
Multi-Language Named-Entity Recognition System based on HMM 

Kuniko SAITO and Masaaki NAGATA 

NTT Cyber Space Laboratories, NTT Corporation 

1-1 Hikari-no-oka Yokosuka-Shi Kanagawa, 239-0847 Japan 

{saito.kuniko,nagata.masaaki}@lab.ntt.co.jp 

Abstract 

We introduce a multi-language 
named-entity recognition system based on 
HMM. Japanese, Chinese, Korean and 
English versions have already been 
implemented. In principle, it can analyze 
any other language if we have training 
data of the target language. This system 
has a common analytical engine and it can 
handle any language simply by changing 
the lexical analysis rules and statistical 
language model. In this paper, we 
describe the architecture and accuracy of 
the named-entity system, and report 
preliminary experiments on automatic 
bilingual named-entity dictionary 
construction using the Japanese and 
English named-entity recognizer. 

1.  Introduction 
There is increasing demand for cross-language 

information retrieval. Due to the development of the 
World Wide Web, we can access information 
written in not only our mother language but also 
foreign languages. One report has English as the 
dominant language of web pages (76.6 %), followed 
by Japanese (2.77 %), German (2.28 %), Chinese 
(1.69 %), French (1.09 %), Spanish (0.81 %), and 
Korean (0.65 %) [1]. Internet users who are not 
fluent in English finds this situation far from 
satisfactory; the many useful information sources in 
English are not open to them. 

To implement a multi-language information 
retrieval system, it is indispensable to develop 
multi-language text analysis techniques such as 
morphological analysis and named-entity 
recognition. They are needed in many natural 
language processing applications such as machine 

translation, information retrieval, and information 
extraction. 

We developed a multi-language named-entity 
recognition system based on HMM. This system is 
mainly for Japanese, Chinese, Korean and English, 
but it can handle any other language if we have 
training data of the target language. This system has 
a common analytical engine and only the lexical 
analysis rules and statistical language model need 
be changed to handle any other language. Previous 
works on multi-language named-entity recognition 
are mainly for European languages [2]. Our system 
is the first one that can handle Asian languages, as 
far as we know.  

In the following sections, we first describe the 
system architecture and language model of our 
named-entity recognition system. We then describe 
the evaluation results of our system. Finally, we 
report preliminary experiments on the automatic 
construction of a bilingual named-entity dictionary. 

 
2. System Architecture 

Our goal is to build a practical multi-language 
named-entity recognition system for multi-language 
information retrieval. To accomplish our aim, there 
are several conditions that should be fulfilled. First 
is to solve the differences between the features of 
languages. Second is to have a good adaptability to 
a variety of genres because there are an endless 
variety of texts on the WWW. Third is to combine 
high accuracy and processing speed because the 
users of information retrieval are sensitive to 
processing speed. To fulfill the first condition, we 
divided our system architecture into language 
dependent parts and language independent parts. 
For the second and third conditions, we used a 
combination of statistical language model and 
optimal word sequence search. Details of the 
language model and word sequence search are 
discussed in more depth later; we start with an 
explanation of the system's architecture. 



Figure 1 overviews the multi-language 
named-entity recognition system. We have 
implemented Japanese (JP), Chinese (CN), Korean 
(KR) and English (EN) versions, but it can, in 
principle, treat any other language. 

There are two language dependent aspects. One 
involves the character encoding system, and the 
other involves the language features themselves 
such as orthography, the kinds of character types, 
and word segmentation. We adopted a character 
code converter for the former and a lexical analyzer 
for the latter.  

In order to handle language independent aspects, 
we adopted N-best word sequence search and a 
statistical language model in the analytical engine.  

The following sections describe the character 
code converter, lexical analyzer, and analytical 
engine. 
 
