
Natural Language Analysis of Patent Claims

Svetlana Sheremetyeva

Department of Computational Linguistics
Copenhagen Business School,

Bernhard Bangs Alle 17 B,
DK-2000, Denmark

lanaconsult@mail.dk

Abstract

We propose a NLP methodology for ana-
lyzing patent claims that combines sym-
bolic grammar formalisms with data-
intensive methods while enhancing analy-
sis robustness. The output of our analyzer
is a shallow interlingual representation
that captures both the structure and con-
tent of a claim text. The methodology can
be used in any patent-related application,
such as machine translation, improving
readability of patent claims, information
retrieval, extraction, summarization, gen-
eration, etc. The methodology should be
universal in the sense that it could be ap-
plied to any language, other parts of pat-
ent documentation and text as such.

1 Introduction

An exploding volume of patent applications makes
essential the use of adequate patent processing
tools that could provide for better results in any
field of patent related activity. NLP techniques
associated with specificity of patent domain have
promise for improving the quality of patent docu-
ment processing.
 Though it is generally recognized that the patent
domain features overwhelmingly long and com-
plex sentences and peculiar style (Kando, 2000)
only a few researchers really rely on the linguistic
specificity of patent style (vs. technical style) when
processing patent documentation (Shnimory et al.,
2002; Gnasa and Woch, 2002; Fujii and Ishikawa,
2002).

 Developing natural language analyzers for pat-
ents (with at least one or any combination of mor-
phological, syntactic and semantic modules) is a
basic task. The ultimate task of such analysis is to
build a kind of possibly unambiguous content rep-
resentation that could further be used to produce
higher quality applications.

Broad coverage syntactic parsers with good
performance have recently become available
(Charniak, 2000; Collins, 2000), but they are not
trained for patents. Semantic parsing is considera-
bly less developed and shows a trend to rely on
ontologies rather then semantic primitives. (Gnasa
and Woch, 2002).

This paper reports on on-going project whose
goal is to propose a NLP methodology and an ana-
lyzer for patent claims. The claim is the focal point
of a patent disclosure, - it describes essential fea-
tures of the invention and is the actual subject of
legal protection.

The methodology we suggest combines sym-
bolic grammar formalisms with data-intensive
knowledge while enhancing analysis robustness.
The output of our analyzer is a shallow interlingual
representation that captures both the structure and
content of a claim text. It can be used in any pat-
ent-related application, such as machine translation
improving readability of patent claims, information
retrieval, extraction, summarization, generation,
etc. The methodology should be universal in the
sense that it could be applied to any language,
other parts of patent documentation and text as
such.

In what follows we first consider the knowledge
base of our model describing in turn a flexible
depth lexicon, grammar formalism, and language
of knowledge representation for the final parse. We
then focus on the analysis algorithm as a multi-

component procedure. To illustrate the potential of
the methodology we further sketch two of its pos-
sible applications, namely, machine translation and
an application for improving the readability of pat-
ent claims. We conclude with the description of the
project status and future work.

2 Knowledge

The structure and content of the knowledge
base has been designed to a) help solve analysis
problems, — different kinds of ambiguity, — and
b) minimize the knowledge acquisition effort by
drawing heavily on the patent claim linguistic re-
strictions.

A patent claim shares technical terminology
with the rest of a patent but differs greatly in its
content and syntax. It must be formulated accord-
ing to a set of precise syntactic, lexical and stylistic
guidelines as specified by the German Patent Of-
fice at the turn of the last century and commonly
accepted in the U.S., Japan, and other countries.
The claim describes essential features of the inven-
tion in the obligatory form of a single extended
nominal sentence, which frequently includes long
and telescopically embedded predicate phrases. A
US patent claim that we will further use as an ex-
ample in our description is shown in Figure 1.

