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Word sense disambiguation (WSD) is a computational linguistics task likely to benefit from the 
tradition of combining different knowledge sources in artificial in telligence research. An important 
step in the exploration of this hypothesis is to determine which linguistic knowledge sources are 
most useful and whether their combination leads to improved results. We present a sense tagger 
which uses several knowledge sources. Tested accuracy exceeds 94% on our evaluation corpus. 

Our system attempts to disambiguate all content words in running text rather than limiting 
itself to treating a restricted vocabulary of words. It is argued that this approach is more likely to 
assist the creation of practical systems. 

1. Introduction 

Word sense disambiguation (WSD) is a problem long recognised in computational 
linguistics (Yngve 1955) and there has been a recent resurgence of interest, including 
a special issue of this journal devoted to the topic (Ide and V4ronis 1998). Despite this 
there is still a considerable diversity of methods employed by researchers, as well as 
differences in the definition of the problems to be tackled. The SENSEVAL evaluation 
framework (Kilgarriff 1998) was a DARPA-style competition designed to bring some 
conformity to the field of WSD, although it has yet to achieve that aim completely. The 
main sources of divergence are the choice of computational paradigm, the proportion 
of text words disambiguated, the granularity of the meanings assigned to them, and 
the knowledge sources used. We will discuss each in turn. 

Resnik and Yarowsky (1997) noted that, for the most part, part-of-speech tagging is 
tackled using the noisy channel model, although transformation rules and grammatico- 
statistical methods have also had some success. There has been far less consensus 
as to the best approach to WSD. Currently, machine learning methods (Yarowsky 
1995; Rigau, Atserias, and Agirre 1997) and combinations of classifiers (McRoy 1992) 
have been popular. This paper reports a WSD system employing elements of both 
approaches. 

Another source of difference in approach is the proportion of the vocabulary dis- 
ambiguated. Some researchers have concentrated on producing WSD systems that 
base results on a limited number of words, for example Yarowsky (1995) and Schtitze 
(1992) who quoted results for 12 words, and a second group, including Leacock, Tow- 
ell, and Voorhees (1993) and Bruce and Wiebe (1994), who gave results for just one, 
namely interest. But limiting the vocabulary on which a system is evaluated can have 
two serious drawbacks. First, the words used were not chosen by frequency-based 
sampling techniques and so we have no way of knowing whether or not they are 
special cases, a point emphasised by Kilgarriff (1997). Secondly, there is no guarantee 
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that the techniques employed will be applicable when a larger vocabulary is tackled. 
However it is likely that mark-up for a restricted vocabulary can be carried out more 
rapidly since the subject has to learn the possible senses of fewer words. 

Among the researchers mentioned above, one must distinguish between, on the 
one hand, supervised approaches that are inherently limited in performance to the 
words over which they evaluate because of limited training data and, on the other 
hand, approaches whose unsupervised learning methodology is applied to only small 
numbers of words for evaluation, but which could in principle have been used to tag 
all content words in a text. Others, such as Harley and Glennon (1997) and ourselves 
Wilks and Stevenson (1998a, 1998b; Stevenson and Wilks 1999), have concentrated on 
approaches that disambiguate all content words. 1 In addition to avoiding the problems 
inherent in restricted vocabulary systems, wide coverage systems are more likely to 
be useful for NLP applications, as discussed by Wilks et al. (1990). 

A third difference concerns the granularity of WSD attempted, which one can 
illustrate in terms of the two levels of semantic distinctions found in many dictionaries: 
homograph and sense (see Section 3.1). Like Cowie, Guthrie, and Guthrie (1992), we 
shall give results at both levels, but it is worth pointing out that the targets of, say, work 
using translation equivalents (e.g., Brown et al. 1991; Gale, Church, and Yarowsky 
1992c; and see Section 2.3) and Roget categories (Yarowsky 1992; Masterman 1957) 
correspond broadly to the wider, homograph, distinctions. 

In this paper we attempt to show that the high level of results more typical of 
systems trained on many instances of a restricted vocabulary can also be obtained 
by large vocabulary systems, and that the best results are to be obtained from an 
optimization of a combination of types of lexical knowledge (see Section 2). 

1.1 Lexical Knowledge and WSD 
Syntactic, semantic, and pragmatic information are all potentially useful for WSD, as 
can be demonstrated by considering the following sentences: 

(1) 

(2) 

(3) 

(4) 

John did not feel well. 

John tripped near the well. 

The bat slept. 

He bought a bat from the sports shop. 

The first two sentences contain the ambiguous word well; as an adjective in (1) 
where it is used in its "state of health" sense, and as a noun in (2), meaning "water 
supply". Since the two usages are different parts of speech they can be disambiguated 
by this syntactic property. 

Sentence (3) contains the word bat, whose nominal readings are ambiguous be- 
tween the "creature" and "sports equipment" meanings. Part-of-speech information 
cannot disambiguate the senses since both are nominal usages. However, this sentence 
can be disambiguated using semantic information, such as preference restrictions. The 
verb sleep prefers an animate subject and only the "creature" sense of bat is animate. 
So Sentence (3) can be effectively disambiguated by its semantic behaviour but not by 
its syntax. 

1 In this paper we define content words as nouns, verbs, adjectives, and adverbs, although others have 
included other part-of-speech categories (Hirst 1995). 
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A preference restriction will not disambiguate Sentence (4) since the direct object 
preference will be at least as general as physical object, and any restriction on the direct 
object slot of the verb sell would cover both senses. The sentence can be disambiguated 
on pragmatic grounds because it is far more likely that sports equipment will be bought 
in a sports shop. Thus pragmatic information can be used to disambiguate bat to its 
"sports equipment" sense. 

Each of these knowledge sources has been used for WSD and in Section 3 we de- 
scribe a method which performs rough-grained disambiguation using part-of-speech 
information. Wilks (1975) describes a system which performs WSD using semantic 
information in the form of preference restrictions. Lesk (1986) also used semantic in- 
formation for WSD in the form of textual definitions from dictionaries. Pragmatic in- 
formation was used by Yarowsky (1992) whose approach relied upon statistical models 
of categories from Roget's Thesaurus (Chapman, 1977), a resource that had been used 
in much earlier approaches to WSD such as Masterman (1957). 

The remainder of this paper is organised as follows: Section 2 reviews some sys- 
tems which have combined knowledge sources for WSD. In Section 3 we discuss the 
relationship between semantic disambiguation and part-of-speech tagging, reporting 
an experiment which quantifies the connection. A general WSD system is presented 
in Section 4. In Section 5 we explain the strategy used to evaluate this system, and we 
report the results in Section 6. 

2. Background 

A comprehensive review of WSD is beyond the scope of this paper but may be 
found in Ide and V4ronis (1998). Combining knowledge sources for WSD is not a 
new idea; in this section we will review some of the systems which have tried to do 
that. 

2.1 McRoy's System 
Early work on coarse-grained WSD based on combining knowledge sources was un- 
dertaken by McRoy (1992). Her work was carried out without the use of machine- 
readable dictionaries (MRD), necessitating the manual creation of the complex set of 
lexicons this system requires. There was a lexicon of 8,775 unique roots, a hierarchy 
of 1,000 concepts, and a set of 1,400 collocational patterns. The collocational patterns 
are automatically extracted from a corpus of text in the same domain as the text being 
disambiguated and senses are manually assigned to each. If the collocation occurs in 
the text being disambiguated, then it is assumed that the words it contains are being 
used in the same senses as were assigned manually. 

Disambiguation makes use of several knowledge sources: frequency information, 
syntactic tags, morphological information, semantic context (clusters), collocations and 
word associations, role-related expectations, and selectional restrictions. The knowl- 
edge sources are combined by adding their results. Each knowledge source assigns a 
(possibly negative) numeric value to each of the possible senses. The numerical value 
depends upon the type of knowledge source. Some knowledge sources have only two 
possible values, for example the frequency information has one value for frequent 
senses and another for infrequent ones. The numerical values assigned for each were 
determined manually. The selectional restrictions knowledge source assigns scores in 
the range -10 to +10, with higher scores being assigned to senses that are more specific 
(according to the concept hierarchy). Disambiguation is carried out by summing the 
scores from each knowledge source for all candidate senses and choosing the one with 
the highest overall score. 
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In a sample of 25,000 words from the Wall Street Journal, the system covered 98% of 
word-occurrences that were not proper nouns and were not abbreviated, demonstrat- 
ing the impressive coverage of the hand-crafted lexicons. No quantitative evaluation 
of the disambiguation quality was carried out due to the difficulty in obtaining an- 
notated test data, a problem made more acute by the use of a custom-built lexicon. 
In addition, comparison of system output against manually annotated text had yet to 
become a standard evaluation strategy in WSD research. 

2.2 The Cambridge Language Survey System 
The Cambridge International Dictionary of English (CIDE) (Procter 1995) is a learners' dic- 
tionary which consists of definitions written using a 2,000 word controlled vocabulary. 
(This lexicon is similar to LDOCE, which we use for experiments presented later in this 
paper; it is described in Section 3.1.) The senses in CIDE are grouped by guidewords, 
similar to homographs in LDOCE. It was produced using a large corpus of English 
created by the Cambridge Language Survey (CLS). 