2.1. Character Code Conversion 
 If computers are to handle multilingual text, 
it is essential to decide the character set and 
its encoding. The character set is a collection 
of characters and encoding is a mapping 
between numbers and characters. One 
character set could have several encoding 
schemes. Hundreds of character sets and 
attendant encoding schemes are used on a 
regional basis. Most of them are standards 
from the countries where the language is 
spoken, and differ from country to country. 
Examples include JIS from Japan, GB from 
China and KSC from Korea; EUC-JP, 
EUC-CN and EUC-KR are the corresponding 
encoding schemes [3]. We call these encoding 
schemes ‘local codes’ in this paper. It is 
impossible for local code to handle two 
different character sets at the same time, so 
Unicode was invented to bring together all 
the languages of the world [4]. In Unicode, 
character type is defined as Unicode property 
through the assignment of a range of code 
points such as alphanumerics, symbols, kanji 
(Chinese character), hiragana (Japanese 
syllabary character), hangul (Korean 
character) and so on. The proposed lexical 
analyzer allows us to define arbitrary 
properties other than those defined by the 
Unicode standard. 
 The character code converter changes the 
input text encoding from local code to 

Unicode and the output from Unicode to local 
code. That is, the internal code of our system 
is Unicode (UCS-4). Our system can accept 
EUC-JP, EUC-CN, EUC-KR and UTF-8 as 
input-output encoding schemes. In principle, 
we can use any encoding scheme if the 
encoding has round-trip conversion mapping 
between Unicode. We assume that the input 
encoding is either specified by the user, or 
automatically detected by using conventional 
techniques such as [5]. 
 
2.2. Lexical Analyzer 
 The lexical analyzer recognizes words in the 
input sentence. It also plays an important 
role in solving the language differences, that 
is, it generates adequate word candidates for 
every language. 

The lexical analyzer uses regular 
expressions and is controlled by lexical 
analysis rules that reflect the differences in 
language features. We assume the following 
three language features; 
1. character type and word length 
2. orthography and spacing 
3. word candidate generation 
The features can be set as parameters in the 
lexical analyzer. We explain these three 
features in the following sections. 

Figure 1. System Overview 
NE recognized text (local code) 

Language X Plain text (local code) 

Lexical Analysis Rule 

Character Code Converter (local code to Unicode)

Character Code Converter (Unicode to local code)

Lexical Analyzer 

Word Candidates

JP    CN

 
Statistical  

Language Model
(Dictionaries) 

KR   EN

NE  
Recognizer 

Morph 
AnalyzerN-best 

Word 
Sequence 
Search 

Analytical Engine



2.2.1 Character Type and Word Length 
Table 1 shows the varieties of character 

types in each language. Character types 
influence the average word length. For 
example, in Japanese, kanji (Chinese 
character) words have about 2 characters 
and katakana (phonetic character used 
primarily to represent loanwords) words are 
about 5 characters long such as ‘パスワード

(password)’. In Chinese, most kanji words 
have 2 characters but proper nouns for 
native Chinese are usually 3 characters, and 
those representing loanwords are about 4 
characters long such as ‘贝克汉姆 (Beckham)’. 
In Korean, one hangul corresponds to one 
kanji and one hangul consists of one 
consonant - one vowel - one consonant, so 
loanwords written in hangul are about 3 
characters long such as ‘인터넷 (internet)’. 
Character type and word length are related 
to word candidate generation in section 2.2.3.  
 

Table 1. Character Types 
 
 
 
 
 
 
 
2.2.2 Orthography and Spacing 
 There is an obvious difference in 
orthography between each language, that is, 
European languages put a space between 
words while Japanese and Chinese do not. In 
Korean, spaces are used to delimit phrases 
(called as eojeol in Korean) not words, and 
space usage depends greatly on the 
individual. 

Therefore, another important role of the 
lexical analyzer is to handle spaces. In 
Japanese and Chinese, spaces should usually 
be recognized as tokens, but in English and 
Korean, spaces must be ignored because it 
indicates words or phrases. For example, the 
following analysis results are preferred; 
 I have a pen  
  ‘I/pronoun’ ‘have/verb’ ‘a/article’ ‘pen/noun’ 
and never must be analyzed as follows; 
  ‘I/pronoun’ ‘ /space’ ‘have/verb’ ‘ /space’  

‘a/article’ ‘ /space’ ‘pen/noun’ 
There are, however, many compound nouns 
that include spaces such as ‘New York’, 
‘United States’ and so on. In this case, spaces 
must be recognized as a character in a 
compound word. In Korean, it is necessary 
not only to segment one phrase separated by 
a space like Japanese, but also to recognize 
compound words including spaces like 
English. 
 These differences in handling spaces are 
related to the problem of whether spaces 
must be included in the statistical language 
model or not. In Japanese and Chinese, it is 
rare for spaces to appear in a sentence, so 
the appearance of a space is an important 
clue in improving analysis accuracy. In 
English and Korean, however, they are used 
so often that they don’t have any important 
meaning in the contextual sense.   
 The lexical analyzer can treat spaces 
appropriately. The rules for Japanese and 
Chinese, always recognize a space as a token, 
while for those for English and Korean 
consider spaces only a part of compound 
words such as ‘New York’. 
 
