
A Framework for MT and Multilingual NLG Systems Based on
Uniform Lexico-Structural Processing

Benoit Lavoie
CoGenTex, Inc.

840 Hanshaw Road
Ithaca, NY

USA, 14850
benoit@cogentex.com

Richard Kittredge
CoGenTex, Inc.

840 Hanshaw Road
Ithaca, NY

USA, 14850
richard @ cogentex.com

Tanya Korelsky
CoGenTex, Inc.

840 Hanshaw Road
Ithaca, NY

USA, 14850
tanya @ cogentex.com

Owen Rambow *
ATT Labs-Research, B233
180 Park Ave, PO Box 971

Florham Park, NJ
USA, 07932

rambow @research.att.com

Abstract
In this paper we describe an implemented
framework for developing monolingual or
multilingual natural language generation
(NLG) applications and machine translation
(MT) applications. The framework
demonstrates a uniform approach to
generation and transfer based on declarative
lexico-structural transformations of
dependency structures of syntactic or
conceptual levels ("uniform lexico-structural
processing"). We describe how this
framework has been used in practical NLG
and MT applications, and report the lessons
learned.

1 Introduction

In this paper we present a linguistically
motivated framework for uniform lexico-
structural processing. It has been used for
transformations of conceptual and syntactic
structures during generation in monolingual and
multilingual natural language generation (NLG)
and for transfer in machine translation (MT).
Our work extends directions taken in systems
such as Ariane (Vauquois and Boitet, 1985),
FoG (Kittredge and Polgu6re, 1991), JOYCE
(Rainbow and Korelsky, 1992), and LFS
(Iordanskaja et al., 1992). Although it adopts
the general principles found in the above-
mentioned systems, the approach presented in
this paper is more practical, and we believe,
would eventually integrate better with emerging
statistics-based approaches to MT.

* The work performed on the framework by this co-
author was done while at CoGenTex, Inc.

The framework consists of a portable Java
environment for building NLG or MT
applications by defining modules using a core
tree transduction engine and single declarative
ASCII specification language for conceptual or
syntactic dependency tree structures 1 and their
transformations. Developers can define new
modules, add or remove modules, or modify
their connections. Because the processing of the
transformation engine is restricted to
transduction of trees, it is computationally
efficient.

Having declarative rules facilitates their reuse
when migrating from one programming
environment to another; if the rules are based on
functions specific to a programming language,
the implementation of these functions might no
longer be available in a different environment.
In addition, having all lexical information and
all rules represented declaratively makes it
relatively easy to integrate into the framework
techniques for generating some of the rules
automatically, for example using corpus-based
methods. The declarative form of
transformations makes it easier to process them,
compare them, and cluster them to achieve
proper classification and ordering.

1 In this paper, we use the term syntactic dependency
(tree) structure as defined in the Meaning-Text
Theory (MTT; Mel'cuk, 1988). However, we
extrapolate from this theory when we use the term
conceptual dependency (tree) structure, which has no
equivalent in MTT (and is unrelated to Shank's CD
structures proposed in the 1970s).

6 0

Thus, the framework represents a generalized
processing environment that can be reused in
different types of natural language processing
(NLP) applications. So far the framework has
been used successfully to build a wide variety of
NLG and MT applications in several limited
domains (meteorology, battlefield messages,
object modeling) and for different languages
(English, French, Arabic, and Korean).

In the next sections, we present the design of the
core tree transduction module (Section 2),
describe the representations that it uses (Section
3) and the linguistic resources (Section 4). We
then discuss the processing performed by the
tree transduction module (Section 5) and its
instantiation for different applications (Section
6). Finally, we discuss lessons learned from
developing and using the framework (Section 7)
and describe the history of the framework
comparing it to other systems (Section 8).

2 The Framework's Tree Transduction Module

The core processing engine of the framework is
a generic tree transduction module for lexico-
structural processing, shown in Figure 1. The
module has dependency stuctures as input and
output, expressed in the same tree formalism,
although not necessarily at the same level (see
Section 3). This design facilitates the pipelining
of modules for stratificational transformation. In
fact, in an application, there are usually several
instantiations of this module.

The transduction module consists of three
processing steps: lexico-structural pre-
processing, main lexico-structural processing,
and lexico-structural post-processing. Each of
these steps is driven by a separate grammar, and
all three steps draw on a common feature data
base and lexicon. The grammars, the lexicon
and the feature data base are referred to as the
linguistic resources (even if they sometimes
apply to a conceptual representation). All
linguistic resources are represented in a
declarative manner. An instantiation of the tree
transduction module consists of a specification
of the linguistic resources.