The CLS also produced a semantic tagger (Harley and Glennon 1997), a commer- 
cial product that tags words in text with senses from their MRD. The tagger consists 
of four sub-taggers running in parallel, with their results being combined after all 
have run. The first tagger uses collocations derived from the CIDE example sentences. 
The second examines the subject codes for all words in a particular sentence and the 
number of matches with other words is calculated. A part-of-speech tagger produced 
in-house by CUP is run over the text and high scores are assigned to senses that 
agree with the syntactic tag assigned. Finally, the selectional restrictions of verbs and 
adjectives are examined. The results of these processes are combined using a simple 
weighting scheme (similar to McRoy's; see Section 2.1). This weighting scheme, in- 
spired by those used in computer chess programs, assigns each sub-process a weight 
in the range -100 to +100 before summing. Unlike McRoy, this approach does not con- 
sider the specificity of a knowledge source in a particular instance but always assigns 
the same overall weight to each. 

Harley and Glennon report 78% correct tagging of all content words at the CIDE 
guideword level (which they equate to the LDOCE sense level) and 73% at the sub- 
sense level, as compared to a hand-tagged corpus of 4,000 words. 

2.3 Machine Learning applied to WSD 
An early application of machine learning to the WSD problem was carried out by 
Brown et al. (1991). Several different disambiguation cues, such as first noun to the 
left/right and second word to the left/right, were extracted from parallel text. Trans- 
lation differences were used to define the senses, as this approach was used in an 
English-French machine translation system. The parallel text effectively provided su- 
pervised training examples for this algorithm. Nadas et al. (1991) used the flip-flop 
algorithm to decide which of the cues was most important for each word by maxi- 
mizing mutual information scores between words. Yarowsky (1996) used an extremely 
rich features set by expanding this set with syntactic relations such as subject-verb, 
verb-object and adjective-noun relations, part-of-speech n-grams and others. The ap- 
proach was based on the hypothesis that words exhibited "one sense per collocation" 
(Yarowsky 1993). A large corpus was examined to compute the probability of a partic- 
ular collocate occurring with a certain sense and the discriminatory power of each was 
calculated using the log-likelihood ratio. These ratios were used to create a decision 
list, with the most discriminating collocations being preferred. This approach has the 
benefit that it does not combine the probabilities of the collocates, which are highly 
non-independent knowledge sources. 
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Yarowsky (1993) also examined the discriminatory power of the individual knowl- 
edge sources. It was found that each collocation indicated a particular sense with a 
very high degree of reliability, with the most successful--the first word to the left of 
a noun--achieving 99% precision. Yet collocates have limited applicability; although 
precise, they can only be applied to a limited number of tokens. Yarowsky (1995) 
dealt with this problem largely by producing an unsupervised learning algorithm that 
generates probabilistic decision list models of word senses from seed collocates. This 
algorithm achieves 97% correct disambiguation. In these experiments Yarowsky deals 
exclusively with binary sense distinctions and evaluates his highly effective algorithms 
on small samples of word tokens. 

Ng and Lee (1996) explored an approach to WSD in which a word is assigned 
the sense of the most similar example already seen. They describe this approach as 
"exemplar-based learning" although it is also known as k-nearest neighbor learning. 
Their system is known as LEXAS (LEXical Ambiguity-resolving System), a supervised 
learning approach which requires disambiguated training text. LEXAS was based on 
PEBLS, a publically available exemplar-based learning algorithm. 

A set of features is extracted from disambiguated example sentences, including 
part-of-speech information, morphological form, surrounding words, local collocates, 
and words in verb-object syntactic relations. When a new, untagged, usage is encoun- 
tered, it is compared with each of the training examples and the distance from each is 
calculated using a metric adopted from Cost and Salzberg (1993). This is calculated as 
the sum of the differences between each pair of features in the two vectors. The differ- 
ences between two values vl and v2 is calculated according to (5), where C1,i represents 
the number of training examples with value Vl that are classified with sense i in the 
training corpus, and C1 the number with value vl in any s e n s e .  C2, i and C2 denote 
similar values and n denotes the total number of senses for the word under consider- 
ation. The sense of the example with the minimum distance from the untagged usage 
is chosen: if there is more than one with the same distance, one is chosen at random 
to break the tie. 

Cl,i C2,i I (5) 
6(Vl, V2) ~- C1 C2 

i=1 

Ng and Lee tested LEXAS on two separate data sets: one used previously in WSD 
research, the other a new, manually tagged, corpus. The common data set was the 
interest corpus constructed by Bruce and Wiebe (1994) consisting of 2,639 sentences 
from the Wall Street Journal, each containing an occurrence of the noun interest. Each 
occurrence is tagged with one of its six possible senses from LDOCE. Evaluation is 
carried out through 100 random trials, each trained on 1,769 sentences and tested on 
the 600 remaining sentences. The average accuracy was 87.4%, significantly higher 
than the figure of 78% reported by Bruce and Wiebe. 

Further evaluation was carried out on a larger data set constructed by Ng and 
Lee. This consisted of 192,800 occurrences of the 121 nouns and 70 verbs that are "the 
most frequently occurring and ambiguous words in English" (Ng and Lee 1996, 44). 
The corpus was made up from the Brown Corpus (Ku~era and Francis 1967) and the 
Wall Street Journal Corpus and was tagged with the correct senses from WordNet 
by university undergraduates specializing in linguistics. Before training, two subsets 
of the corpus were put aside as test sets: the first (B¢50) contains 7,119 occurrences 
of the ambiguous words from the Brown Corpus, while the second (WSd6) contained 
14,139 from the Wall Street Journal Corpus. LEXAS correctly disambiguated 54% of 
words in BCS0 and 68.6% in WSJ6. Ng and Lee point out that both results are higher 
than choosing the first, or most frequent, sense in each of the corpora. The authors 
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Table 1 
Relative contribution of knowledge sources in LEXAS. 

Knowledge Source Accuracy 

Collocations 80.2% 
PoS and Morphology 77.2% 
Surrounding words 62.0% 

Verb-object 43.5% 

attribute the lower performance on the Brown Corpus to the wider variety of text 
types it contains. 

Ng and Lee attempted to determine the relative contribution of each knowledge 
source. This was carried out by re-running the data from the "interest" corpus through 
the learning algorithm, this time removing all but one set of features. The results are 
shown in Table 1. They found that the local collocations were the most useful knowl- 
edge source in their system. However, it must be remembered that this experiment 
was carried out on a data set consisting of a single word and may, therefore, not be 
generalizable. 

2.4 Discussion 
This review has been extremely brief and has not covered large areas of research into 
WSD. For example, we have not discussed connectionist approaches, as used by Waltz 
and Pollack (1985), V6ronis and Ide (1990), Hirst (1987), and Cottrell (1984), However, 
we have attempted to discuss some of the approaches to combining diverse types of 
linguistic knowledge for WSD and have concentrated on those which are related to 
the techniques used in our own disambiguation system. 

Of central interest to our research is the relative contribution of the various knowl- 
edge sources which have been applied to the WSD problem. Both Ng and Lee (1996) 
and Yarowsky (1993) reported some results in the area. However, Ng and Lee reported 
results for only a single word and Yarowsky considers only words with two possible 
senses. This paper is an attempt to increase the scope of this research by discussing 
a disambiguation algorithm which operates over all content words and combines a 
varied set of linguistic knowledge sources. In addition, we examine the relative effect 
of each knowledge source to gauge which are the most important, and under what 
circumstances. 

We first report an in-depth study of a particular knowledge source, namely part- 
of-speech tags. 

3. Part of Speech and Word Senses 

3.1 LDOCE 
The experiments described in this section use the Longman Dictionary of Contemporary 
English (LDOCE) (Procter 1978). LDOCE is a learners' dictionary, designed for students 
of English, containing roughly 36,000 word types. LDOCE was innovative in its use 
of a defining vocabulary of 2,000 words with which the definitions were written. If 
a learner of English could master this small core then, it was assumed, they could 
understand every entry in the dictionary. 

In LDOCE, the senses for each word type are grouped into homographs: sets of 
senses with related meanings. For example, one of the homographs of bank means 
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b a n k  1 n I land along the side of a river, lake, etc. 2 earth which is heaped up in a 

field or a garden, often making a border or division 3 a mass of snow, mud, clouds, 

etc.: The banks of dark cloud promised a heavy storln 4 a slope made at bends in a road or 

race-track, so that they are safer for cars to go round 5 SANDBANK: The Dogger Bank 

in the North Sea can be dangerous for ships 

b a n k  2 v [If~] (of a car or aircraft) to move with one side higher than the other, esp. 

when making a turn - see also BANK UP 

b a n k  3 n 1 a row, esp. of OARs in an ancient boat or KEYs on a TYPEWRITER 

b a n k  4 n I a place where money is kept and paid out on demand, and where related 

activities go on - see picture at STREET 2 (usu. in comb.) a place where something is 

held ready for use, esp. ORGANIC product of human origin for medical use: Hospital 

bloodbanks have saved many lives 3 (a person who keeps) a supply of money or pieces 

for payment or use in a game of chance 4 break the bank to win all the money that 

the BANK4(3) has in a game of chance 

b a n k  5 v 1[T1] to put or keep (money) in a bank 2[L9, esp. with] to keep one's money 

(esp. in the stated bank): Where do you bank? 