2.2.3 Word Candidate Generation 
 In our system, the analytical engine can list 
all dictionary word candidates from the input 
string by dictionary lookup. However, it is 
also necessary to generate word candidates 
for other than dictionary words, i.e. unknown 
words candidates. We use the lexical 
analyzer to generate word candidates that 
are not in the dictionary. 

It is more difficult to generate word 
candidates for Asian languages than for 
European languages, because Asian 
languages don’t put a space between words 
as mentioned above. 
 The first step in word candidate generation 
is to make word candidates from the input 
string. The simplest way is to list all 
substrings as word candidates at every point 
in the sentence. This technique can be used 
for any language but its disadvantage is that 
there are so many linguistically meaningless 
candidates that it takes too long to calculate 
the probabilities of all combinations of the 

EN 
JP 
 
CN 
KR 

alphabet symbol number 
alphabet symbol number kanji hiragana 
katakana 
alphabet symbol number kanji 
alphabet symbol number kanji hangul 



candidates in the following analytical process. 
A much more effective approach is to limit 
word candidates to only those substrings 
that are likely to be words. 
 The character types are often helpful in 
word candidate generation. For example, a 
cross-linguistic characteristic is that 
numbers and symbols are often used for 
serial numbers, phone numbers, block 
numbers, and so on, and some distinctive 
character strings of alphabets and symbols 
such as ‘http://www…’ and 
‘name@abc.mail.address’ are URLs, 
Email-addresses and so on. This is not 
foolproof since the writing styles often differ 
from language to language. Furthermore, it 
is better to generate such kinds of word 
candidates based on the longest match 
method because substrings of these 
candidates do not usually constitute a word. 
 In Japanese, a change between character 
types often indicates a word boundary. For 
example, katakana words are loanwords and 
so must be generated based on the longest 
match method. In Chinese and Korean, 
sentences mainly consist of one character 
type, such as kanji or hangul, so the 
character types are not as effective for word 
recognition as they are in Japanese. However, 
changes from kanji or hangul to 
alphanumerics and symbols often indicate 
word changes. 

And word length is also useful to put a 
limit on the length of word candidates. It is a 
waste of time to make long kanji words 
(length is 5 or more characters) in Japanese 
unless the substring matched with the 
dictionary, because its average length is 
about 2 characters. In Korean, although 
hanguls (syllabaries) are converted into a 
sequence of hangul Jamo (consonant or 
vowel) internally in order to facilitate the 
morphological analysis, the length of hangul 
words are defined in hangul syllabaries. 

We designed the lexical analyzer so that it 
can correctly treat spaces and word 
candidate generation depending on the 
character types for each language. Table 2 
shows sample lexical analysis rules for 
Japanese (JP) and English (EN). For 

example, in Japanese, if character type is 
kanji or hiragana, the lexical analyzer 
attempts to output word candidates with 
lengths of 1 to 3. If character type is 
katakana, alphabet, or number, it generates 
one candidate based on the longest match 
method until character type changes. If the 
input is ‘1500km’, word candidates are ‘1500’ 
and ‘km’. Subset character strings such as ‘1’, 
‘15’, ‘500’, ‘k’ and ‘m’ are never output as 
candidates. It is possible for a candidate to 
consist of several character types. Japanese 
has many words that consist of kanji and 
hiragana such as ‘離れて(away from)‘. In any 
language there are many words that consist 
of numbers and alphabetic characters such 
as ‘2nd’, or alphabetic characters and 
symbols such as ‘U.N.’. Furthermore, if we 
want to treat positional notation and decimal 
numbers, we may need to change the 
Unicode properties, that is, we add ‘.’ and ‘,’ 
to number-property. The character type 
‘compound’ in English rule indicates 
compound words. The lexical analyzer 
generates a compound word (up to 2 words 
long) with recognition of the space between 
them. In Japanese, a space is always 
recognized as one word, a symbol. 

