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The Web as a Parallel Corpus

Philip Resnik∗ Noah A. Smith†

University of Maryland Johns Hopkins University

Parallel corpora have become an essential resource for work in multilingual natural language
processing. In this article, we report on our work using the STRAND system for mining parallel
text on the World Wide Web, first reviewing the original algorithm and results and then presenting
a set of significant enhancements. These enhancements include the use of supervised learning
based on structural features of documents to improve classification performance, a new content-
based measure of translational equivalence, and adaptation of the system to take advantage of the
Internet Archive for mining parallel text from the Web on a large scale. Finally, the value of these
techniques is demonstrated in the construction of a significant parallel corpus for a low-density
language pair.

1. Introduction

Parallel corpora—bodies of text in parallel translation, also known as bitexts—have
taken on an important role in machine translation and multilingual natural language
processing. They represent resources for automatic lexical acquisition (e.g., Gale and
Church 1991; Melamed 1997), they provide indispensable training data for statistical
translation models (e.g., Brown et al. 1990; Melamed 2000; Och and Ney 2002), and
they can provide the connection between vocabularies in cross-language information
retrieval (e.g., Davis and Dunning 1995; Landauer and Littman 1990; see also Oard
1997). More recently, researchers at Johns Hopkins University and the University of
Maryland have been exploring new ways to exploit parallel corpora in order to de-
velop monolingual resources and tools, using a process of annotation, projection, and
training: Given a parallel corpus in English and a less resource-rich language, we
project English annotations across the parallel corpus to the second language, using
word-level alignments as the bridge, and then use robust statistical techniques in learn-
ing from the resulting noisy annotations (Cabezas, Dorr, and Resnik 2001; Diab and
Resnik 2002; Hwa et al. 2002; Lopez et al. 2002; Yarowsky, Ngai, and Wicentowski 2001;
Yarowsky and Ngai 2001; Riloff, Schafer, and Yarowsky 2002).

For these reasons, parallel corpora can be thought of as a critical resource. Unfor-
tunately, they are not readily available in the necessary quantities. Until very recently,
for example, statistical work in machine translation focused heavily on French-English
translation because the Canadian parliamentary proceedings (Hansards) in English
and French were the only large bitext available. Things have improved somewhat, but
it is still fair to say that for all but a relatively few language pairs, parallel corpora
tend to be accessible only in specialized forms such as United Nations proceedings
(e.g., via the Linguistic Data Consortium, 〈http://www.ldc.upenn.edu〉), religious texts
(Resnik, Olsen, and Diab 1999), localized versions of software manuals (Resnik and

∗ Department of Linguistics and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742. E-mail: resnik@umd.edu

† Department of Computer Science and Center for Language and Speech Processing, Johns Hopkins
University, Baltimore, MD 21218. E-mail: nasmith@cs.jhu.edu



350

Computational Linguistics Volume 29, Number 3

Melamed 1997; Menezes and Richardson 2001), and the like. Even for the top handful
of majority languages, the available parallel corpora tend to be unbalanced, represent-
ing primarily governmental or newswire-style texts. In addition, like other language
resources, parallel corpora are often encumbered by fees or licensing restrictions. For
all these reasons, it is difficult to follow the “more data are better data” advice of
Church and Mercer (1993), abandoning balance in favor of volume, with respect to
parallel text.

Then there is the World Wide Web. People tend to see the Web as a reflection of
their own way of viewing the world—as a huge semantic network, or an enormous
historical archive, or a grand social experiment. We are no different: As computational
linguists working on multilingual issues, we view the Web as a great big body of text
waiting to be mined, a huge fabric of linguistic data often interwoven with parallel
threads.