Figure 1 
The entry for bank in LDOCE (slightly simplified for clarity). 

roughly  "things pi led up" ,  wi th  different senses dis t inguishing exactly wha t  is piled 
(see Figure 1). If the senses are sufficiently close together  in mean ing  there will be  
only one h o m o g r a p h  for that  word ,  which we  then call monohomographic. However ,  if 
the senses are far enough  apart ,  as in the bank case, they will be g rouped  into separate  
homographs ,  which  we call polyhomographic. 

As can be seen f rom the example  entry, each LDOCE h o m o g r a p h  includes informa- 
tion about  the par t  of speech with  which the h o m o g r a p h  is m a r k e d  and  that appl ies  
to each of the senses wi thin  that homograph .  The vast  majori ty  of h o m o g r a p h s  in 
LDOCE are ma rked  with  a single par t  of speech; however ,  about  2% of word  types in 
the dict ionary contain a h o m o g r a p h  that is m a r k e d  wi th  more  than one par t  of speech 
(e.g., noun  or verb), mean ing  that  either par t  of speech m a y  apply. 

Al though the granular i ty  of the distinction be tween  h o m o g r a p h s  in LDOCE is 
ra ther  coarse-grained,  they are, as we  noted  at the beginning of this paper,  an  appro-  
priate level for m a n y  practical computa t iona l  linguistic applications. For example ,  bank 
in the sense of "financial insti tution" translates to banque in French, but  w h e n  used  
in the "edge  of r iver"  sense it translates as bord. This level of semantic  d i sambigua-  
tion is f requent ly  sufficient for choosing the correct target  word  in an English-to-French 
Machine Translation sys tem and is at a similar level of granular i ty  to the sense distinc- 
tions explored by  other researchers in WSD, for example  Brown et al. (1991), Yarowsky 
(1996), and  McRoy (1992) (see Section 2). 
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3.2 Using Part-of-Speech Information to Resolve Senses 
We began by examining the potential usefulness of part-of-speech information for 
sense resolution. It was found that 34% of the content-word types in LDOCE were 
polysemous, and 12% polyhomographic. (Polyhomographic words are necessarily pol- 
ysemous since each homograph is a non-empty set of senses.) If we assume that the 
part of speech of each polyhomographic word in context is known, then 88% of word 
types would be disambiguated to the homograph level. (In other words, 88% do not 
have two homographs with the same part of speech.) Some words will be disam- 
biguated to the homograph level if they are used in a certain part of speech but not 
others. For example, beam has 3 homographs in LDOCE; the first two are marked as 
nouns while the third is marked as verb. This word would be disambiguated if used 
as a verb but not if used as a noun. If we assume that every word of this type is 
assigned a part of speech which disambiguates it (i.e., verb in the case of beam), then 
an additional 7% of words in LDOCE could, potentially, be disambiguated. Therefore, 
up to 95% of word types in LDOCE can be disambiguated to the homograph level 
by part-of-speech information alone. However, these figures do not take into account 
either errors in part-of-speech tagging or the corpus distribution of tokens, since each 
word type is counted exactly once. 

The next stage in our analysis was to attempt to disambiguate some texts us- 
ing the information obtained from part-of-speech tags. We took five articles from the 
Wall Street Journal, containing 391 polyhomographic content words. These articles were 
manually tagged with the most appropriate LDOCE homograph by one of the authors. 
The texts were then part-of-speech tagged using Brill's transformation-based learning 
tagger (Brill, 1995). The tags assigned by the Brill tagger were manually mapped onto 
the simpler part-of-speech tag set used in LDOCE. 2 If a word has more than one ho- 
mograph with the same part of speech, then part-of-speech tags alone cannot always 
identify a single homograph; in such cases we chose the first sense listed in LDOCE 
since this is the one which occurs most frequently. 3 

It was found that 87.4% of the polyhomographic content words were assigned 
the correct homograph. A baseline for this task can be calculated by computing the 
number of tokens that would be correctly disambiguated if the first homograph for 
each was chosen regardless of part of speech. 78% of polyhomographic tokens were 
correctly disambiguated this way  using this approach. 

These results show there is a clear advantage to be gained (over 42% reduction in 
error rate) by using the very simple part-of-speech-based method described compared 
with simply choosing the first homograph. However, we felt that it would be useful to 
carry out some further analysis of the data. To do this, it is useful to divide the polyho- 
mographic words into four classes, all based on the assumption that a part-of-speech 
tagger has been run over the text and that homographs which do not correspond to 
the grammatical category assigned have been removed. 

Full disambiguation (by part of speech): If only a single homograph with the 
correct part of speech remains, that word has been fully disambiguated 
by the tagger. 

2 The Brill tagger  uses  the 48-tag set f rom the Penn  Tree Bank (Marcus, Santorini, and  Marcinkiewicz 
1993), while  LDOCE uses  a set of 17 more  general  tags. Brill's tagger  has  a repor ted error rate of 
a round  3%, a l though  we found  that  m a p p i n g  the  Penn  TreeBank tags u sed  by Brill onto the s impler  
LDOCE tag set led to a lower error rate. 

3 In the 3rd Edit ion of LDOCE the publ i shers  claim that  the senses  are indeed  ordered by frequency, 
a l though  they make  no such  claim in the 1st Edit ion u sed  here. However ,  Guo  (1989) f ound  evidence 
that  there is a cor respondence  be tween  the order  in wh ich  senses  are listed and  the f requency of 
occurrence in the 1st Edition. 
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Partial disambiguation (by part of speech): If there is more than one possible ho- 
mograph with the correct part of speech but some have been removed 
from consideration, that word has been partially disambiguated by part 
of speech. 

No disambiguation (by part of speech): If all the homographs of a word have 
the same part of speech, which is then assigned by the tagger, then none 
can be removed and no disambiguation has been carried out. 

Part-of-speech error: It is possible for the part-of-speech tagger to assign an incor- 
rect part of speech, leading to the correct homograph being removed from 
consideration. It is worth mentioning that this situation has two possible 
outcomes: first, some homographs, with incorrect parts of speech, may 
remain; or second, all homographs may have been removed from consid- 
eration. 

In Table 3 we show in the column labelled Count the number of words in our 
five articles which fall into each of the four categories. The relative performance of 
the baseline method (choosing the first sense) compared to the reported algorithm 
(removing homographs using part-of-speech tags) are shown in the rightmost two 
columns. The figures in brackets indicate the percentage of polyhomographic words 
correctly disambiguated by each method on a per-class basis. It can be seen that the 
majority of the polyhomographic words (297 of 342) fall into the "Full disambiguation" 
category, all of which are correctly disambiguated by the method reported here. When 
no disambiguation is carried out, the algorithm described simply chooses the first 
sense and so the results are the same for both methods. The only condition under 
which choosing the first sense is more effective than using part-of-speech information 
is when the part-of-speech tagger makes an error and all the homographs with the 
correct part of speech are removed from consideration. In most cases this means that 
the correct homograph cannot be chosen; however, in a small number of cases, this is 
equivalent to choosing the most frequent sense, since if all possible homographs have 
been removed from consideration, the algorithm reverts to using the simpler heuristic 
of choosing the word's first homograph. 4 

Although this result may seem intuitively obvious, there have, we believe, been no 
other attempts to quantify the benefit to be gained from the application of a part-of- 
speech tagger in WSD (see Wilks and Stevenson 1998a). The method described here is 
effective in removing incorrect senses from consideration, thereby reducing the search 
space if combined with other WSD methods. 

In the experiments reported in this section we made use of the particular struc- 
ture of LDOCE, which assigns each sense to a homograph from which its part of 
speech information is inherited. However, there is no reason to believe that the method 
reported here is limited to lexicons with this structure. In fact this approach can 
be applied to any lexicon which assigns part-of-speech information to senses, al- 
though it would not always be possible to evaluate at the homograph level as we 
do here. 

In the remainder of this paper we go on to describe a sense tagger that assigns 
senses from LDOCE using a combination of classifiers. The set of senses considered 
by the classifiers is first filtered using part-of-speech tags. 

4 An example of this situation is shown in the bottom row of Table 2. 
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Table 2 
Examples of the four word types introduced in Section 3.2. The leftmost column indicates the 
full set of homographs for the example words, with upper case indicating the correct 
homograph. The remaining columns show (respectively) the part-of-speech assigned by the 
tagger, the resulting set of senses after filtering, and the type of the word. 