Table 3 shows the word candidates output 
by the lexical analyzer following the rules of 
Table 2. The Japanese and English inputs 
are parallel sentences. It is apparent that the 
efficiency of word candidate generation 
improves dramatically compared to the case 
of generating all character strings as 

Character Type 
kanji 
hiragana 
katakana 
alphabet 
number 
symbol 
kanji – hiragana 
alphabet 
number 
symbol 
compound 

Word Length 
1-3 
1-3 
until type changes
until type changes 
until type changes 
1 
1-3 
until type changes 
until type changes 
1 
up to 2 words 

JP
 
 
 
 
EN

Table 2.  Lexical Analysis Rule 



candidates at every point in a sentence. In 
Japanese, kanji and hiragana strings become 
several candidates with lengths of 1 to 3, and 
alphabet and katakana strings become one 
candidate based on the longest match 
method until character type changes. In 
English, single words and compound words 
are recognized as candidates. Only the 
candidates that are not in the dictionary 
become unknown word candidates in the 
analytical engine. 

 
2.3. Analytical engine 

The analytical engine consists of N-best 
word sequence search and a statistical 
language model. Our system uses a word 
bigram model for morphological analysis and 
a hidden Markov model for named-entity 
recognition. These models are trained from 
tagged corpora that have been manually 
word segmented, part-of-speech tagged, and 
named-entity recognized respectively. Since 
N-best word sequence search and statistical 
language model don’t depend on language, 
we can apply this analytical engine to all 
languages. This makes it possible to treat 
any language if a corpus is available for 
training the language model. The next 
section explains the hidden Markov model 
used for named-entity recognition. 

 
3. Named-entity Recognition Model 
 The named-entity task is to recognize 
entities such as organizations, personal 
names, and locations. Several papers have 
tackled named-entity recognition through 
the use of Markov model (HMM) [6], 
maximum entropy method (ME) [7, 8], and 
support vector machine (SVM) [9]. It is 
generally said that HMM is inferior to ME 
and SVM in terms of accuracy, but is 
superior with regard to training and 
processing speed. That is, HMM is suitable 
for applications that require realtime 
response or have to process large amounts of 
text such as information retrieval. We 
extended the original HMM reported by BBN. 
BBN’s named-entity system is for English 
and offers high accuracy. 
 

 The HMM used in BBN's system is 
described as follows. Let the morpheme 
sequence be nwwW L1=  and Name Class 
(NC) sequence be nNCNCNC L1= . Here, NC 
represents the type of named entity such as 
organization, personal name, or location. The 
joint probability of word sequence and NC 
sequence ),(),( ii NCwPNCWP ∏= are 
calculated as follows; 
(1) if 1−≠ ii NCNC  

),|(),|(),( 111 −−− ×= iiiiiiii NCNCwPwNCNCPNCwP  
(2) if 1−= ii NCNC  and 1+= ii NCNC  

),|(),( 1 iiiii NCwwPNCwP −=  
(3) if 1−= ii NCNC  and 1+≠ ii NCNC  

),|(),|(),( 1 iiiiiii NCwendPNCwwPNCwP ><×= −  
Here, the special symbol >< end  indicates 
the end of an NC sequence.  
 In this model, morphological analysis and 
named-entity recognition can be performed 
at the same time. This is preferable for Asian 
languages because they have some ambiguity 
about word segmentation. To adapt BBN’s 
HMM for Asian languages, we extended the 
original HMM as follows. Due to the 

Tokyo Disneyland 
is 10 km away from 
the Tokyo station. 

東京ディズニーランド 

は、東京駅から10km 

離れている 

東 

東京 

ディズニーランド 

は 

、 

東 東京 東京駅 

京 京駅 京駅か 

駅 駅か 駅から 

か から 

ら 

10 

km 

離 離れ 離れて 

れ れて れてい 

て てい ている 

い いる 

る 

‘Tokyo’ 
‘Tokyo Disneyland’ 

‘Disneyland’ 
‘Disneyland is’ 

‘is’ 
‘10’ 
‘km’ ‘km away’ 
‘away’ ‘away from’ 
‘from’ ‘from the’ 
‘the’ ‘the Tokyo’ 
‘Tokyo’ ‘Tokyo station’ 
‘station’ 
‘.’ 