This article describes our techniques for mining the Web in order to extract the
parallel text it contains. It presents, in revised and considerably extended form, our
early work on mining the Web for bilingual text (STRAND) (Resnik 1998, 1999), incor-
porating new work on content-based detection of translations (Smith 2001, 2002), and
efficient exploitation of the Internet Archive. In Section 2 we lay out the STRAND ar-
chitecture, which is based on the insight that translated Web pages tend quite strongly
to exhibit parallel structure, permitting them to be identified even without looking at
content; we also show how we have improved STRAND’s performance by training
a supervised classifier using structural parameters rather than relying on manually
tuned thresholds. In Section 3 we present an approach to detecting translations that
relies entirely on content rather than structure, demonstrating performance comparable
to STRAND’s using this orthogonal source of information. In Section 4 we describe
how we have adapted the STRAND approach to the Internet Archive, dramatically
improving our ability to identify parallel Web pages on a large scale. Section 5 puts
all the pieces together, using structural and combined content-structure matching of
pages on the Internet Archive in order to obtain a sizable corpus of English-Arabic
Web document pairs. Finally we present our thoughts on future work and conclusions.

2. The STRAND Web-Mining Architecture

STRAND (Resnik 1998, 1999) is an architecture for structural translation recognition,
acquiring natural data. Its goal is to identify pairs of Web pages that are mutual
translations. In order to do this, it exploits an observation about the way that Web
page authors disseminate information in multiple languages: When presenting the
same content in two different languages, authors exhibit a very strong tendency to
use the same document structure (e.g., Figure 1). STRAND therefore locates pages that
might be translations of each other, via a number of different strategies, and filters out
page pairs whose page structures diverge by too much.

In this section we describe how STRAND works, and we also discuss several
related Web-mining methods, focusing on the overall architecture these systems have
in common and the important system-specific variations. We then show how tuning
STRAND’s structural parameters using supervised training can significantly increase
its performance.

2.1 STRAND
Finding parallel text on the Web consists of three main steps:

• Location of pages that might have parallel translations
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Figure 1
Example of a candidate pair.

• Generation of candidate pairs that might be translations

• Structural filtering out of nontranslation candidate pairs

We consider each of these steps in turn.

2.1.1 Locating Pages. The original STRAND architecture accomplished the first step by
using the AltaVista search engine’s 〈http://www.av.com〉 advanced search to search
for two types of Web pages: parents and siblings.

A parent page is one that contains hypertext links to different-language versions of
a document; for example, if we were looking for English and French bitexts, the page
at the left in Figure 2 would lead us to one such candidate pair. To perform this search
for the English-French language pair, we ask AltaVista for pages in any language
that satisfy this Boolean expression: (anchor:"english" OR anchor:"anglais") AND

(anchor:"french" OR anchor:"français"). A 10-line distance filter is used to re-
strict attention to pages on which the English and French pointers occur reason-
ably close to one another—specifically, those for which the regular expression (in
Perl) /(english|anglais)/ is satisfied within 10 lines of the Perl regular expres-
sion /(french|fran\w+ais)/ in the HTML source. This helps filter out a page that
contained, for example, a link to “English literature courses” and also contained an
unrelated link to “French version” at the top.

A sibling page is a page in one language that itself contains a link to a version
of the same page in another language; for example, the page at the right of Figure 2
contains a link on the left that says “This page in english.” To perform this search for
English pages matching a given French page, we request pages in French that match
the Boolean expression anchor:"english" OR anchor:"anglais".

More recent versions of STRAND (unpublished) have added a “spider” compo-
nent for locating pages that might have translations. Given a list of Web sites thought
to contain bilingual text for a given language pair (e.g., sites identified using the
AltaVista-based search), it is possible to download all the pages on each site, any
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Figure 2
Excerpts from a parent page (left) and a sibling page (right). The parent page is in Italian and
contains links marked “Italiano/Italian,” “Francese/French,” and “Inglese/English.” The
sibling page is in Dutch and contains a link marked “This page in english” in the leftmost
column.

of which might have a translation on that site. Although simple to implement, this
method of locating pages shifts the burden of narrowing down the possibilities to
the process of generating candidate document pairs. The results reported here do not
make use of the spider.

2.1.2 Generating Candidate Pairs. Pairing up potentially translated pages is simple
when a search engine has been used to generate parent or sibling pages: One simply
pairs the two child pages to which the parent links, or the sibling page together with
the page to which it links.