Input
Dependency Structure

~ L exlco-Structural
Preproce~ing

Intermediate Dependency StructttreL_~

Lexico-Structm'al
Processing

Intermediate + Dependency Structure
~ Lexico-Structural

Postprocessing

Output / / ~
Dependency SUucturc

i

Figure 1: Design of the Tree Transduction Module

3 The Framework's Representations

The representations used by all instantiations of
the tree transduction module in the framework
are dependency tree structures. The main
characteristics of all the dependency tree
structures are:
• A dependency tree is unordered (in contrast

with phrase structure trees, there is no
ordering between the branches of the tree).

• All the nodes in the tree correspond to
lexemes (i.e., lexical heads) or concepts
depending on the level of representation. In
contrast with a phrase structure
representation, there are no phrase-structure
nodes labeled with nonterminal symbols.
Labelled arcs indicate the dependency
relationships between the lexemes.

The first of these characteristics makes a
dependency tree structure a very useful
representation for MT and multilingual NLG,
since it gives linguists a representation that
allows them to abstract over numerous cross-
linguistic divergences due to language specific
ordering (Polgu~re, 1991).

We have implemented 4 different types of
dependency tree structures that can be used for
NLG, MT or both:
• Deep-syntactic structures (DSyntSs);
• Surface syntactic structures (SSyntSs);

61

• Conceptual structures (ConcSs);
• Parsed syntactic structures (PSyntSs).

The DSyntSs and SSyntSs correspond closely to
the equivalent structures of the Meaning-Text
Theory (MTT; Mel'cuk, 1988): both structures
are unordered syntactic representations, but a
DSyntS only includes full meaning-bearing
lexemes while a SSyntS also contains function
words such as determiners, auxiliaries, and
strongly governed prepositions. In the
implemented applications, the DSyntSs are the
pivotal representations involved in most
transformations, as this is also often the case in
practice in linguistic-based MT (Hutchins and
Somers, 1997). Figure 2 illustrates a DSyntS
from a meteorological application, MeteoCogent
(Kittredge and Lavoie, 1998), represented using
the standard graphical notation and also the
RealPro ASCII notation used internally in the
framework (Lavoie and Rambow, 1997). As
Figure 2 illustrates, there is a straightforward
mapping between the graphical notation and the
ASCII notation supported in the framework.
This also applies for all the transformation rules
in the framework which illustrates the
declarative nature of our approach,

I 1
LOW

-5 TO

't

LOw
(

A'I~R -5
ATTR TO
(

il HIGH
(

A']I~R 20
)

)
)

Low -S to high 20

Figure 2: DSyntS (Graphical and ASCII Notation)

The ConcSs correspond to the standard frame-
like structures used in knowledge representation,
with labeled arcs corresponding to slots. We
have used them only for a very limited
meteorological domain (in MeteoCogent), and
we imagine that they will typically be defined in
a domain-specific manner.

Figure 3 illustrates the mapping between an
interlingua defined as a ConcS and a
corresponding English DSyntS. This example,
also taken from MeteoCogent, illustrates that the
conceptual interlingua in NLG can be closer to a
database representation of domain data than to
its linguistic representations.

As mentioned in (Polgu~re, 1991), the high level
of abstraction of the ConcSs makes them a
suitable interlingua for multilingual NLG since
they bridge the semantic discrepancies between
languages, and they can be produced easily from
the domain data. However, most off-the-shelf
parsers available for MT produce only syntactic
structures, thus the DSyntS level is often more
suitable for transfer.

C o n e s

#TEMPERATURE

Low -5 to Mlgh 20

D S ~ t S

LOW

-5 TO

ItlGH

Figure 3: ConcS Interlingua and English DSyntS

Finally, the PSyntSs correspond to the parser
outputs represented using RealPro's dependency
structure formalism. The PSyntSs may not be
valid directly for realization or transfer since
they may contain unsupported features or
dependency relations. However, the PSyntSs
are represented in a way to allow the framework
to convert them into valid DSyntS via lexico-
structural processing. This conversion is done
via conversion grammars customized for each
parser. There is a practical need to convert one
syntactic formalism to another and so far we
have implemented converters for three off-the-
shelf parsers (Palmer et al., 1998).

4 The Framework's Linguistic Resources

As mentioned previously, the framework is
composed of instantiations of the tree

6 2

transduction module shown in Figure 1. Each
module has the following resources:
• Feature Data-Base: This consists of the

feature system defining available features
and their possible values in the module.