A cassette for holding excess lengths of light
waveguides in a splice area comprising a cover
part and a pot-shaped bottom part having a bottom
disk and a rim extending perpendicular to said
bottom disk, said cover and bottom parts are su-
perimposed to enclose jointly an area forming a
magazine for excess lengths of light waveguides,
said cover part being rotatable in said bottom part,
two guide slots formed in said cover part, said
slots being approximately radially directed, guide
members disposed on said cover part, a splice
holder mounted on said cover part to form a ro-
tatable splice holder.

Figure 1. A US patent claim text.

In our system the knowledge is coded in the sys-
tem lexicon, which has been acquired from two
kinds of corpora, - a corpus of complete patent dis-
closures and a corpus of patent claims. The lexicon
consists of two parts: a shallow lexicon of lexical

units and a deep (information-rich) lexicon of
predicates. Predicates in our model are words,
which are used to describe interrelations between
the elements of invention. They are mainly verbs,
but can also be adjectives or prepositions.

2.1 Shallow Lexicon

The word list for this lexicon was automatically
acquired from a 5 million-word corpus of a US
patent web site. A semi-automatic supertagging
procedure was used to label these lexemes with
their supertags.

Supertagging is a process of tagging lexemes
with labels (or supertags), which code richer in-
formation than standard POS tags. The use of su-
pertags, as noted in (Joshi and Srinivas, 1994)
localizes some crucial linguistic dependencies, and
thus show significant performance gains. The con-
tent of a supertag differs from work to work and is
tailored for the needs of an application. For exam-
ple, Joshi and Srinivas (1994) who seem to coin
this term use elementary trees of Lexicalized Tree-
Adjoining Grammar for supertagging lexical items.
In (Gnasa and Woch, 2002) it is grammatical struc-
tures of the ontology that are used as supertags.

In our model a supertag codes morphological
information (such as POS and inflection type) and
semantic information, an ontological concept, de-
fining a word membership in a certain semantic
class (such as object, process, substance, etc.). For
example, the supertag Nf shows that a word is a
noun in singular (N), means a process (f), and does
not end in –ing. This supertag will be assigned, for
example, to such words as activation or alignment.
At present we use 23 supertags that are combina-
tions of 1 to 4 features out of a set of 19 semantic,
morphological and syntactic features for 14 parts
of speech. For example, the feature structure of
noun supertags is as follows:

Tag [POS[Noun
 [object [plural, singular]

 process [-ing, other[plural, singular]]
substance [plural, singular]
other [plural, singular]]]]]

In this lexicon the number of semantic classes
(concepts) is domain based. The “depth” of su-
pertags is specific for every part of speech and
codes only that amount of the knowledge that is
believed to be sufficient for our analysis procedure.

That means that we do not assign equally “deep”
supertags for every word in this lexicon. For ex-
ample, supertags for verbs include only morpho-
logical features such as verb forms (-ing form, -ed
form, irregular form, finite form). For finite forms
we further code the number feature (plural or sin-
gular). Semantic knowledge about verbs is found
in the predicate lexicon.

2.2 Predicate Lexicon

 This lexicon contains reach and very elaborated
linguistic knowledge about claim predicates and
covers both the lexical and, crucially for our sys-
tem, the syntactic and semantic knowledge. Our
approach to syntax is, thus, fully lexicalist. Below,
as an example, we describe the predicate lexicon
for claims on apparatuses. It was manually ac-
quired from the corpus of 1000 US patent claims.
 Every entry includes the morphological, seman-
tic and syntactic knowledge.
 Morphological knowledge contains a list of
practically all forms of a predicate that could only
be found in the claim corpus.

Semantic knowledge is coded by associating
every predicate with a concept of a domain-tuned
ontology and with a set of case-roles. The semantic
status of every case-role is defined as “agent”,
“place”, “mode”, etc. The distinguishing feature of
the case frames in our knowledge base is that
within the case frame of every predicate the case
roles are ranked according their weight calculated
on the basis of the frequency of their occurrence in
actual corpus together with the predicate. The set
of case-roles is not necessarily the same for every
predicate.

