
[Translating and the Computer 25, November 2003 [London: Aslib, 2003] 

 
xml:tm 

Using XML technology to reduce the cost of authoring and 

translation 

Andrzej Zydroń 

Technical Director 

XML-Intl Ltd 

PO Box 2167 

Gerrards Cross, Bucks SL9 8XF, UK 

azydron@xml-intl. com 

Introduction 

This paper describes the impact that XML will have on the authoring, publishing and translation of 
documentation and how XML itself can reduce the cost and complexity of the authoring and 
translation processes. 

In the beginning... 
The advent of text in electronic format posed a number of problems for translators. These problems 
were: 

1. How to mange the differing encoding standards and their corresponding font support and 
availability. 

2. How to present the text to translators without having to purchase additional copies of the 
original creation program. 

3. How to translate the text while preserving the formatting. 

4. How to build translation memories for these documents to reduce the cost of translation 
and improve consistency. 

The problem was exacerbated by the veritable “Tower of Babel” of differing authoring and 
composition environments from Interleaf through to PageMaker. The typical approach was to write 
filters that would “lift” the text to be translated from its proprietary embedded environment and to 
present it to translators in a uniform but equally proprietary translation environment. After 
translation the text would then be merged with the original document, replacing the source language 
text. 

ISO 8879:1986 SGML 

A serious attempt to tackle the plethora of competing formats and their embedded nature was made 
in 1986 with the advent of ISO 8879 Standard Generalized Markup Language (SGML). The aim of 
ISO 8879 was to separate the content of documents from their form. SGML arose at a time of great 
and rapid change in the IT industry. The architects attempted to make the standard as flexible and 
open to change as possible. This laudable aim unfortunately produced something that was very 



difficult and expensive to implement. In addition SGML only tackled the aspect of content. Form 
was tackled by ISO/IEC 10179:1996 Document Style Semantics and Specification Language 
(DSSSL), but this proved equally difficult to implement. 

HTML 

The efforts of the ISO 8879 committee were not in vain. SGML allowed for the creation of HTML 
which enabled the World Wide Web to catapult the Internet from a vehicle used by academics and 
computer scientists to what we know today. HTML was initially based on strict adherence to the 
SGML standard, but soon diverged as the limitations of ISO 8879 became apparent. 

XML 

By 1996 the World Wide Web Consortium (W3C) began to look for a solution that was better than 
HTML. What was required was something that would allow for the semantic exchange of 
information. It needed to be able to propel the Internet from displaying only static pages to a core 
semantic web, allowing for the exchange of data. The efforts of W3C resulted in XML 1.0. This 
addressed many of the architectural limitations of SGML, allowing for easier manipulation and 
parsing of the semantics. In addition to many very good features, the architects of XML introduced 
a powerful new concept called “namespace”. XML Namespace allows for the mapping of more 
than one representation of meaning onto a given document. This feature is now used extensively in 
supporting standards such as XSL, XSLT, XML Schema and FOP. 

The future 

The success of XML has been phenomenal, although much of it has yet to become visible to end 
users. XML has spawned much feverish activity in the developer community and has created some 
excellent Open Source tools and libraries such as those provided by the Apache foundation 
(xml.apache.org) and Source Forge (www.sourceforge.net). Even strongly proprietary companies 
have had to accept the importance of XML. Much excellent work is also being conducted by 
standards organisations such as OASIS (www.oasis-open.org) and W3C (www.w3c.org) on XML 
based standards such as XLIFF for the translation of documents. XML is driving the future of the 
World Wide Web. It is providing the foundation for important future web standards such as XML 
Web Services, electronic data exchange etc. 

Our premise is that the case for XML is so compelling that all leading vendors of word processing 
and composition systems will have to support it in the near future. In terms of translation the 
arguments are even more convincing. It can be up to five times more expensive to translate and 
correct the layout of documents written in proprietary systems than in XML. Sun Microsystems 
(www.sun.com) along with the OpenOffice organisation (www.openoffice.org) already supply an 
excellent XML based alternative to proprietary systems, which can also read proprietary systems 
such as Word and convert them to XML. Microsoft has also announced support for XML in the 
next version of Office. 

With this view of the future in mind we have concentrated our efforts on how best to exploit the 
very rich syntax and capabilities of XML. 



xml:tm 

xml:tm radically changes the approach to the translation of XML based documents. It is an Open 
Standard created and maintained by xml-Intl, for the benefit of those involved in the translation of 
XML documents. 

At the core of xml:tm is the concept of “text memory”. Text memory is made up of two 
components: 

1. Author Memory 

2. Translation Memory 

Author Memory 

XML namespace is used to map a text memory view onto a document. This process is called 
segmentation. The text memory view works at the sentence level of granularity - the text unit. Each 
individual xml:tm text unit is allocated a unique identifier. This unique identifier is immutable for 
the life of the document. As a document goes through its life cycle the unique identifiers are 
maintained and new ones are allocated as required. This aspect of text memory is called author 
memory. It can be used to build author memory systems which can be used to simplify and improve 
the consistency of authoring. 

The Diagram no. 1 shows the how the tm namespace maps onto an existing xml document: 

 

Diagram no. 1 

In the above diagram “te” stands for “text element” (an XML element that contains text) and “tu” 
stands for “text unit” (a single sentence or stand alone piece of text). 



The following is an example of part of an xml:tm document. The xml:tm elements are highlighted 
in red to show how xml:tm maps onto an existing XML document. 

 



 

Translation Memory 

When an xml:tm namespace document is ready for translation the namespace itself specifies the text 
that is to be translated. The tm namespace can be used to create an XLIFF document for translation. 