• Lexicon: This consists of the available
lexemes or concepts, depending on whether
the module works at syntactic or conceptual
level. Each lexeme and concept is defined
with its features, and may contain specific
lexico-structural rules: transfer rules for MT,
mapping rules to the next level of
representation for surface realization of
DSyntS or lexicalization of ConcS.

• Main Grammar: This consists of the lexico-
structural mapping rules that apply at this
level and which are not lexeme- or concept-
specific (e.g. DSynt-rules for the DSynt-
module, Transfer-rules for the Transfer
module, etc.)

• Preprocessing grammar: This consists of
the lexico-structural mapping rules for
transforming the input structures in order to
make them compliant with the main
grammar, if this is necessary. Such rules are
used to integrate new modules together
when discrepancies in the formalism need to
be fixed. This grammar can also be used
for adding default features (e.g. setting the
default number of nouns to singular) or for
applying default transformations (e.g.
replacing non meaning-bearing lexemes
with features).
Postprocessing grammar: This consists of
lexico-structural mapping rules for
transforming the output structures before
they can be processed by the next module.
As for the preprocessing rules, these rules
can be used to fix some discrepancies
between modules.

Our representation of the lexicon at the lexical
level (as opposed to conceptual) is similar to the
one found in RealPro. Figure 4 shows a
specification for the lexeme SELL. This lexeme
is defined as a verb of regular morphology with
two lexical-structural mappings, the first one
introducing the preposition TO for its 3 r° actant,
and the preposition FOR for its 4 th actant: (a
seller) X1 sells (merchandise) X2 to (a buyer)
X3 for (a price) X4. What is important is that

each mapping specifies a transformation
between structures at different levels of
representation but that are represented in one
and the same representation formalism (DSyntS
and SSyntS in this case). As we will see
below, grammar rules are also expressed in a
similar way.

LEX~ME: SELL
CATEGORY: verb
FEATURES: []
GOV-PATTERN:[

DSYNT-RULE:
SELL (III $X3)

<-->

SELL
(completive2 TO

(prepositional $X3))

DSYNT-RULE :
SELL (IV $X4)

<-->

SELL
(completive3 FOR

(prepositional $X4)
]

MORPHOLOGY: [
([tense:past] sold [inv
([mood:past-part] sold [inv
([] sell [reg

]

Figure 4: Specification of Lexeme SELL

At the conceptual level, the conceptual lexicon
associates lexical-structural mapping with
concepts in a similar way. Figure 5 illustrates
the mapping at the deep-syntactic level
associated with the concept #TEMPERATURE.
Except for the slight differences in the labelling,
this type of specification is similar to the one
used on the lexical level. The first mapping rule
corresponds to one of the lexico-structural
transformations used to convert the interlingual
ConcS of Figure 3 to the corresponding DSyntS.

ZONCEPT: #TEMPERATURE
5EXICAL: [

L~-RULE:
#TEMPERATURE (#minimum SX

#maxim~ $Y
<-->

LOW (ATTR $X
ATTR TO
(II HIGH

(ATTR SY)))

LEX-RULE:
#TEMPERATURE (#minim~ SX

<-->

LOW (ATTR $X)

LEX-RULE:
#TEMPE~TURE (#maximum $X

<-->

HIGH (ATTR SX)
]

Figure 5: Specification of Concept #TEMPERATURE

63

Note that since each lexicon entry can have
more than one lexical-structural mapping rule,
the list of these rules represents a small grammar
specific to this lexeme or concept.

Realization grammar rules of the main grammar
include generic mapping rules (which are not
lexeme-specific) such as the DSyntS-rule
illustrated in Figure 6, for inserting a determiner.

DSYNT-RULE:

$X [class:noun article:def]

$X (determinative THE)

Figure 6: Deep-Syntactic Rule for Determiner Insertion

The lexicon formalism has also been extended to
implement lexeme-specific lexico-structural
transfer rules. Figure 7 shows the lexico-
structural transfer of the English verb lexeme
MOVE to French implemented for a military
and weather domain (Nasr et al., 1998):

Cloud will move into the western regions.
Des nuages envahiront les rdgions ouest.

They moved the assets forward.
-.9 lls ont amen~ les ressources vers l 'avant.

The 79 dcg moves forward.
---~ La 79 dcg a v a n c e vers l'avant.

A disturbance will move north of Lake Superior.
--~ Une perturbation se diplacera au nord du lac
supdrieur.