Syntactic knowledge includes the knowledge
about linearization patterns of predicates that codes
both the knowledge about co-occurrences of predi-
cates and case-roles and the knowledge about their
liner order in the claim text. Thus, for example, the
following phrase from an actual claim: (1: the
splice holder) *: is arranged (3: on the cover part)
(4: to form a rotatable splice holder) (where 1, 3
and 4 are case role ranks and “*” shows the posi-
tion of the predicate), will match the linearization
pattern (1 * 3 4). Not all case-roles defined for a
predicate co-occur every time it appears in the
claim text. Syntactic knowledge in the predicate
dictionary also includes sets of most probable fill-
ers of case-roles in terms of types of phrases and
lexical preferences.

2.3 Grammar and Knowledge Representation

In an attempt to bypass weaknesses of different
types of grammars the grammar description in our
model is a mixture of context free lexicalized
Phrase Structure Grammar and Dependency
Grammar formalisms.

Our Phrase Structure Grammar consists of a
number of rewriting rules and is specified over a
space of supertags. The grammar is augmented
with local information, such as lexical preference
and some of rhetorical knowledge, - the knowledge
about claim segments, anchored to tabulations,
commas and a period (there can only be one rhet-
orically meaningful period in a claim which is just
one sentence). This allows the description of such
phrases as, for example, “several rotating, spin-
ning and twisting elements”. The head of a phrase
(its most important lexical item) is assigned by a
grammar rule used to make up this phrase.

The second component of our grammar is a
version of Dependency Grammar. It is specified
over the space of phrases (NP, PP, etc.) and a resi-
due of “ungrammatical” words, i.e., words that do
not satisfy any of the rules of our Phrase Structure
Grammar.

The Dependency Grammar in our model is a
strongly lexicalized case-role grammar. All syntac-
tic and semantic knowledge within this grammar is
anchored to one type of lexemes, namely predi-
cates (see Section 2.2). This grammar assigns a
final parse (representation) to a claim sentence in
the form:

text::={ template){template}*

template::={label predicate-class predicate ((case-
role)(case-role)*}

case-role::= (rank status value)

value::= phrase{(phrase(word supertag)*)}*

where label is a unique identifier of the elemen-
tary predicate-argument structure (by convention,
marked by the number of its predicate as it appears
in the claim sentence, predicate-class is a label of
an ontological concept, predicate is a string corre-
sponding to a predicate from the system lexicon,
case-roles are ranked according to the frequency
of their cooccurrence with each predicate in the
training corpus, status is a semantic status of a
case-role, such as agent, theme, place, instrument,

etc., and value is a string which fills a case-role.
Supertag is a tag, which conveys both morphologi-
cal information and semantic knowledge as speci-
fied in the shallow lexicon (see Section 2.1). Word
and phrase are a word and phrase (NPs, PPs, etc.)
in a standard understanding. The representation is
thus quite informative and captures to a large ex-
tent both morpho-syntactic and semantic properties
of the claim.

For some purposes such set of predicate tem-
plates can be used as a final claim representation
but it is also possible to output a unified represen-
tation of a patent claim as a tree of predicate-
argument templates.

3 Analysis algorithm

The analyzer takes a claim text as input and after a
sequence of analysis procedures produces a set of
internal knowledge structures in the form of predi-
cate-argument templates filled with chunked and

supertagged natural language strings. The imple-
mentation of an experimental version is being car-
ried out in C++. In further description we will use
the example of a claim text shown in Figure 1.
The basic analysis scenario for the patent claim
consists of the following sequence of procedures:
• Tokenization
• Supertagging
• Chunking
• Determining dependencies
Every procedure relies on a certain amount of
static knowledge of the model and on the dynamic
knowledge collected by the previous analyzing
procedures.