All PoS After Word type 
Homographs Tag tagging 

N, v, v n N Full disambiguation 
n, adj, V v V Full disambiguation 

n, V, v v V, v Partial disambiguation 
n, N, v n n, N Partial disambiguation 

N, n n N, n No disambiguation 
v, V v v, V No disambiguation 

N, v, v v v v PoS error 
N, v, v adj N, v, v PoS error 

Table 3 
Error analysis for the experiment on WSD by part of speech alone. 

Correctly disambiguated by: 
Word Type Count Baseline method PoS method 

Full disambiguation 297 268 (90%) 297 (100%) 
Partial disambiguation 58 22 (38%) 32 (55%) 

No disambiguation 23 10 (43%) 10 (43%) 
Part-of-speech error 13 5 (38%) 3 (23%) 

All polyhomographic 391 305 (78%) 342 (87%) 

4. A Sense Tagger which Combines Knowledge Sources 

We adop t  a f r a m e w o r k  in which  different knowledge  sources are appl ied  as separa te  
modules .  One type  of module ,  a filter, can be used  to r emove  senses f rom considerat ion 
w h e n  a knowledge  source identifies t hem as unl ikely in context. Another  type  can be 
used  w h e n  a knowledge  source provides  evidence for a sense bu t  cannot  identify 
it confidently; we  call these partial taggers (in the spirit  of McCar thy ' s  not ion of 
"part ial  informat ion"  [McCarthy and  Hayes ,  1969]). The choice of whe ther  to app ly  a 
knowledge  source as either a filter or a part ial  tagger  depends  on whe ther  it is likely to 
rule out correct senses. If a knowledge  source is unl ikely to reject the correct sense, then  
it can be safely imp lemen ted  as a filter; o therwise  implementa t ion  as a part ial  tagger  
wou ld  be more  appropr ia te .  In addit ion,  it is necessary to represent  the context of 
amb iguous  words  so that  this informat ion can be used  in the d i sambigua t ion  process. 
In the sys tem described here these modu les  are referred to as feature extractors. 

Our  sense tagger  is imp lemen ted  wi th in  this m o d u l a r  architecture, one where  
each modu le  is a filter, part ial  tagger, or feature extractor. The architecture of the 
sys tem is represented  in Figure 2. This sys tem current ly  incorporates  a single fil- 
ter ( p a r t - o f - s p e e c h  f i l t e r ) ,  three partial  taggers  ( s i m u l a t e d  a n n e a l i n g ,  s u b j e c t  
codes,  s e l e c t i o n a l  r e s t r i c t i o n s )  and  a single feature extractor ( c o l l o c a t i o n  ex-  
t r a c t o r ) .  
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Figure 2 
Sense tagger architecture. 
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4.1 Preprocessing 
Before the filters or partial taggers are applied, the text is tokenized, lemmatized, 
split into sentences, and part-of-speech tagged, again using Brill's tagger. A named 
entity identifier is then run over the text to mark and categorize proper names, which 
will provide information for the selectional restrictions partial tagger (see Section 4.4). 
These preprocessing stages are carried out by modules from Sheffield University's 
Information Extraction system, LaSIE, and are described in more detail by Gaizauskas 
et al. (1996). 

Our system disambiguates only the content words in the text, and the part-of- 
speech tags are used to decide which are content words. There is no attempt to dis- 
ambiguate any of the words identified as part of a named entity. These are excluded 
because they have already been analyzed semantically by means of the classification 
added by the named entity identifier (see Section 4.4). Another reason for not attempt- 
ing WSD on named entities is that when words are used as names they are not being 
used in any of the senses listed in a dictionary. For example, Rose and May are names 
but there are no senses in LDOCE for this usage. It may be possible to create a dummy 
entry in the set of LDOCE senses indicating that the word is being used as a name, 
but then the sense tagger would simply repeat work carried out by the named entity 
identifier. 

4.2 Part-of-Speech filtering 
We take the part-of-speech tags assigned by the Brill tagger and use a manually created 
mapping to translate these to the corresponding LDOCE grammatical category (see 
Section 3.2). Any senses which do not correspond to the category returned are removed 
from consideration. In practice, the filtering is carried out at the same time as the lexical 
lookup phase and the senses whose grammatical categories do not correspond to the 
tag assigned are never attached to the ambiguous word. There is also an option of 
turning off filtering so that all senses are attached regardless of the part-of-speech tag. 
If none of the dictionary senses for a given word agree with the part-of-speech tag 
then all are kept. 

It could be reasonably argued that removing senses is a dangerous strategy since, 
if the part-of-speech tagger made an error, the correct sense could be removed from 
consideration. However, the experiments described in Section 3.2 indicate that part-of- 
speech information is unlikely to reject the correct sense and can be safely implemented 
as a filter. 

4.3 Optimizing Dictionary Definition Overlap 
Lesk (1986) proposed that WSD could be carried out using an overlap count of content 
words in dictionary definitions as a measure of semantic closeness. This method would 
tag all content words in a sentence with their senses from a dictionary that contains 
textual definitions. However, it was found that the computations which would be 
necessary to test every combination of senses, even for a sentence of modest length, 
was prohibitive. 

The approach was made practical by Cowie, Guthrie, and Guthrie (1992) (see 
also (Wilks, Slator, and Guthrie 1996)). Rather than computing the overlap for all 
possible combinations of senses, an approximate solution is identified by the simulated 
annealing optimization algorithm (Metropolis et al. 1953). Although this algorithm is 
not guaranteed to find the global solution to an optimization problem, it has been 
shown to find solutions that are not significantly different from the optimal one (Press 
et al. 1988). Cowie et al. used LDOCE for their implementation and found it correctly 
disambiguated 47% of words to the sense level and 72% to the homograph level 
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Z 
(no semantic restriction) 

T, W, X, Y, 2, 4 ~  
(abstract) 

I,W 
• ~ ~ Q ' Y ' 5  

(animate) 

S,E, 1,2,5 L,E, 6,7 G, 7 P V ' ~ A ,  O/,V H~OO, 
(solid) (liquid) (gas) (plant) (ani~{al) (~umaXn~ 

] N B,R D~K M,K F,R 
(movable (nonmovable (animal (ammal (human (human 

solid) solid) male) female) male) female) 

Figure 3 
Bruce and Guthrie's hierarchy of LDOCE semantic codes. 

when compared with manually assigned senses. The optimization must be carried out 
relative to a function that evaluates the suitability of a particular choice of senses. In 
the Cowie et al. implementation this was done using a simple count of the number 
of words (tokens) in common between all the definitions for a given choice of senses. 
However, this method prefers longer definitions, since they have more words that 
can contribute to the overlap, and short definitions or definitions by synonym are 
correspondingly penalized. We addressed this problem by computing the overlap in a 
different way: instead of each word contributing one, we normalized its contribution 
by the number of words in the definition it came from. In their implementation Cowie 
et al. also added pragmatic codes to the overlap computation; however, we prefer to 
keep different knowledge sources separate and use this information in another partial 
tagger (see Section 4.5). The Cowie et al. implementation returned one sense for each 
ambiguous word in the sentence without any indication of the system's confidence 
in its choice, but we adapted the system to return a set of suggested senses for each 
ambiguous word in the sentence. 

4.4 Selectional  Preferences 
Our next partial tagger returns the set of senses for each word that is licensed by 
selectional preferences (in the sense of Wilks 1975). LDOCE senses are marked with 
selectional restrictions expressed by 36 semantic codes not ordered in a hierarchy. 
However, the codes are clearly not of equal levels of generality; for example, the code H 
is used to represent all humans, while M represents human males. Thus for a restriction 
with type H, we would want to allow words with the more specific semantic class M to 
meet it. This can be computed if the semantic categories are organized into a hierarchy. 
Then all categories subsumed by another category will be regarded as satisfying the 
restriction. Bruce and Guthrie (1992) manually identified relations between the LDOCE 
semantic classes, grouping the codes into small sets with roughly the same meaning 
and attached descriptions; for example M, K are grouped as a pair described as "human 
male". The hierarchy produced is shown in Figure 3. 
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Table 4 
Mapping of named entities onto LDOCE semantic codes. The named entities can be mapped 
to any semantic code within a particular node of the hierarchy since the disambiguation 
algorithm treats all codes in the same node as equivalent. 

Named Entity Type LDOCE code 

PERSON H (= Human) 
ORGANIZATION T (= Abstract) 

LOCATION N (= Non-movable solid) 
DATE T (---- Abstract) 
TIME T (= Abstract) 

MONEY T (= Abstract) 
PERCENT T (---- Abstract) 
UNKNOWN Z (---- No semantic restriction) 

The named entities identified as part of the preprocessing phase (Section 4.1) are 
used by this module,  which requires first a mapping between the name types and 
LDOCE semantic codes, shown in Table 4. 

