. 1993):

alignment mapping: j → i = aj ,

which assigns a source wordfj in positionj
to a target wordei in positioni = aj . As a
result, the string translation probability can
be decomposed into a lexicon probability
and an alignment probability (Brown et al.
1993).

• Training problem:
After choosing suitable models for the two
distributionsPr(eI

1) and Pr(fJ
1 |eI

1), there
remain free parameters that have to be
learned from a set of training observa-
tions, which in the statistical terminology
is referred to asparameter estimation.
For several reasons, especially for the
interdependence of the parameters, this
learning task typically results in a com-
plex mathematical optimization problem the



details of which depend on the chosen
model and on the chosen training criterion
(such as maximum likelihood, squared error
criterion, discriminative criterion, minimum
number of recognition errors, ...).

In conclusion, stochastic modelling as such
does not solve the problems of automatic
language translation, but defines a basis on which
we can find the solutions to the problems. In
contradiction to a widely held belief, a stochastic
approach may very well require a specific model,
and statistics helps us to make the best of a
given model. Since undoubtedly we have to take
decisions in the context of automatic language
processing (and speech recognition), it can only
be a rhetoric question of whether we should use
statistical decision theory at all. To make a
comparison with another field: in constructing
a power plant, it would be foolish to ignore the
principles of thermodynamics!

As to the search problem, the most successful
strategies are based on eitherstack decoding
or A∗ search anddynamic programming beam
search. For comparison, in speech recognition,
over the last few years, there has been a lot
of progress in structuring the search process to
generate a compactword latticeor word graph.

To make this point crystal clear: The
characteristic property of the stochastic modelling
approach to language translation isnot the use
of hidden Markov modelsor hidden alignments.
These methods are only the time-honoured
methods and successful methods of today. The
characteristic property lies in the systematic use
of a probabilistic framework for the construction
of models, in the statistical training of the free
parameters of these models and in the explicit
use of a global scoring criterion for the decision
making process.

3 Experimental Results

Whereas stochastic modelling is widely used in
speech recognition, there are so far only a few
research groups that apply stochastic modelling to
language translation (Berger et al. 1994; Brown et
al. 1993; Knight 1999). The presentation here is
based on work carried out in the framework of the
EUTRANS project (Casacuberta et al. 2001) and
theVERBMOBIL project (Wahlster 2000).

We will consider the experimental results
obtained in theVERBMOBIL project. The goal
of the VERBMOBIL project is the translation of
spoken dialogues in the domains of appointment
scheduling and travel planning. The languages
are German and English. Whereas during
the progress of the project many offline tests
were carried out for the optimization and tuning
of the statistical approach, the most important
evaluation was the final evaluation of the
VERBMOBIL prototype in spring 2000. This end-
to-end evaluation of theVERBMOBIL system was
performed at the University of Hamburg (Tessiore
et al. 2000). In each session of this evaluation,
two native speakers conducted a dialogue. The
speakers did not have any direct contact and could
only interact by speaking and listening to the
VERBMOBIL system.

In addition to the statistical approach, three
other translation approaches had been integrated
into theVERBMOBIL prototype system (Wahlster
2000):

• a classical transfer approach,
which is based on a manually designed
analysis grammar, a set of transfer rules, and
a generation grammar,

• a dialogue act based approach,
which amounts to a sort of slot filling by
classifying each sentence into one out of a
small number of possible sentence patterns
and filling in the slot values,

• an example based approach,
where a sort of nearest neighbour concept
is applied to the set of bilingual training
sentence pairs after suitable preprocessing.

In the final end-to-end evaluation, human
evaluators judged the translation quality for each
of the four translation results using the following
criterion: Is the sentence approximatively correct:
yes/no? The evaluators were asked to pay
particular attention to the semantic information
(e.g. date and place of meeting, participants etc.)
contained in the translation. A missing translation
as it may happen for the transfer approach or other
approaches was counted as wrong translation.
The evaluation was based on 5069 dialogue turns
for the translation from German to English and
on 4136 dialogue turns for the translation from



Table 1: Error rates of spoken sentence translation
in theVERBMOBIL end-to-end evaluation.

Translation Method Error [%]

Semantic Transfer 62
Dialogue Act Based 60
Example Based 52
Statistical 29

English to German. The speech recognizers
used had a word error rate of about 25%. The
overall sentence error rates, i.e. resulting from
recognitionand translation, are summarized in
Table 1. As we can see, the error rates for the
statistical approach are smaller by a factor of
about 2 in comparison with the other approaches.

In agreement with other evaluation experi-
ments, these experiments show that the statistical
modelling approach may be comparable to or
better than the conventional rule-based approach.
In particular, the statistical approach seems to
have the advantage if robustness is important, e.g.
when the input string is not grammatically correct
or when it is corrupted by recognition errors.

4 Conclusion

In summary, in the comparative evaluations, both
text and speech input were translated with good
quality on the average by the statistical approach.
Nevertheless, there are examples where the
syntactic structure of the produced target sentence
is not correct. Some of these syntactic errors
are related to long range dependencies and
syntactic structures that are not captured by the
m-gram language model used. To cope with
these problems, morpho-syntactic analysis and
grammar-based language models are currently
being studied.
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