Input sentence 

Word Candidates 

Table 3. Outputs of Lexical Analyzer 



ambiguity of word segmentation, 
morphological analysis is performed prior to 
applying the HMM; the analysis uses a word 
bigram model and N-best candidates (of 
morpheme sequence) are output as a word 
graph structure. Named-entity recognition is 
then performed over this word graph using 
the HMM. We use a forward-DP 
backward-A* N-best search algorithm to get 
N-best morpheme sequence candidates [10]. 
In this way, multiple morpheme candidates 
are considered in named-entity recognition 
and the problem of word segmentation 
ambiguity is mitigated. 
 BBN's original HMM used a back-off model 
and smoothing to avoid the sparse data 
problem. We changed this smoothing to 
linear interpolation to improve the accuracy, 
and in addition, we used not only the 
morpheme frequency of terms but also part 
of speech frequency. Table 4 shows the linear 
interpolation scheme used here. Underlined 
items are added in our model. The weight for 
each probability was decided from 
experiments. 
 
4. Experiments 
 To evaluate our system, we prepared 
original corpora for Japanese, Chinese, 
Korean and English. The material was 
mainly taken from newspapers and Web 
texts. We used the morpheme analysis 
definition of Pen Tree Bank for English [11], 
Jtag for Japanese [12], Beijing Univ. for 
Chinese [13] and MATEC99 for Korean [14]. 
The named-entity tag definitions were based 
on MUC [15] for English and IREX [16] for 
Japanese. We defined Chinese and Korean 
named-entity tags following the Japanese 
IREX specifications. Table 5 shows 
dictionary and corpus size. Dictionary words 
means the size of the dictionary for 

morphological analysis. Total words and 
sentences represent the size of the corpus for 
named-entity recognition.  

Named-entity accuracy is expressed in 
terms of recall and precision. We also use the 
F-measure to indicate the overall 
performance. It is calculated as follows; 
(4)       

precisionrecall
precisionrecallF

+
××= 2  

Table 6 shows the F-measure for all 
languages. Since we used our original 
corpora in this evaluation, we cannot 
compare our results to those of previous 
works. Accordingly, we also evaluated SVM 
using our original corpora (see Table 6) [17]. 
The accuracy of HMM and SVM were 
approximately equivalent. But the analysis 
speed of HMM was ten times faster than 
that of SVM [9]. This means that our system 
is very fast and has state-of-the-art accuracy 
in four languages.  
 We noted that the accuracy of SVM is 
unusually lower than that of HMM for 
Japanese. We have not yet confirmed the 
cause of this, but a plausible argument is as 
follows. First, the word segmentation 
ambiguity has a worse affect on accuracy 
than expected. Since current SVM 
implementations can not handle N-best 
morpheme candidates and lower-order 
candidates are not considered in 
named-entity recognition. Second, SVM may 
not suit the analysis of irregular, 
ill-structured, and informal sentences such 
as Web texts. Our original corpus data was 

dictionary words
17,546

436,157
147,585
182,523

total words 
144,708 
143,408 
410,188 

1,456,130 

sentences
5,921
4,793

12,824
39,943

EN
JP

CN
KR

Table 5. Dictionary and Corpus Size 

Table 6. Named Entity Accuracy (F-measure(%))

HMM
88.2
81.0
84.5
79.9

SVM 
84.7 
57.3 
89.5 
82.1 

EN
JP

CN
KR

),|( 11 −− iii wNCNCP  ),|( 11 −ii NCNCwP  ),|( 11 NCwwP ii −

),|( 11 −− iii posNCNCP   ),|( 11 −ii NCNCposP  ),|( 11 NCposposP ii −

)|( 1−ii NCNCP      )|( 1NCwP i
      )|( 1NCwP i

 
)(NCP            )|( 1NCposP i

    )|( 1NCposP i
 

NCofnumber/1  

Table 4. Linear Interpolation Scheme



taken from newspapers and Web texts, the 
former contains complete and grammatical 
sentences unlike the latter. It is often said 
that HMM is robust enough to analyze these 
dirty sentences. It is, anyhow, our next step 
to analyze the results of named-entity 
recognition in more detail. 
 