Any  use of preferences for sense selection requires prior identification of the site 
in the sentence where such a relationship holds. Al though prior identification was not 
done by syntactic methods in Wilks (1975), it is often easiest to think of the relation- 
ships as specified in grammatical terms, e.g., as subject-verb, verb-object, adjective- 
noun  etc. We perform this step by means of a shallow syntactic analyzer (Stevenson 
1998) which finds the following grammatical relations: the subject, direct and indirect 
object of each verb (if any), and the noun  modified by an adjective. Stevenson (1998) 
describes an evaluation of this system in which the relations identified were compared 
with those derived from Penn TreeBank parses (Marcus, Santorini, and Marcinkiewicz 
1993). It was found that the parser achieved 51% precision and 69% recall. 

The preference resolution algorithm begins by examining a verb and the nouns 
it dominates. Each sense of the verb applies a preference to those nouns such that 
some of their senses may  be disallowed. Some verb senses will disallow all senses for 
a particular noun  it dominates and these senses of the verb are immediately rejected. 
This process leaves us with a set of verb senses that do not conflict with the nouns 
that verb governs, and a set of noun  senses licensed by at least one of those verb 
senses. For each noun,  we then check whether  it is modified by an adjective. If it is, 
we reject any senses of the adjectives which do not agree wi th  any of the remaining 
noun  senses. This approach is rather conservative in that it does not reject a sense 
unless it is impossible for it to fit into the preference pattern of the sentence. 

In order to explain this process more fully we provide a walk-through explanation 
of the procedure applied to a toy example shown in Table 5. It is assumed that the 
named-ent i ty identifier has correctly identified John as a person and that the shallow 
parser has found the correct syntactic relations. In order to make this example as 
straightforward as possible, we consider only the case in which the ambiguous words  
have few senses. The disambiguation process operates by considering the relations 
between the words in known grammatical relations, and before it begins we have 
essentially a set of possible senses for each word  related via their syntax. This situation 
is represented by the topmost tree in Figure 4. 

Disambiguation is carried out by  considering each verb sense in turn, beginning 
with  run(l). As run is being used transitively, it places two restrictions on the sentence: 
first, the subject must  satisfy the restriction human and the object abstract. In this 
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Table  5 
Sentence and lexicon for toy example of selectional preference resolution algorithm. 

Example sentence: 
John ran the hilly course. 

Sense Definition and Example Restriction 

John 
ran (1) 
ran (2) 

hilly (1) 
course (1) 
course (2) 

proper name 
to control an organisation run IBM 
to move quickly by foot run a marathon 
undulating terrain hilly road 
route race course 
programme of study physics course 

type:human 
subject:human object:abstract 
subject:human object:inanimate 
modifies:nonmovable so l id  
type:noumovable solid 
type:abstract 

run(l) 

restriction:human restriction:abstract 
John course(2) 

{ run(1 ),run(2) } 

~ b j e c t - ~ b  I 

John { course(1),course(2) } 
f 

I adjective-noun~ 
I 

{hilly(l)} 

run(2) 

restriction:human restriction:inanimate 
John course(I) 

type:nonmovable solid 
hilly(l) 

Figure  4 
Restriction resolution in toy example. 

example,  John has been identified as a n a m e d  enti ty and  marked  as human, so the 
subject restriction is not  broken.  Note  that, if the restriction were  broken,  then the 
verb sense run(l)  would  be m a r k e d  as incorrect by  this part ial  tagger  and  no fur ther  
a t t empt  wou ld  be m a d e  to resolve its restrictions. As this was  not  the case, we  consider 
the direct-object slot, which  places the restriction a b s t r a c t  on the noun  which  fills it. 
course(2) fulfils this criterion, course is modif ied  by  hilly which expects a noun  of type  
noumovable s o l i d .  However ,  course(2) is m a r k e d  a b s t r a c t ,  which does not  comply  
with  this restriction. Therefore, a ssuming  that run is being used  in its second sense 
leads to a si tuation in which  there is no set of senses which  comply  wi th  all the 
restrictions placed on them; therefore run(l)  is not  the correct sense of run and the 
partial  tagger  marks  this sense as wrong.  This si tuation is represented b y  the tree at 
the bo t tom left of Figure 4. The sense course(2) is not  rejected at this point  since it m a y  
be found to be acceptable in the configurat ion of senses of another  sense of run. 

The algor i thm n o w  assumes  that run(2) is the correct sense. This implies that 
course(I) is the correct sense as it complies  wi th  the i n a n i m a t e  restriction that  that  verb  
sense places on the direct object. As well  as comply ing  wi th  the restriction imposed  
by  run(2), course(I) also complies  wi th  the one imposed  by  hilly(i),  since nonmovable 
s o l i d  is s u b s u m e d  by  inan imate .  Therefore, a s suming  that the senses run(2) and 
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course(I) are being used does not lead to any restrictions being broken and the algo- 
rithm marks these as correct. 

Before leaving this example it is worth discussing a few additional points. The 
sense course(2) is marked as incorrect because there is no sense of run with which an 
interpretation of the sentence can be constructed using course(2). If there were further 
senses of run in our example, and course(2) was found to be suitable for those extra 
senses, then the algorithm would mark the second sense of course as correct. There is, 
however, no condition under which run(l) could be considered as correct through the 
consideration of further verb senses. Also, although John and hilly are not ambiguous in 
this example, they still participate in the disambiguation process. In fact they are vital 
to its success, as the correct senses could not have been identified without considering 
the restrictions placed by the adjective hilly. 

This partial tagger returns, for all ambiguous noun, verb, and adjective occurrences 
in the text, the set of senses which satisfy the preferences imposed on those words. 
Adverbs do not have any selectional preferences in LDOCE and so are ignored by this 
partial tagger. 

4.5 Subject Codes 
Our final partial tagger is a re-implementation of the algorithm developed by Yarowsky 
(1992). This algorithm is dependent upon a categorization of words in the lexicon 
into subject areas--Yarowsky used the Roget large categories. In LDOCE, primary 
pragmatic codes indicate the general topic of a text in which a sense is likely to be 
used. For example, LN means "Linguistics and Grammar" and this code is assigned 
to some senses of words such as "ellipsis", "ablative", "bilingual" and "intransitive". 
Roget is a thesaurus, so each entry in the lexicon belongs to one of the large categories; 
but over half (56%) of the senses in LDOCE are not assigned a primary code. We 
therefore created a dummy category, denoted by -- ,  used to indicate a sense which 
is not associated with any specific subject area and this category is assigned to all 
senses without a primary pragmatic code. These differences between the structures 
of LDOCE and Roget meant that we had to adapt the original algorithm reported in 
Yarowsky (1992). 

In Yarowsky's implementation, the correct subject category is estimated by apply- 
ing (6), which maximizes the sum of a Bayesian term (the fraction on the right) over 
all possible subject categories (SCat) for the ambiguous word over the words in its 
context (w). A context of 50 words on either side of the ambiguous word is used. 

ARGMAX Pr( w[ S Cat) Pr( SCat) 
scat ~ log Pr(w) (6) 

w e c o n t e x t  

Yarowsky assumed the prior probability of each subject category to be constant, 
so the value Pr(SCat) has no effect on the maximization in (6), and (7) was in effect 
being maximized. 

ARCMAX Pr (w]SCat) 
SCat ~ log Pr(w) (7) 

w e c o n t e x t  

By including a general pragmatic code to deal with the lack of coverage, we created 
an extremely skewed distribution of codes across senses and Yarowsky's assumption 
that subject codes occur with equal probability is unlikely to be useful in this ap- 
plication. We gained a rough estimate of the probability of each subject category by 
determining the proportion of senses in LDOCE to which it was assigned and apply- 
ing the maximum likelihood estimate. It was found that results improved when the 
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rough estimate of the likelihood of pragmatic codes was used. This procedure gener- 
ates estimates based on counts of types and it is possible that this estimate could be 
improved by counting tokens, although the problem of polysemy in the training data 
would have to be overcome in some way. 

The algorithm relies upon the calculation of probabilities gained from corpus statis- 
tics: Yarowsky used the Grolier's Encyclopaedia, which comprised a 10 million word 
corpus. Our implementation used nearly 14 million words from the non-dialogue 
portion of the British National Corpus (Burnard 1995). Yarowsky used smoothing pro- 
cedures to compensate for data sparseness in the training corpus (detailed in Gale, 
Church, and Yarowsky [1992b]), which we did not implement. Instead, we attempted 
to avoid this problem by considering only words which appeared at least 10 times 
in the training contexts of a particular word. A context model is created for each 
pragmatic code by examining 50 words on either side of any word in the corpus con- 
taining a sense marked with that code. Disambiguation is carried out by examining the 
same 100 word context window for an ambiguous word and comparing it against the 
models for each of its possible categories. Further details may be found in Yarowsky 
(1992). 

Yarowsky reports 92% correct disambiguation over 12 test words, with an average 
of three possible Roget large categories. However, LDOCE has a higher level of aver- 
age ambiguity and does not contain as complete a thesaural hierarchy as Roget, so we 
would not expect such good results when the algorithm is adapted to LDOCE. Con- 
sequently, we implemented the approach as a partial tagger. The algorithm identifies 
the most likely pragmatic code and returns the set of senses which are marked with 
that code. In LDOCE, several senses of a word may be marked with the same prag- 
matic code, so this partial tagger may return more than one sense for an ambiguous 
word. 