The top-level procedure of the claim analyser is
tokenization. It detects tabulation and punctuation
flagging them with different types of “border” tags.
Following that runs the supertagging procedure, -
a look-up of words in the shallow

Figure 2. A screenshot of the developer tool interface, which shows traces of chunking noun, prepo-
sitional, adverbial, gerundial and infinitival phrases in the claim text shown in Figure 1.

lexicon (see Section 2.1). It generates all possible
assignments of supertags to words.

Then the supertag disambiguation procedure at-
tempts to disambiguate multiple supertags. It uses
constraint-based hand-crafted rules to eliminate
impossible supertags for a given word in a 5-word
window context with the supertag in question in
the middle. The rules use both lexical, “supertag”
and “border” tags knowledge about the context.
The disambiguation rules are of several types, not
only “reductionistic” ones. For example, substitu-
tion rules may change the tag “Present Plural” into
“Infinitive” (We do not have the “Infinitive” fea-
ture in the supertag feature space). If there are still
ambiguities pending after this step of disambigua-
tion the program outputs the most frequent reading
in the multiple supertag.
After the supertags are disambiguated the chunk-

ing procedure switches on. Chunking is carried
out by matching the strings of supertags

against patterns in the right hand side of the rules
in the PG component of our grammar. “Border”
tags are included in the conditioning knowledge.
 During the chunking procedure we use only a

subset of PG rewriting rules. This subset includes
neither the basic rule “S = NP+VP”, nor any rules
for rewriting VP. This means that at this stage of
analysis we cover only those sentence components
that are not predicates of any clause (be it a main
clause or a subordinate/relative clause). We thus do
not consider it the task of the chunking procedure
to give any description of syntactic dependencies.
 The chunking procedure is a succession of
processing steps itself starting with the simple-
noun-phrase procedure, followed the complex-
noun-phrase procedure, which integrates simple
noun phrases into more complex structures (those
including prepositions and conjunctions). Then the
prepositional-, adverbial-, infinitival- and gerun-
dial-phrase procedures switch on in turn.

Figure 3. A fragment of the final parse of the sentence in Figure 1. Fillers of the “direct-obj”
case-role are long distance dependencies of the predicate “comprising”.

The order of the calls to these component proce-
dures in the chunking algorithm is established to
minimize the processing time and effort. The or-
dering is based on a set of heuristics, such as the
following. Noun phrases are chunked first as they
are the most frequent types of phrases and many
other phrases build around them. Figure 1 is a
screenshot of the interface of the analysis grammar
acquisition tool. It shows traces of chunking noun,
prepositional, adverbial, gerundial and infinitival
phrases in the example of a claim text shown in the
left pane of Figure 3.

The next step in claim analysis is the procedure
determining dependencies. At this step in addition
to PG we start using our DG mechanism. The pro-
cedure determining dependencies falls into two
components: determining elementary (one predi-
cate) predicate-argument structures and unifying
these structures into a tree. In this paper we’ll limit
ourselves to a detailed description of the first of
these tasks.

The elementary predicate structure procedure,
in turn, consists of three components, which are
described below.

The fist find-predicate component searches for
all possible predicate-pattern matches over the
“residue” of “free” words in a chunked claim and
returns flagged predicates of elementary predicate-
argument structures. The analyzer is capable to
extract distantly located parts of one predicate (e.g.
“is arranged” from “A is substantially vertically
arranged on B”).

The second find-case-roles component retrieves
semantic (case-roles) and syntactic dependencies
(such as syntactic subject), requiring that all and
only dependent elements (chunked phrases in our
case) be present within the same predicate struc-
ture.

The rules can use a 5-phrase context with the
phrase in question in the middle. The conditioning
knowledge is very rich at this stage. It includes
syntactic and lexical knowledge about phrase con-
stituents, knowledge about supertags and “border”
tags, and all the knowledge about the properties of
a predicate as specified in the predicate dictionary.