5. Application to Bilingual Lexicon 

Extraction from Parallel Text 
 In order to illustrate the benefit of our 
multi-language named-entity recognition 
system, we conducted a simple experiment 
on extracting bilingual named-entity lexicons 
from parallel texts. It is very difficult to 
gather bilingual lexicons of named entities 
because there are an enormous number of 
new named entities. Establishing a bilingual 
named-entity dictionary automatically would 
be extremely useful. 

There are 3 steps in extracting a bilingual 
lexicon as follows; 
1. recognize named entity from parallel text  
2. extract bilingual lexicon candidates 
3. winnow the candidates to yield a 
  reasonable lexicon list 

The multi-language named-entity 
recognition system is used in the first step. 
In this step, the parallel texts are analyzed 
morphologically and named entities are 
recognized. 

In the second step, bilingual lexicon 
candidates are listed automatically under 
the following conditions; 
・word sequence up to 5 words 
・include one or more named entities 
・does not include function words  

The cooccurrence frequency of candidates is 
calculated at the same time. 
 In the third step, reasonable lexicons are 
created from the candidates. To judge the 
suitability of the candidates to be entered 
into a bilingual lexicon, we use the 
translation model called the IBM model [18]. 
Let a word sequence in language X  be 

lxxX L1=  and let the corresponding word 
sequence in language Y  be myyY L1= . Here, 

)1( lixi ≤≤  and )1( mjy j ≤≤  represent one 
word. In IBM model 1, the conditional 

probability )|( XYP  is calculated as follows; 

(5)       ∑∏⋅=
==+

l

i
ij

m

jl
xytXYP m

11)1(
)|()|( ε  

where ε  is constant. )|( ij xyt  is translation 
probability and is estimated by applying the 
EM algorithm to a large number of parallel 
texts.  
 Since the longer word sequences X and Y 
are, the smaller )|( XYP  becomes, the value 
of )|( XYP  cannot be compared when a word 
sequence length changes. Therefore, we 
improved equation (5) to take into account 
the difference in a word sequence length and 
cooccurrence frequency as follows; 
(6)  

)|(
)|()()()|(
XYE
XYPYmatchXmatchfreqXYS ⋅⋅⋅=  

    freq     : cooccurrence frequency of  
X and Y in parallel text 

)(Xmatch : ratio of 0)|( ≠ij xyt  in X 
        )(Ymatch : ratio of 0)|( ≠ij xyt  in Y 

        ∑∏⋅=
==+

l

i
ij

m

jl
xytXYE m

11)1(
)|()|( ε  

)|( ij xyt is the average of )|( ij xyt . )|( XYS  is 
used as a measure of candidate suitability. 

We used Japanese-English news article 
alignment data as parallel texts that is 
released by CRL [19, 20]. In this data, 
articles and sentences are aligned 
automatically. We separated the parallel text 
into a small set (about 1000 sentences) and a 

North Korea 
United States 
International Monetary Fund 
Soviet Union 
Middle East 
North Atlantic  

Treaty Organization 
U.S. President Bill Clinton 
North American  

Free Trade Agreement 
European Community 
Taiwan Strait 
Clinton administration 
U.N. General Assembly 
Tokyo Stock Exchange 

北朝鮮 

米国 

国際通貨基金 

ソ連 

中東 

北大西洋条約機構 

 

クリントン米大統領 

北米自由貿易協定 

 

欧州共同体 

台湾海峡 

クリントン政権 

国連総会 

東京証券取引所 

Table 7. List of Bilingual Lexicons 



large set (about 150 thousand sentences). We 
extracted bilingual lexicons from a small set 
and )|( ij xyt  was estimated from a large set. 
Table 7 shows bilingual lexicons that 
achieved very high scores. It can be said that 
they are adequate as bilingual lexicons. 
Though a more detailed evaluation is a 
future task, the accuracy is about 86 % for 
the top 50 candidates. This suggests that the 
proposed system can be applied to bilingual 
lexicon extraction for automatically creating 
bilingual dictionaries of named entities. 

 
Conclusion 

We developed a multi-language named-entity 
recognition system based on HMM. We have 
implemented Japanese, Chinese, Korean and 
English versions, but in principle it can handle any 
language if we have training data for the target 
language. Our system is very fast and has 
state-of-the-art accuracy. 