4.6 Collocation Extractor 
The final disambiguation module is the only feature-extractor in our system and is 
based on collocations. A set of 10 collocates are extracted for each ambiguous word 
in the text: first word to the left, first word to the right, second word to the left, 
second word to the right, first noun to the left, first noun to the right, first verb to 
the left, first verb to the right, first adjective to the left, and first adjective to the 
right. Some of these types of collocation were also used by Brown et al. (1991) and 
Yarowsky (1993) (see Section 2.3). All collocates are searched for within the sentence 
which contains the ambiguous word. If some particular collocation does not exist for 
an ambiguous word, for example if it is the first or last word in a sentence, then a 
null value (NoColl) is stored instead. Rather than storing the surface form of the co- 
occurrence, morphological roots are stored instead, as this allows for a smaller set of 
collocations, helping to cope with data sparseness. The surface form of the ambiguous 
word is also extracted from the text and stored. The extracted collocations and surface 
form combine to represent the context of each ambiguous word. 

4.7 Combining Disambiguation Modules 
The results from the disambiguation modules (filter, partial taggers, and feature ex- 
tractor) are then presented to a machine learning algorithm to combine their results. 
The algorithm we chose was the TIMBL memory-based learning algorithm (Daelemans 
et al. 1999). Memory-based learning is another name for exemplar-based learning, as 
employed by Ng and Lee (Section 2.3). The TiMBL algorithm has already been used for 
various NLP tasks including part-of-speech tagging and PP-attachment (Daelemans et 
al. 1996; Zavrel, Daelemans, and Veenstra 1997). 
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Like PEBLS, which formed the core of Ng and Lee's LEXAS system, TiMBL classifies 
new examples by comparing them against previously seen cases. The class of the most 
similar example is assigned. At the heart of this approach is the distance metric A(X, Y) 
which computes the similarity between instances X and Y. This measure is calculated 
using the weighted overlap metric shown in (8), which calculates the total distance by 
computing the sum of the distance between each position in the feature vector. 

n 

A(X, Y) =- ~_, wi6(xi, yi) (8) 
i=1 

where: 
xl-yi if numeric, else ~ axi -  min~ 

¢5(xi, y i )  = i f  Xi = y i  (9) 

if xi # yi 

From (9) we can see that TiMBL treats numeric and symbolic features differently. 
For numeric features, the unweighted distance is computed as the difference between 
the values for that feature in each instance, divided by the maximum possible dis- 
tance computed over all pairs of instances in the database. 5 For symbolic features, the 
unweighted distance is 0 if they are identical, and 1 otherwise. For both numeric and 
symbolic features, this distance is multiplied by the weight for the particular feature, 
based on the Gain Ratio measure introduced by Quinlan (1993). This is a measure of 
the difference in uncertainty between the situations with and without knowledge of 
the value of that feature, as in (10). 

H(C) - ~-,v Pr(v) x H(CIv) (10) 
wi = H(v) 

Where C is the set of classifications, v ranges over all values of the feature i and 
H(C) is the entropy of the class labels. Probabilities are estimated from frequency 
of occurrence in the training data. The numerator of this formula determines the 
knowledge about the distribution of classes that is added by knowing the value of 
feature i. However, this measure can overestimate the value of features with large 
numbers of possible values. To compensate, it is divided by H(v), the entropy of the 
feature values. 

Word senses are presented to TiMBL in a feature-vector representation, with each 
sense which was not removed by the part of speech filter being represented by a 
separate vector. The vectors are formed from the following pieces of information in 
order: headword, homograph number, sense number, rank of sense (the order of the 
sense in the lexicon), part of speech from lexicon, output from the three partial tag- 
gers (simulated annealing, subject codes, and selectional restrictions), sur- 
face form of headword from the text, the ten collocates, and an indicator of whether 
the sense is appropriate or not in the context (correct or incorrect). 

Figure 5 shows the feature vectors generated for the word influence in the context 
shown. The final value in the feature vector shows whether the sense is correct or 
not in the particular context. We can see that, in this case, there is one correct sense, 
influence_l_la, the definition of which is "power to gain an effect on the mind of 

5 An earlier version of this system (Stevenson and Wilks 1999) used TiMBL version 1.0 (Daelemans et al. 
1998), which supports only symbolic features. 
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Context  

R e g a r d i n g  At lan ta ' s  n e w  mil l ion  dol lar  a irport ,  the ju ry  r e c o m m e n d e d  " tha t  w h e n  the  n e w  m a n a g e m e n t  take  

charge  Jan. 1 the  a i rpor t  be  opera ted  in a m a n n e r  that  wil l  e l imina te  poli t ical  influences". 

Feature Vectors 

Learning features Truth 

influence 1 la  1 n influences 1 12.03 y NoColl manner  NoColl eliminate NoColl in NoColl political NoColl eliminate correct 

influence 1 lb 2 n influences 0 12.03 y NoColl manner  NoColl eliminate NoColl in NoColl political NoColl eliminate incorrect 

influence 1 2 3 n influences 0 12.03 y NoColl manner  NoColl eliminate NoColl in NoColl political NoColl eliminate incorrect 

influence 1 3 4 n influences 0 12.03 y NoColl manner  NoColl eliminate NoColl in NoColl political NoColl eliminate incorrect 

influence 1 4 5 n influences 0 12.03 n NoColl manner  NoColl eliminate NoCofl in NoColl political NoColl eliminate incorrect 

influence 1 5 6 n influences 0 12.03 n NoColl manner  NoColl eliminate NoColl in NoCon political NoColl eliminate incorrect 

influence 1 6 7 n influences 0 12.03 n NoColl manner  NoColl eliminate NoColl in NoColl political NoColl eliminate incorrect 

Figure 5 
Example feature-vector representation. 

or get results from, without asking or doing anything". Features 10-19 are produced 
by the collocation extractor, and these are identical since each vector is taken from 
the same content. Features 7-9 show the results of the partial taggers. The first is the 
output from simulated annealing, the second the sub jec t  code, and the third the 
s e l e c t i o n a l  r e s t r i c t i o n s .  All noun senses of influence share the same pragmatic 
code (--), and consequently this partial tagger returns the same score for each sense. 
A final point worth noting is that in LDOCE, influence has a verb sense which the 
part-of-speech filter removed from consideration, and consequently this sense is not 
included in the feature-vector representation. 

The TiMBL algorithm is trained on tokens presented in this format. When disam- 
biguating unannotated text, the algorithm is applied to data presented in the same 
format without the classification. The unclassified vectors are then compared with all 
the training examples, and it is assigned the class of the closest one. 

5. Evaluation Strategy 

5.1 Evaluation Corpus 
The evaluation of WSD algorithms has recently become a much-studied area. Gale, 
Church, and Yarowsky (1992a), Resnik and Yarowsky (1997), and Melamed and Resnik 
(2000) each presented arguments for adopting various evaluation strategies, with 
Resnik and Yarowsky's proposal directly influencing the set-up of SENSEVAL (Kil- 
garriff 1998). At the heart of their proposals is the ability of human subjects to mark 
up text with the phenomenon in question (WSD in this case) and evaluate the results 
of computation. This linguistic phenomenon has proved to be far more elusive and 
complex than many others. We have discussed this at length elsewhere (Wilks 1997) 
and will assume here that humans can mark up text for senses to a sufficient degree. 
Kilgarriff (1993) questioned the possibility of creating sense-tagged texts, claiming the 
task to be impossible. However, it should be borne in mind that no alternative has 
yet been widely accepted and that Kilgarriff himself used the markup-and-test model 
for SENSEVAL. In the following discussion we compare the evaluation methodology 
adopted here with those proposed by others. 
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The standard evaluation procedure for WSD is to compare the output of the sys- 
tem against gold standard texts, but these are very labor-intensive to obtain; lexical 
semantic markup is generally considered to be a more difficult and time-consuming 
task than part-of-speech markup (Fellbaum et al. 1998). Rather than expend a vast 
amount of effort on manual tagging we decided to combine two existing resources: 
SEMCOR (Landes, Leacock, and Tengi 1998), and SENSUS (Knight and Luk 1994). 
SEMCOR is a 200,000 word corpus with the content words manually tagged as part 
of the WordNet project. The semantic tagging was carried out by trained lexicogra- 
phers under disciplined conditions that attempted to keep tagging inconsistencies to 
a minimum. SENSUS is a large-scale ontology designed for machine-translation and 
was itself produced by merging the ontological hierarchies of WordNet, LDOCE (as 
derived by Bruce and Guthrie, see Section 4.4), and the Penman Upper Model (Bate- 
man et al., 1990) from ISI. To facilitate the merging of these three resources to produce 
SENSUS, Knight and Luk were required to derive a mapping between the senses in the 
two lexical resources. We used this mapping to translate the WordNet-tagged content 
words in SEMCOR to LDOCE tags. 