When all the pages on a site are under consideration, the process is rather differ-
ent. The simplest possibility is to separate the pages on a site into the two languages of
interest using automatic language identification (Ingle 1976; Beesley 1988; Cavnar and
Trenkle 1994; Dunning 1994), throwing away any pages that are not in either language,
and then generate the cross product. This potentially leads to a very large number of
candidate page pairs, and there is no particular reason to believe that most of them
are parallel translations, other than the fact that they appear on the same Web site. The
spider component of STRAND adds a URL-matching stage, exploiting the fact that the
directory structure on many Web sites reflects parallel organization when pages are
translations of each other. Matching is performed by manually creating a list of substi-
tution rules (e.g., english → big5),1 and for each English URL, applying all possible
rules to generate URLs that might appear on the list of pages for the other language. If
such a URL is found, the pair with similar URLs is added to the list of candidate doc-
ument pairs. For example, suppose an English-Chinese site contains a page with URL
〈http://mysite.com/english/home en.html〉, on which one combination of substitu-
tions might produce the URL 〈http://mysite.com/big5/home ch.html〉. The original
page and the produced URL are probably worth considering as a likely candidate pair.

1 Big5 is the name of a commonly used character encoding for Chinese.
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Owing to the combinatorics (an exponential number of possible substitutions), only a
fixed number of substitution combinations can be tried per English URL; however, in
Section 4.3 we describe a more scalable URL-matching algorithm.

Another possible criterion for matching is the use of document lengths. Texts
that are translations of one another tend to be similar in length, and it is reasonable to
assume that for text E in language 1 and text F in language 2, length(E) ≈ C · length(F),
where C is a constant tuned for the language pair. The use of a document length filter
is described in Smith (2001), in which such a filter is shown, at the sentence level,
to reduce the size of the search space exponentially in the confidence p in a (1 − p)
confidence interval for a linear regression model with only linear loss of good pairs.

2.1.3 Structural Filtering. The heart of STRAND is a structural filtering process that
relies on analysis of the pages’ underlying HTML to determine a set of pair-specific
structural values, and then uses those values to decide whether the pages are transla-
tions of one another. The first step in this process is to linearize the HTML structure
and ignore the actual linguistic content of the documents. We do not attempt to exploit
nonlinear structure (e.g., embedded chunks), for two reasons. First, we suspect that
many HTML authors use tags for formatting text rather than for indicating document
structure; therefore any “tree” structure is likely to be inconsistent or poorly matched.
Second, we required the matching algorithm to be fast, and algorithms for aligning
tree structures are more demanding than those for linear structures.

Both documents in the candidate pair are run through a markup analyzer that
acts as a transducer, producing a linear sequence containing three kinds of token:

[START:element_label] e.g., [START:A], [START:LI]
[END:element_label] e.g., [END:A]
[Chunk:length] e.g., [Chunk:174]

The chunk length is measured in nonwhitespace bytes, and the HTML tags are nor-
malized for case. Attribute-value pairs within the tags are treated as nonmarkup text
(e.g., <FONT COLOR="BLUE"> produces [START:FONT] followed by [Chunk:12]).

The second step is to align the linearized sequences using a standard dynamic pro-
gramming technique (Hunt and McIlroy 1975). For example, consider two documents
that begin as follows:

<HTML> <HTML>
<TITLE>Emergency Exit</TITLE> <TITLE>Sortie de Secours</TITLE>
<BODY> <BODY>
<H1>Emergency Exit</H1> Si vous êtes assis à
If seated at an exit and côté d’une . . .
...

...

The aligned linearized sequence would be as follows:

[START:HTML] [START:HTML]
[START:TITLE] [START:TITLE]
[Chunk:13] [Chunk:15]
[END:TITLE] [END:TITLE]
[START:BODY] [START:BODY]
[START:H1]
[Chunk:13]
[END:H1]
[Chunk:112] [Chunk:122]
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Using this alignment, we compute four scalar values that characterize the quality
of the alignment:

dp The difference percentage, indicating nonshared material (i.e., alignment
tokens that are in one linearized file but not the other).

n The number of aligned nonmarkup text chunks of unequal length.

r The correlation of lengths of the aligned nonmarkup chunks.

p The significance level of the correlation r.