LEXEME : MO~'E
CATEGORY : verb
FEATORES : []
TRANSFER: [

TRANSFER-RULE:
MOVE
I ATTR INTO [class:preposition]

(II SXl))
.-.>

E2~VAH IR [class:verb]
(II SX1)

TRANSFER-RULE :
MOVE
(II $X2)

AMENER [class:verb]
[II $X2)

TRANSFER-RULE:
MOVE
(ATTR SX [Iexe~e:FORWARD class:adverb])

AVANCER
(ATTR SX)

TRANSFER-RULE :
MOVE

<-->
DEPLACER [class:verb refl:÷]

]

Figure 7: Lexico-Structural Transfer of English Lexerne
MOVE to French

More general lexico-structural rules for transfer
can also be implemented using our grammar rule
formalism. Figure 8 gives an English-French
transfer rule applied to a weather domain for the
transfer of a verb modified by the adverb
ALMOST:

It almost rained.
--o II a fai l l i pleuvoir.

TRANSFER-RULE:

SX [class:verb]

(ATTR ALMOST)
<-->

FAILLIR [class:verb]

(II SX [mood:inf])

Figure 8: English to French Lexico-Structural
Transfer Rule with Verb Modifier ALMOST

More details on how the structural divergences
described in (Dorr, 1994) can be accounted for
using our formalism can be found in (Nasr et
al., 1998).

5 The Rule Processing

Before being processed, the rules are first
compiled and indexed for optimisation. Each
module applies the following processing.

The rules are assumed to be ordered from most
specific to least specific. The application of the
rules to the structures is top-down in a recursive
way from the f'n-st rule to the last. For the main
grammar, before applying a grammar rule to a
given node, dictionary lookup is carried out in
order to first apply the lexeme- or concept-
specific rules associated with this node. These
are also assumed to be ordered from the most
specific to the least specific.

If a lexico-structural transformation involves
switching a governor node with one of its
dependents in the tree, the process is reapplied
with the new node governor. When no more
rules can be applied, the same process is applied
to each dependent of the current governor.
When all nodes have been processed, the
processing is completed,

6 Using the Framework to build Applications

Figure 9 shows how different instantiations of
the tree transduction module can be combined to

6 4

build NLP applications. The diagram does not
represent a particular system, but rather shows
the kind of transformations that have been
implemented using the framework, and how they
interact. Each arrow represents one type of
processing implemented by an instantiation of
the tree transduction module. Each triangle
represents a different level of representation.

Scope of the
Framework

~Conversion bl
Parsed
PSyntS LI

Parsing

Sentence
PI "ng

C'°nezoa~ 1

~ e Transfer ~ _ ~ , Co.verMon
D$ ntS LI

~SyntS
~ealizalion

/ \
SSyntS LI SSyntS 1.2

~ yntS
ealization

A
DSyntS L2 Parsed
DSym51 PSyntS L2

Realiza~o~

SSym~ Realizatio parsin

Input Generated Generated Input
Sentence LI Sentence LI Sentence 1.2 Sentence L2.

I concS Concepmd suar.tm~ SSyntS Suffaee:Syntnetlc su'uet~'e
os~ts t ~ s y ~ a c ~ Psy~s ~ d : ~ n ~ c

Figure 9: Scope of the Framework's Transformations

For example, in Figure 9, starting with the
"Input Sentence LI" and passing through
Parsing, Conversion, Transfer, DSyntS
Realization and SSyntS Realization to
"Generated Sentence L2" we obtain an Ll-to-L2
MT system. Starting with "Sentence Planning"
and passing through DSyntS Realization, and
SSyntS Realization (including linearization and
inflection) to "Generated Sentence LI", we
obtain a monolingual NLG system for L1.

So far the framework has been used successfully
for building a wide variety of applications in
different domains and for different languages:

NLG:
• Realization of English DSyntSs via SSyntS

level for the domains of meteorology
(MeteoCogent; Kittredge and Lavoie, 1998)
and object modeling (ModelExplainer;
Lavoie et al., 1997).

• Generation of English text from conceptual
interlingua for the meteorology domain
(MeteoCogent). (The design of the

interlingua can also support the generation
of French but this functionality has not yet
been implemented.)

MT:
• Transfer on the DSyntS level and realization

via SSyntS level for English--French,
English--Arabic, English---Korean and
Korean--English. Translation in the
meteorology and battlefield domains (Nasr
et al., 1998).