The mapping of senses is not one-to-one, and some WordNet synsets are mapped 
onto two or three LDOCE senses when WordNet does not distinguish between them. 
The mapping also contained significant gaps, chiefly words and senses not in the 
translation scheme. SEMCOR contains 91,808 words tagged with WordNet synsets, 
6,071 of which are proper names, which we ignored, leaving 85,737 words which 
could potentially be translated. The translation contains only 36,869 words tagged 
with LDOCE senses; however, this is a reasonable size for an evaluation corpus for the 
task, and it is several orders of magnitude larger than those used by other researchers 
working in large vocabulary WSD, for example Cowie, Guthrie, and Guthrie (1992), 
Harley and Glennon (1997), and Mahesh et al. (1997). This corpus was also constructed 
without the excessive cost of additional hand-tagging and does not introduce any of 
the inconsistencies that can occur with a poorly controlled tagging strategy. 

Resnik and Yarowsky (1997) proposed to evaluate large vocabulary WSD systems 
by choosing a set of test words and providing annotated test and training examples 
for just these words, allowing supervised and unsupervised algorithms to be tested 
on the same vocabulary. This model was implemented in SENSEVAL (Kilgarriff 1998). 
However, for the evaluation of the system presented here, there would have been 
no benefit from using this strategy since it still involves the manual tagging of large 
amounts of data and this effort could be used to create a gold standard corpus in 
which all content words are disambiguated. It is possible that some computational 
techniques may evaluate well over a small vocabulary but  may not work for a large 
set of words, and the evaluation strategy proposed by Resnik and Yarowsky will not 
discriminate between these cases. 

In our evaluation corpus, the most frequent ambiguous type is have, which appears 
604 times. A large number of words (2407) occur only once, and nearly 95% have 25 
occurrences or less. Table 6 shows the distribution of ambiguous types by number of 
corpus tokens. It is worth noting that, as would be expected, the observed distribution 
is highly Zipfian (Zipf 1935). 

Differences in evaluation corpora makes comparison difficult. However, some idea 
of the difficulty of WSD can be gained by calculating properties of the evaluation cor- 
pus. Gale, Church, and Yarowsky (1992a) suggest that the lowest level of performance 
which can be reasonably expected from a WSD system is that achieved by assigning 
the most likely sense in all cases. Since the first sense in LDOCE is usually the most 
frequent, we calculate this baseline figure using a heuristic which assumes the first 
sense is always correct. This is the same baseline heuristic we used for the experiments 
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Table 6 
Occurrence of ambiguous words in the evaluation corpus. 

Occurrence Range Count 

1-25 5488 (94.6%) 
26-50 202 (3.5%) 
51-75 67 (1.2%) 

76-100 21 (0.04%) 
100-604 26 (0.4%) 

reported in Section 3, although those were for the homograph level. We applied the 
naive heuristic of always choosing the first sense in our corpus and found that 30.9% 
of senses were correctly disambiguated. 

Another measure that gives insight into an evaluation corpus is to count the av- 
erage polysemy, i.e., the number of possible senses we can expect for each ambiguous 
word in the corpus. The average polysemy is calculated by counting the sum of pos- 
sible senses for each ambiguous token and dividing by the number of tokens. This is 
represented by (11), where w ranges over all ambiguous tokens in the corpus, S(w) is 
the number of possible senses for word w, and N is the number of ambiguous tokens. 
The average polysemy for our evaluation corpus is 14.62. 

Average polysemy = ~ w  in text S( w) (11) 
N 

Our annotated corpus has the unusual property that more than one sense may 
be marked as correct for a particular token. This is an unavoidable side-effect of a 
mapping between lexicon senses which is not one-to-one. However, it does not imply 
that WSD is easier in this corpus than one in which only a single sense is marked 
for each token, as can be shown from an imaginary example. The worst case for a 
WSD algorithm is when each of the possible semantic tags for a given word occurs 
with equal frequency in a corpus, and so the prior probabilities exhibit a uniform, 
uninformative distribution. Then a corpus with an average polysemy of 5, and 2 senses 
marked correct on each ambiguous token, will have a baseline not less than 40%. 
However, one with an average polysemy of 2, and only a single sense on each, will 
have a baseline of at least 50%. Test corpora in which each ambiguous token has 
exactly two senses were used by Brown et al. (1991), Yarowsky (1995) and others. 

Our system was tested using a technique known as 10-fold cross validation. This 
process is carried out by splitting the available data into ten roughly equal subsets. 
One of the subsets is chosen as the test data and the TiMBL algorithm is trained on the 
remainder. This is repeated ten times, so that each subset is used as test data exactly 
once, and results are averaged across all of the test runs. This technique provides two 
advantages: first, the best use can be made of the available data, and secondly, the 
computed results are more statistically reliable than those obtained by simply setting 
aside a single portion of the data for testing. 

5.2 Evaluation Metrics 
The choice of scoring metric is an important one in the evaluation of WSD algorithms. 
The most commonly used metric is the ratio of words for which the system has as- 
signed the correct sense compared to those which it attempted to disambiguate. Resnik 
and Yarowsky (1997) dubbed this the exact match metric, which is usually expressed 
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as a percentage calculated according to the formula in (12). 

Exact match = Number of correctly assigned senses x 100% (12) 
Number of senses assigned 

Resnik and Yarowsky criticize this metric because it assumes a WSD system com- 
mits to a particular sense. They propose an alternative metric based on cross-entropy 
that compares the probabilities for each sense as assigned by a WSD system against 
those in the gold standard text. The formula in (13) shows the method for computing 
this metric, where the WSD system has processed N words and Pr(csi) is the proba- 
bility assigned to the correct sense of word i. 

N 
1 
N ~ l°g2 Pr(csi) (13) 

i=1 

This evaluation metric may be useful for disambiguation systems that assign probabil- 
ities to each sense, such as those developed by Resnik and Yarowsky, since it provides 
more information than the exact match metric. However, for systems which simply 
choose a single sense and do not measure confidence, it provides far less information. 
When a WSD assigns only one sense to a word and that sense is incorrect, that word is 
scored as ~ .  Consequently, the formula in (13) returns c~ if there is at least one word 
in the test set for which the tagger assigns a zero probability to the correct sense. For 
WSD systems which assign exactly one sense to each word, this metric returns 0 if 
all words are tagged correctly, and cx~ otherwise. This metric is potentially very useful 
for the evaluation of WSD systems that return non-zero probabilities for each possible 
sense; however, it is not useful for the metric presented in this paper and others that 
are not based on probabilistic models. 

Melamed and Resnik (2000) propose a metric for scoring WSD output when there 
may be more than one correct sense in the gold standard text, as with the evaluation 
corpus we use. They mention that when a WSD system returns more than one sense 
it is difficult to tell if they are intended to be disjunctive or conjunctive. The score 
for a token is computed by dividing the number of correct senses identified by the 
algorithm by the total it returns, making the metric equivalent to precision in infor- 
mation retrieval (van Rijsbergen 1979). 6 For systems which return exactly one sense 
for each word, this equates to scoring a token as 1 if the sense returned is correct, and 
0 otherwise. For the evaluation of the system presented here, the metric proposed by 
Melamed and Resnik is then equivalent to the exact match metric. 

The exact match metric has the advantage of being widely used in the WSD lit- 
erature. In our experiments the exact match figure is computed at the LDOCE sense 
level, where the number of tokens correctly disambiguated to the sense level is di- 
vided by the number ambiguous at that level. At the homograph level, the number 
correctly disambiguated to the homograph is divided by the number which are poly- 
homographic. 

6. Performance 

Using the evaluation procedure described in the previous section, it was found that the 
system correctly disambiguated 90% of the ambiguous instances to the fine-grained 
sense level, and in excess of 94% to the homograph level. 

6 The metric operates slightly differently for systems that assign probabilities to senses, 
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Table 7 
System results, baselines, and corpus characteristics. Sense level results are calculated over all 
polysemous words in the evaluation corpus while those reported for the homograph level are 
calculated only over polyhomographic ones. 