This rich feature space allows quite a good per-
formance in solving the most difficult analysis
problems such as, recovery of empty syntactic
nodes, long distance dependencies, disambiguation
of PP attachment and parallel structures. There can
several matches between the set of case-roles asso-

ciated with a particular phrase within one predicate
structure. This type of ambiguity can be resolved
with the probabilistic knowledge about case-role
weights from the predicate dictionary given the
meaning of a predicate.
 If a predicate is has several meanings then the
procedure disambiguate predicate starts, which
relies on all the static and dynamic knowledge col-
lected so far. During this procedure, once a predi-
cate is disambiguated it is possible to correct a
case-role status of a phrase if it does not fit the
predicate description in the lexicon.

Figure 3 shows the result of assigning case-
roles to the predicates of the claim in Figure 1. The
set of predicate-arguments structures conforms the
format of knowledge representation given in Sec-
tion 2.3. As we have already mentioned the ana-
lyzer might stop at this point. It can also proceed
further and unify this set of predicate structures
into a tree. We do not describe this rather complex
procedure here and note only that for this purpose
we can reuse the planning component of the gen-
erator described in (Sheremetyeva and Nirenburg,
1996).

4 Examples of possible applications

In general, the final parse in the format shown in
Figure 3 can be used in any patent related applica-
tion. It is impossible to give a detailed description
of these applications in one paper. We thus limit
ourselves to sketching just two of them, - machine
translation and improving the readability of patent
claims.
 Long and complex sentences, of which patent
claims are an ultimate example, are often men-
tioned as sentences of extremely low translatability
(Gdaniec, 1994). One strategy currently used to
cope with the problem in the MT frame is to auto-
matically limit the number of words in a sentence
by cutting it into segments on the basis of the
punctuation only. In general this results in too few
phrase boundaries (and some incorrect ones, e.g.
enumerations). Another well-known strategy is
pre-editing and postediting or/ and using controlled
language, which can be problematic for the MT
user. It is difficult to judge
whether current MT systems use more sophisti-
cated parsing strategies to deal with the problems
caused by the length and complexity of

Figure 4. A screenshot of the user interface of a prototype application for improving the readability
of patent claims. The right pane shows an input claim (see Figure 1) chunked into predicates and
other phrases (case-role fillers). The structure of complex phrases can be deployed by clicking on
the “+” sign. The right pane contains the claim text a set of simple sentences.

of real life utterances as most system descriptions
are done on the examples of simple sentences.

To test our analysis module for its applicability
for machine translation we used the generation
module of our previous application, - AutoPat, - a
computer system for authoring patent claims
(Sheremetyeva, 2003), and modeled a translation
experiment within one (English) language, thus
avoiding (for now) transfer problems 1 to better
concentrate on the analysis proper. Raw claim sen-
tences were input into the analyzer, and parsed.
The parse was input into the AutoPat generator,
which due to its architecture output the “transla-
tion” in two formats, - as a single sentence, which
is required when a claim is supposed to be in-

1 The transfer module (currently under development)
transfers every individual SL parse structure into an
equivalent TL structure keeping the format of its repre-
sentation. It then “glues” the individual structures into a
tree to output translation as one sentence or generates a
set of simple sentences directly from the parse in Figure
3.

cluded in a patent document, and as a set of simple
sentences in TL. The modules proved to be com-
patible and the results of such “translation” showed
a reasonably small number of failures, mainly due
to the incompleteness of analysis rules.

 The second type of the translation output (a set
of sentences), shows how to use our analyzer in a
separate (unilingual or multilingual) application for
improving the readability of patent claims, which
is relevant, for example, for information dissemi-
nation. Figure 4 is a screenshot of the user inter-
face of a prototype of such an application.

We are aware of two efforts to deal with the
problem of claim readability. Shnimory et. al
(2002) investigate NLP technologies to improve
readability of Japanese patent claims concentrating
on rhetorical structure analysis. This approach uses
shallow analysis techniques (cue phrases) to seg-
ment the claim into more readable parts and visual-
izes a patent claim in the form of a rhetorical
structure tree. This differs from our final output,
which seems to be easier to read. Shnimory et. al

(cf.) refer to another NLP research in Japan di-
rected towards dependency analysis of patent
claims to support analytical reading of patent
claims. Unfortunately the author of this paper can-
not read in Japanese. We thus cannot judge our-
selves how well the latter approach works.