• Conversion of the output structures from
off-the-shelf English, French and Korean
parsers to DSyntS level before their
processing by the other components in the
framework (Palmer et al., 1998).

7 Lessons Learned Using the Framework

Empirical results obtained from the applications
listed in Section 6 have shown that the approach
used in the framework is flexible enough and
easily portable to new domains, new languages,
and new applications. Moreover, the time spent
for development was relatively short compared
to that formerly required in developing similar
types of applications. Finally, as intended, the
limited computational power of the transduction
module, as well as careful implementation,
including the compilation of declarative
linguistic knowledge to Java, have ensured
efficient run-time behavior. For example, in the
MT domain we did not originally plan for a
separate conversion step from the parser output
to DSyntS. However, it quickly became apparent
that there was a considerable gap between the
output of the parsers we were using and the
DSyntS representation that was required, and
furthermore, that we could use the tree
transduction module to quickly bridge this gap.

Nevertheless, our tree transduction-based
approach has some important limitations. In
particular, the framework requires the developer
of the transformation rules to maintain them and
specify the order in which the rules must be
applied. For a small or a stable grammar, this
does not pose a problem. However, for large or
rapidly changing grammar (such as a transfer
grammar in MT that may need to be adjusted
when switching from one parser to another), the

6 5

burden of the developer's task may be quite
heavy. In practice, a considerable amount of
time can be spent in testing a grammar after its
revision.

Another major problem is related to the
maintenance of both the grammar and the
lexicon. On several occasions during the
development of these resources, the developer in
charge of adding lexical and grammatical data
must make some decisions that are domain
specific. For example, in MT, writing transfer
rules for terms that can have several meanings or
uses, they may simplify the problem by
choosing a solution based on the context found
in the current corpus, which is a perfectly natural
strategy. However, later, when porting the
transfer resources to other domains, the chosen
strategy may need to be revised because the
context has changed, and other meanings or uses
are found in the new corpora. Because the
current approach is based on handcrafted rules,
maintenance problems of this sort cannot be
avoided when porting the resources to new
domains.

An approach such as the one described in (Nasr
et al., 1998; and Palmer and al., 1998) seems to
be solving a part of the problem when it uses
corpus analysis techniques for automatically
creating a first draft of the lexical transfer
dictionary using statistical methods. However,
the remaining work is still based on handcrafting
because the developer must refine the rules
manually. The current framework offers no
support for merging handcrafted rules with new
lexical rules obtained statistically while
preserving the valid handcrafted changes and
deleting the invalid ones. In general, a better
integration of linguistically based and statistical
methods during all the development phases is
greatly needed.

8 History of the Framework and Comparison
with Other Systems

The framework represents a generalization of
several predecessor NLG systems based on
Meaning-Text Theory: FoG (Kittredge and
Polgu~re, 1991), LFS (Iordanskaja et al., 1992),
and JOYCE (Rambow and Korelsky, 1992).
The framework was originally developed for the

realization of deep-syntactic structures in NLG
(Lavoie and Rambow, 1997). It was later
extended for generation of deep-syntactic
structures from conceptual interlingua (Kittredge
and Lavoie, 1998). Finally, it was applied to
MT for transfer between deep-syntactic
structures of different languages (Palmer et al.,
1998). The current framework encompasses the
full spectrum of such transformations, i.e. from
the processing of conceptual structures to the
processing of deep-syntactic structures, either
for NLG or MT.

Compared to its predecessors (Fog, LFS,
JOYCE), our approach has obvious advantages
in uniformity, declarativity and portability. The
framework has been used in a wider variety of
domains, for more languages, and for more
applications (NLG as well as MT). The
framework uses the same engine for all the
transformations at all levels because all the
syntactic and conceptual structures are
represented as dependency tree structures.

In contrast, the predecessor systems were not
designed to be rapidly portable. These systems
used programming languages or scripts for the
implementation of the transformation rules, and
used different types of processing at different
levels of representation. For instance, in LFS
conceptual structures were represented as
graphs, whereas syntactic structures were
represented as trees which required different
types of processing at these two levels.

Our approach also has some disadvantages
compared with the systems mentioned above.

Our lexico-structural transformations are far
less powerful than those expressible using an
arbitrary programming language. In practice,
the formalism that we are using for expressing
the transformations is inadequate for long-range
phenomena (inter-sentential or intra-sentential),
including syntactic phenomena such as long-
distance wh-movement and discourse
phenomena such as anaphora and ellipsis. The
formalism could be extended to handle intra-
sentential syntactic effects, but inter-sentential
discourse phenomena probably require
procedural rules in order to access lexemes in

66

other sentences. In fact, LFS and JOYCE
include a specific module for elliptical structure
processing.