Entire Subcorpora 
Corpus Noun Verb Adjective Adverb 

Sense level Accuracy 90.37% 91.24% 88.38% 91.09% 70.61% 
Baseline 30.90% 34.56% 18.46% 25.76% 36.73% 

Tokens 36,774 26 ,091  6,465 3,310 908 
Types 5,804 4.041 1,021 1,006 125 

Average Polysemy 14.62 13.65 24.35 6.07 4.43 

Homograph level Accuracy 94.65% 94.63% 95.26% 96.89% 90.67% 
Baseline 71.24% 73.47% 60.72% 87.10% 86.87% 

Tokens 18 ,219  11 ,380  5,194 1,326 319 
Types 1,683 1,264 709 201 34 

Average Polysemy 2.52 2.32 2.81 2.95 3.13 

In order  to analyze the effectiveness of our  tagger in more  detail, we split the 
main corpus into sub-corpora by  grammatical  category. In other words,  we created 
four individual  sub-corpora containing the ambiguous words  which had been part- 
of-speech tagged as nouns,  verbs, adjectives, and adverbs. The figures characterizing 
each of these corpora are shown in Table 7. The majority of the ambiguous  words  
were nouns,  with far fewer verbs and adjectives, and less than one thousand adverbs. 
The average po lysemy for nouns,  at both sense and homograph  levels, is roughly  
the same as the overall corpus average al though it is noticably higher  for verbs at 
the sense level. At the sense level the average po lysemy figures are much  lower for 
adjectives and adverbs. This is because it is common  for English words  to act as either 
a noun  or a verb and, since these are the most  polysemous  grammatical  categories, 
the average po lysemy count  becomes large due  to the cumulat ive effect of po lysemy 
across grammatical  categories. However ,  words  that can act as adjectives or adverbs 
are unlikely to be nouns  or verbs. This, plus the fact that adjectives and adverbs are 
generally less polysemous  in LDOCE, means  that their average po lysemy in text is far 
lower than it is for nouns  or verbs. 

Table 7 shows the accuracy of our  system over  the four subcorpora.  We can see 
that the tagger achieves higher  results at the homograph  level than the sense level 
on each of the four subcorpora,  which is consistent with the result over  the whole 
corpus. 

There is quite a difference in the tagger 's  results across the different subcorpora - -  
91% for nouns  and 70% for adverbs. Perhaps the learning algori thm does not  per form 
as well on adverbs because that corpus is significantly smaller than the other three. 
This hypothesis  was checked by  testing our  system on port ions of each of the three 
subcorpora that were roughly  equal in size to the adverb subcorpus.  We found that the 
reduced data caused a slight loss of accuracy on each of the three subcorpora;  how- 
ever, there was still a marked  difference between the results for the adverb subcorpus 
and the other three. Further analysis showed that the differences in performance over  
different subcorpora seem linked to the behavior  of different partial taggers w h en  
used in combination. In the following section we describe this behavior  in more  de- 
tail. 

343 



Computational Linguistics Volume 27, Number 3 

6.1 Interaction of Knowledge Sources 
In order to gauge the contribution of each knowledge source separately, we imple- 
mented a set of simple disambiguation algorithms, each of which uses the output 
from a single partial tagger. Each algorithm takes the result of its partial tagger and 
checks it against the disambiguated text to see if it is correct. If the partial tagger returns 
more than one sense, as do the simulated annealing, subject  code and s e l e c t i o n a l  
preference taggers, the first sense is taken to break the tie. For the partial tagger based 
on Yarowsky's subject-code algorithm, we choose the sense with the highest saliency 
value. If more than one sense has been assigned the maximum value, the tie is again 
broken by choosing the first sense. Therefore, each partial tagger returns a single sense 
and the exact match metric is used to determine the proportion of tokens for which 
that tagger returns the correct sense. The part-of-speech filter is run before the partial 
taggers make their decision and so they only consider the set of senses it did not re- 
move. The results of each tagger, computed at both sense and homograph levels over 
the evaluation corpus and four subcorpora, are shown in Table 7. 

We can see that the partial taggers that are most effective are those based on the 
simulated annealing algorithm and Yarowsky's subject code approach. The success of 
these modules supports our decision to use existing disambiguation algorithms that 
have already been developed rather than creating new ones. 

The most successful of the partial taggers is the one based on Yarowsky's algorithm 
for modelling thesaural categories by wide contexts. This consistently achieves over 
70% correct disambiguation and seems particularly successful when disambiguating 
adverbs (over 85% correct). It is quite surprising that this algorithm is so successful for 
adverbs, since it would seem quite reasonable to expect an algorithm based on subject 
codes to be more successful on nouns and less so on modifiers such as adjectives and 
adverbs. 

Yarowsky (1992) reports that his algorithm achieves 92% correct disambiguation, 
which is nearly 13% higher than achieved in our implementation. However, Yarowsky 
tested his implementation on a restricted vocabulary of 12 words, the majority of which 
were nouns, and used Roget large categories as senses. The baseline performance for 
this corpus is 66.5%, considerably higher than the 30.9% computed for the corpus 
used in our experiments. Another possible reason for the difference in results is the 
fact that Yarowsky used smoothing algorithms to avoid problems with the probability 
estimates caused by data sparseness. We did not employ these procedures and used 
simple corpus frequency counts when calculating the probabilities (see Section 4.5). It 
is not possible to say for sure that the differences between implementations did not 
lead to the differences in results, but it seems likely that the difference in the semantic 
granularity of LDOCE subject codes and Roget categories was an important factor. 

The second partial tagger based on an existing approach is the one which uses 
simulated annealing to optimize the overlap of words shared by the dictionary defini- 
tions for a set of senses. In Section 4.3 we noted that Cowie et al. (1992) reported 47% 
correct disambiguation to the sense level using this technique, while in our adaptation 
over 17% more words are correctly disambiguated. Our application filtered out senses 
with the incorrect part of speech in addition to using a different method to calculate 
overlap that takes account of short definitions. It seems likely that these changes are 
the source of the improved results. 

Our least successful partial tagger is the one based on selectional preferences. 
Although its overall result is slightly below the overall corpus baseline, it is very suc- 
cessful at disambiguating verbs. This is consistent with the work of Resnik (1997), who 
reported that many words do not have strong enough selectional restrictions to carry 
out WSD. We expected preferences to be successful for adjectives as well, although 
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Table 8 
Performance of individual partial taggers (at sense level). 

All Nouns Verbs  Adjectives Adverbs 

simulated annealing (I) 65.24% 66.50% 67.51% 49.02% 50.61% 
selectional preferences (2) 44.85% 40.73% 75.80% 27.56% 0% 

subject codes (3) 79.41% 79.18% 72.75% 73.73% 85.50% 

this is not the case in our evaluation. This is because the sense discrimination of ad- 
jectives is carried out after that for nouns in our algorithm (see Section 4.4), and the 
former is hindered by the low results of the latter. Adverbs cannot be disambiguated 
by preference methods against LDOCE because it does not contain the appropriate 
information. 

Our analysis of the behavior of the individual partial taggers provides some clues 
to the behavior of the overall system, consisting of all taggers, on the different sub- 
corpora, as shown in Table 7. The system performs to roughly the same level over 
the noun, verb, and adjective sub-corpora with only a 3% difference between the best 
and worst performance. The system's worst performance is on the abverb sub-corpus, 
where it disambiguates only slightly more than 70% of tokens successfully. This may 
be due to the fact that only two partial taggers provide evidence for this grammatical 
category. However, the system still manages to disambiguate most of the adverbs to the 
homograph level successfully, and this is probably because the part-of-speech filter has 
ruled out the incorrect homographs, not because the partial taggers performed well. 

One can legitimately wonder whether in fact the different knowledge sources for 
WSD are all ways of encoding the same semantic information, in a similar way that 
one might suspect transformation rules and statistics encode the same information 
about part-of-speech tag sequences in different formats. However, the fact that an op- 
timized combination of our partial taggers yields a significantly higher figure than any 
one tagger operating independently, shows that they must be orthogonal information 
sources. 

6.2 The overall value of the part-of-speech filter 
We have already examined the usefulness of part-of-speech tags for semantic disam- 
biguation in Section 3. However, we now want to know the effect it has within a 
system consisting of several disambiguation modules. It was found that accuracy at 
the sense level reduced to 87.87% and to 93.36% at the homograph level when the 
filter was removed. Although the system's performance did not decrease by a large 
amount, the part-of-speech filter brings the additional benefit of reducing the search 
space for the three partial taggers. In addition, the fact that these results are not af- 
fected much by the removal of the part-of-speech filter, shows that the WSD modules 
alone do a reasonable job of resolving part-of-speech ambiguity as a side-effect of 
semantic disambiguation. 

7. Conclusion 

Previously reported WSD systems that enjoyed a high level of accuracy have often 
operated on restricted vocabularies and employed a single WSD methodology. These 
methods have often been pursued for sound reasons to do with evaluation, but have 
been limited in their applicability and also in their persuasiveness regarding the scal- 
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ability and interaction of the various WSD partial methods.  This paper  repor ted a 
system which disambiguated all content words  in a text, as defined by  a s tandard 
machine readable dictionary, with a high degree of accuracy. 

Our evaluat ion shows that disambiguation can be carried out  with more accurate 
results when  several knowledge sources are combined. It remains unclear exactly what  
it means  to optimize the combination of modules  within a learning system like T±MBL: 
we could, in further work,  treat the part-of-speech tagger as a partial tagger and not  
a filter, and we could allow the system to learn some "opt imal"  weight ing of all 
the partial taggers. It also remains an interesting quest ion whether,  because of the 
undoub ted  existence of novel  senses in text, a sense tagger can ever reach the level 
that part-of-speech tagging has. However ,  we believe we have shown that interesting 
combinations of WSD methods  on a substantial training corpus are possible, and that 
this can show, among other things, the relative independence  of the types of semantic 
information expressed by  the various forms of lexical input. 
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