 

References 
[1] Google: 1.6 Billion Served. Wired, December 

2000, pp.118-119 (2000). 
[2] Cucerzan, S. and Yarowsky, D.: Language 

Independent Named Entity Recognition 
Combining Morphological and Contextual 
Evidence, Proceedings of the 1999 Joint 
SIGDAT Conference on Empirical Method in 
Natural Language Processing and Very Large 
Corpora (EMNLP/VLC-99), College Park, pp. 
90-99 (1999) 

[3] Lunde, K.: CJKV Information Processing, 
O’REILY, (1999). 

[4] The Unicode Consortium.: The Unicode Standard, 
version 3.0, Addison-Wesley Longman, (2000).   

[5] Kikui, G.: Identifying the Coding System and 
Language of On-line Documents on the Internet, 
Proceedings of the 16th International 
Conference on Computational Linguistics 
(COLING-96), pp. 652–657 (1996) 

[6] Bikel, D. M., Schwartz, R. and Weischedel, R. M.: 
An Algorithm that Learns What’s in a Name, 
Machine Learning, Vol. 34, No. 1-3, pp. 211-231 
(1999) 

[7] Borthwick, A., Sterling, J., Agichtein, E. and 
Grishman, R.: Exploiting Diverse Knowledge 
Sources via Maximum Entropy, Proceedings of 
the 6th Workshop on Very Large Corpora 
(VLC-98), pp. 152-160 (1998). 

[8] Uchimoto, K., Murada, M., Ma, Q., Ozaku, H. and 

Isahara, H.: Named Entity Extraction Based on 
A Maximum Entropy Model and Transformation 
Rules, Proceedings of the 38th Annual Meeting 
of the Association for Computational Linguistics 
(ACL-00), pp. 326-335 (2000). 

[9] Isozaki, H. and Kazawa, H.: Efficient Support 
Vector Classifiers for Named Entity Recognition, 
Proceedings of the 19th International 
Conference on Computational Linguistics 
(COLING-02), pp. 390-396 (2002). 

[10] Nagata, M.: A Stochastic Japanese 
Morphological Analyzer Using a Forward-DP 
Backward-A* N-Best Search Algorithm, 
Proceedings of the 15th International 
Conference on Computational Linguistics 
(COLING-94), pp. 201-207 (1994). 

[11] Marcus, M. P., Santorini, B. and Marcinkiewicz, 
M. A.: Building a large annotated corpus of 
English: The Penn Treebank, Computational 
Linguistics, Vol. 19, No.2, pp. 313-330 (1993). 

[12] Fuchi, T. and Takagi, S.: Japanese 
Morphological Analyzer using Word 
Co-occurrence -JTAG-, Proceedings of 36th 
Annual Meeting of the Association for 
Computational Linguistics and 17th International 
Conference on Computational Linguistics 
(ACL-COLING-98),  pp. 409-413 (1998). 

[13] Yu, Shiwen. et. al.: The Grammatical 
Knowledge-base of Contemporary Chinese --- A 
Complete Specification (现代汉语语法信息词

典详解), Tsinghua University Press, (1992).  
[14] ETRI.: Part-of-Speech Tagset Guidebook 품사 

태그 세트 지침서), Unpublished Manual, (1999) 
[15] DARPA: Proceedings of the 7th Message 

Understanding Conference (MUC-7) (1998). 
[16] IREX Committee (ed.), 1999. Proceedings of 

the IREX workshop. http://nlp.cs.nyu.edu/irex/ 
[17] Kudo, T and Matsumoto, Y.: Chunking with 

Support Vector Machines, Proceedings of the 
Second Meeting of the North American Chapter 
of the Association for Computational Linguistics 
(NAACL-01), pp. 192-199 (2001). 

[18] Brown, P.F., Pietra, S. A. D., Pietra, V. J. D. and 
Mercer, R. L.: The Mathematics of Statistical 
Machine Translation: Parameter Estimation, 
Computational Linguistics, Vol. 19, No. 2, pp. 
263-311 (1993) 

[19] Utiyama, M. and Isahara, H.: Reliable Measures 
for Aligning Japanese-English News Article and 
Sentences, Proceedings of the 41st Annual 
Meeting of the Association for Computational 
Linguistics (ACL-03) (2003). 

[20] Japanese-English News Article Alignment Data, 
http://www2.crl.go.jp/jt/a132/members/mutiyam 
a/jea/index.html (2003) 