Similarly, the limited power of the tree
transformation rule formalism distinguishes the
framework from other NLP frameworks based
on more general processing paradigms such as
unification of FUF/SURGE in the generation
domain (Elhadad and Robin, 1992).

9 Status

The framework is currently being improved in
order to use XML-based specifications for
representing the dependency structures and the
transformation rules in order to offer a more
standard development environment and to
facilitate the framework extension and
maintenance.

Acknowledgements

A first implementation of the framework (C++
processor and ASCII formalism for expressing
the lexico-structural transformation rules)
applied to NLG was developed under SBIR
F30602-92-C-0015 awarded by USAF Rome
Laboratory. The extensions to MT were
developed under SBIR DAAL01-97-C-0016
awarded by the Army Research Laboratory. The
Java implementation and general improvements
of the framework were developed under SBIR
DAAD17-99-C-0008 awarded by the Army
Research Laboratory. We are thankful to Ted
Caldwell, Daryl McCullough, Alexis Nasr and
Mike White for their comments and criticism on
the work reported in this paper.

References

Dorr, B. J. (1994) Machine translation divergences:
A formal description and proposed solution. In
Computational Linguistics, vol. 20, no. 4, pp. 597-
635.

Elhadad, M. and Robin, J. (1992) Controlling
Content Realization with Functional Unification
Grammars. In Aspects of Automated Natural
Language Generation, Dale, R., Hovy, E., Rosner,
D. and Stock, O. Eds., Springer Verlag, pp. 89-
104.

Hutchins, W. J. and Somers, H. L. (1997) An
Introduction to Machine Translation. Academic
Press, second edition.

Iordanskaja, L., Kim, M., Kittredge, R., Lavoie, B.
and Polgu6re, A. (1992) Generation of Extended
Bilingual Statistical Reports. In Proceedings of the
15th International Conference on Computational
Linguistics, Nantes, France, pp. 1019-1023.

Kittredge, R. and Lavoie, B. (1998) MeteoCogent: A
Knowledge-Based Tool For Generating Weather
Forecast Texts. In Proceedings of the American
Meteorological Society AI Conference (AMS-98),
Phoenix, Arizona, pp. 80--83.

Kittredge, R. and Polgu~re, A. (1991) Dependency
Grammars for Bilingual Text Generation: Inside
FoG's Stratificational Models. In Proceedings of
the International Conference on Current Issues in
Computational Linguistics, Penang, Malaysia, pp.
318-330.

Lavoie, B. (1995) Interlingua for Bilingual Statistical
Reports. In Notes of IJCAI-95 Workshop on
Multilingual Text Generation, Montr6al, Canada,
pp. 84---94.

Lavoie, B. and Rambow, O. (1997) A Fast and
Portable Realizer for Text Generation Systems. In
Proceedings of the Fifth Conference on Applied
Natural Language Processing, Washington, DC.,
pp. 265-268.

Lavoie, B., Rambow, O. and Reiter, E. (1997)
Customizable Descriptions of Object-Oriented
Models. In Proceedings of the Fifth Conference on
Applied Natural Language Processing,
Washington, DC., pp. 253-256.

Mel'cuk, I. (1988) Dependency Syntax. State
University of New York Press, Albany, NY.

Nasr, A., Rambow, O., Palmer, M. and Rosenzweig,
J. (1998) Enriching lexical transfer with cross-
linguistic semantic features. In Proceedings of the
Interlingua Workshop at the MT Summit, San
Diego, California.

Palmer, M., Rambow, O. and Nasr, A. (1998) Rapid
Prototyping of Domain-Specific Machine
Translation Systems. In Proceedings of the Third
Conference on Machine Translation in the
Americas (AMTA-98), PA, USA, pp. 95-102.

Polgu6re, A. (1991) Everything has not been said
about interlinguae: the case of multi-lingual text
generation system. In Proc. of Natural Language
Processing Pacific Rim Symposium, Singapore.

Rambow, O. and Korelsky, T. (1992) Applied Text
Generation. In Proceedings of the 6th International
Workshop on Natural Language Generation,
Trento, Italy, pp. 40--47.

Vauquois, B. and Boitet C. (1985) Automated
translation at Grenoble University. In
Computational Linguistics, Vol. 11, pp. 28-36.

67