XLIFF 

XLIFF is an OASIS standard (http://www.oasis-open.org - XML Localisation Interchange File 
Format). XLIFF is another XML format that is optimised for translation. Using XLIFF you can 
protect the original document syntax from accidental corruption during the translation process. In 
addition you can supply other relevant information to the translator such as translation memory and 
preferred terminology. 

And the composed document: 



The following is an example of an XLIFF document based on the previous example: 

 

When the translation has been completed the target language text can be merged with the original 
document to create a new target language version of that document. The net result is a perfectly 
aligned source and target language document. 



The following is an example of a translated xml:tm document: 

 



This is an example of the composed translated text: 

 

The source and target text is linked at the sentence level by the unique xml:tm identifiers. When the 
document is revised new identifiers are allocated to modified or new text units. When extracting 
text for translation of the updated source document the text units that have not changed can be 
automatically replaced with the target language text. The resultant XLIFF file will look like this: 



 



Different Types of Matching 

The matching described in the previous section is called “perfect” matching, xml:tm offers unique 
translation memory matching possibilities to reduce the quantity of text for translation and 
providing the human translator with suggested alternative translations. 

The following diagram shows how perfect matching is achieved: 

 

Diagram no. 2



The following types of matching are available with xml:tm: 

1. Perfect matching: 

Author memory provides exact details of any changes to a document. Where text units have not 
been changed for a previously translated document we can say that we have a “perfect match”. 
The concept of perfect matching is an important one. With traditional translation memory 
systems a translator still has to proof each match, as there is no way to ascertain the 
appropriateness of the match. Proofing has to be paid for - typically at 60% of the standard 
translation cost. With perfect matching there is no need to proofread, thereby saving on the cost 
of translation. 

2. Leveraged matching: 

When an xml:tm document is translated the translation process provides perfectly aligned 
source and target language text units. These can be used to create traditional translation 
memories, but in a consistent and automatic fashion. 

3. In document leveraged matching: 

xml:tm can also be used to find in-document leveraged matches which will be more appropriate 
to a given document than normal translation memory leveraged matches. 

4. In document fuzzy matching: 

During the maintenance of author memory a note can be made of text units that have only 
changed slightly. If a corresponding translation exists for the previous version of the source text 
unit, then the previous source and target versions can be offered to the translator as a type of 
close fuzzy match. 

5. Non translatable text: 

In technical documents you can often find a large number of text units that are made up solely 
of numeric, alphanumeric, punctuation or measurement items. With xml:tm these can be 
identified during authoring and flagged as non translatable, thus reducing the word counts. For 
numeric and measurement only text units it is also possible to automatically convert the decimal 
and thousands designators as required by the target language. 

The following is an example of non translatable text in xml:tm: 



 



 

Word counts 

The output from the text extraction process can be used to generate automatic word and match 
counts by the customer. This puts the customer in control of the word counts. 

XLIFF and on line translation. 
XLIFF is an OASIS standard for the interchange of translatable text in XML format, xml:tm 
translatable files can be created in XLIFF format. The XLIFF format can then be used to create 
dynamic web pages for translation. A translator can access these pages via a browser and undertake 
the whole of the translation process over the Internet. This has many potential benefits. The 
problems of running filters and the delays inherent in sending data out for translation such as 
inadvertent corruption of character encoding or document syntax, or simple human work flow 
problems can be totally avoided. Using XML technology it is now possible to both reduce and 
control the cost of translation as well as reduce the time it takes for translation and improve the 
reliability. 

An example of a web based translator environment can be seen at the following web address: 
http://www.xml-intl.com/demo/trans.html 

And an example of the composed text: 



Benefits of using xml:tm 

The following is a list of the main benefits of using the xml:tm approach to authoring and 
translation: 

1. The ability to build consistent authoring systems. 

2. Automatic production of authoring statistics. 

3. Automatic alignment of source and target text. 

4. Perfect translation matching for unchanged text units. 

5. In-document leveraged and modified text unit matching. 

6. Automatic production of word count statistics. 

7. Automatic generation of perfect, leveraged, previous modified or fuzzy matching. 

8. Automatic generation of XLIFF files. 

9. Protection of the original document structure. 

10. The ability to provide on line access for translators. 

11. Can be used transparently for relay translation. 



Traditional translation scenario: 

xml:tm translation scenario: 



Summary 

xml:tm is an Open Standard created and maintained by xml-Intl based on XML and XLIFF. Full 
details of the xml:tm definitions (XML Data Type Definition and XML Schema) are available from 
the xml-Intl web site (www.xml-inlt.com). Xml-Intl also supplies an implementation of xml:tm 
using Java and Oracle. 

xml:tm is best suited to enterprise level implementation for corporations with a large annual 
translation requirement and a content management system. During the implementation process 
xml:tm is integrated with the customer's content management system. 

xml:tm reduces translation costs in the following ways: 

1. Translation memory is held by the customer within the documents. 
2. Perfect matching reduces translation costs by eliminating the need for translators to proof 

these matches. 
3. Translation memory matching is much more focused than is the case with traditional TM 

systems providing better results. 
4. It allows for relay translation memory processing via an intermediate language. 
5. All TM, extractions and merge processing is automatic, there is no need for manual 

intervention. 
6. Translation can take place directly via the customer’s web site. 
7. All word counts are controlled by the customer. 
8. The original XML documents are protected from accidental damage. 
9. The system is totally integrated into the XML framework, making maximum use of the 

capabilities of XML to address authoring and translation. 