5 Status and Future Work

The analyzer is in the late stages of implementation
as of May 2003. The static knowledge sources
have been compiled for the domain of patents
about apparatuses. The morphological analysis and
syntactic chunking are operational and well tested.
The case-role dependency detection is being cur-
rently tested and updated. The compatibility of the
analyzer and fully operational generator has been
proved and tested. First experiments have been
done to use the analyzer for such applications as
machine translation and improving claim readabil-
ity. We have not yet made a large-scale evaluation
of our analysis module. This leaves the comparison
between other parsers and our approach as a future
work. The preliminary results show a reasonably
small number of failures, mainly due to the incom-
pleteness of analysis rules that are being improved
and augmented with larger involvement of predi-
cate knowledge.

We intend to a) add an optional interactive
module to the analyzer (that would allow for hu-
man interference into the process of analysis to
improve its quality), and complete the integration
of the analyzer into a machine translation system
and an application for improving claim readability.
Another direction of work is developing applica-
tions in a variety of languages (software localiza-
tion); b) develop a patent search and extraction
facility on the basis of the patent sublanguage and
our parsing strategy.

References
Akiro Shnimori, Manabu Okumura,Yuzo Marukawa,

and Makoto IwaYama. 2002. Rethorical Structure
Analysis of Japanese Patent Claims Using Cue
Phrases. Proceedings of the Third NTRCIR Work-
shop.

Aravind K.Joshi and Bangalore Srinivas. 1994. Disam-
biguation of Super Parts of Speech (or Supertags):
Almost Parsing. http://acl.ldc.upenn.edu/C/C94/C94-
1024.pdf

Atstushi Fujii and Tetsuya Ishikawa. 2002. NTCIR-3
Patent Retrieval Experiments at ULIS. Proceedings
of the Third NTRCIR Workshop.

Claudia Gdaniec. 1994. The Logos Translatability Index
in Technology Partnerships for Crossing the Lan-
guage Barrier. Proceedings of the First Conference
of the Association for Machine Translation in the
Americas (AMTA).

Don Blaheta and Eugene Charniak. 2000. Assigning
Function Tags to Parsed Text. Proceedings of the
North American Chapter of the Association of Com-
putational Linguistics.

Eugene Charniak. 2000. A Maximum-entropy-inspired
Parser. Proceedings of the North American Chapter
of the Association of Computational Linguistics.

Michael Collins. 2000. Discriminative Reranking for
Natural Language Parsing. Machine Learning: Pro-
ceedings of the Seventeenth International Confer-
ence (ICML 2000), Stanford California. USA

Melanie Gnasa and Jens Woch. 2002. Architecture of a
knowledge based interactive Information Retrieval
System. http://konvens2002.dfki.de/cd/pdf/12P-
gnasa.pdf

Noriko Kando. 2000. What Shall we Evaluate? Prelimi-
nary Discussion for the NTCIR Patent IR Challenge
(PIC) Based on the Brainstorming with the Special-
ized Intermediaries in Patent Searching and Patent
Attorneys. Proceedings of the ACM SIGIR 2000
Workshop on Patent Retrieval in conjunction with
The 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
retrieval. Athens. Greece

Svetlana Sheremetyeva and Sergei Nirenburg. 1996.
Generating Patent Claims. Proceedings of the 8th In-
ternational Workshop on Natural Language Genera-
tion. Herstmonceux, Sussex, UK.

Svetlana Sheremetyeva 2003. Towards Designing Natu-
ral Language Interfaces. Proceedings of the 4th Inter-
national Conference “Computational Linguistics and
Intelligent Text Processing” Mexico City, Mexico