The difference percentage (dp) quantifies the extent to which there are mismatches
in the alignment: sequence tokens on one side that have no corresponding token on
the other side. In the example above, one document contains an H1 header that is
missing from the second document. Large numbers of such mismatches can indicate
that the two documents do not present the same material to a great enough extent to
be considered translations. This can happen, for example, when two documents are
translations up to a point (e.g., an introduction), but one document goes on to include a
great deal more content than another. Even more frequently, the difference percentage
is high when two documents are prima facie bad candidates for a translation pair.

The number of aligned nonmarkup text chunks (n) helps characterize the quality of
the alignment. The dynamic programming algorithm tries to optimize the correspon-
dence of identical tokens, which represent markup.2 As a side effect, the nonmarkup
text chunks are placed in correspondence with one another (e.g., the “Emergency Exit”
and “Sortie de Secours” chunks in the above example). The more such pairings are
found, the more likely the candidate documents are to represent a valid translation
pair.

The remaining two parameters (r and p) quantify the extent to which the cor-
responding nonmarkup chunks are correlated in length. When two documents are
aligned with one another and are valid translations, there is a reliably linear relation-
ship in the length of translated chunks of text: short pieces correspond with short
pieces, medium with medium, and long with long. The Pearson correlation coefficient
r for the lengths will be closer to one when the alignment has succeeded in lining
up translated pieces of text, and the p value quantifies the reliability of the correla-
tion; for example, the standard threshold of p < .05 indicates 95% confidence that the
correlation was not obtained by chance.

In our original work, we used fixed thresholds, determined manually by inspection
of development (nontest) data for English-Spanish, to decide whether a candidate pair
should be kept or filtered out. Thresholds of dp < 20% and p < 0.05 were used.

2.2 STRAND Results
As with most search tasks, performance at finding parallel Web pages can be evaluated
using standard measures of precision and recall and by combining those figures using
the F-measure. It is not possible for us to measure recall relative to the entire set of
document pairs that should have been found; this would require exhaustive evaluation
using the entire Web, or pooling results from a large number of different systems, as
is done in the TREC information retrieval evaluations. Therefore, recall in this setting
is measured relative to the set of candidate pairs that was generated.

2 “Nonmarkup” tokens with exactly the same length almost always turn out to be pieces of
markup-related text (e.g., key=value pairs within HTML tags).
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Since the “truth” in this task is a matter for human judgment, we rely on bilingual
speakers to judge independently whether page pairs are actually translations of each
other for any given test set. In our experience no bilingual speaker is completely
comfortable saying that another person’s translation is a good translation, so in creating
the gold standard, we instead ask, “Was this pair of pages intended to provide the
same content in the two different languages?” Asking the question in this way leads
to high rates of interjudge agreement, as measured using Cohen’s κ measure.

2.2.1 Using Manually Set Parameters. Using the manually set thresholds for dp and n,
we have obtained 100% precision and 68.6% recall in an experiment using STRAND
to find English-French Web pages (Resnik 1999). In that experiment, 326 candidate
pairs, randomly selected from a larger set of 16,763 candidates, were judged by two
human annotators. The humans agreed (i.e., both marked a page “good” or both
marked a page “bad”) on 261 page pairs (86 “good” and 175 “bad”), and it is rela-
tive to those 261 that we compute recall. A modified version of STRAND was used
to obtain English-Chinese pairs (see related work, below), and in a similar formal
evaluation, we found that the resulting set had 98% precision and 61% recall for
Chinese 〈http://umiacs.umd.edu/∼resnik/strand/〉. Both these results are consistent
with our preliminary findings for English-Spanish using a less rigorous evaluation
(using the judgments of the first author rather than independent bilingual evaluators)
and a very small test set; precision in this preliminary experiment was near ceiling
and recall was in the vicinity of 60% (Resnik 1998).

2.2.2 Assessing the STRAND Data. Although our focus here is finding parallel text,
not using it, a natural question is whether parallel text from the Web is in fact of value.
Two sources of evidence suggest that it is.

First, Web-based parallel corpora have already demonstrated their utility in cross-
language information retrieval experiments. Resnik, Oard, and Levow (2001) showed
that a translation lexicon automatically extracted from the French-English STRAND
data could be combined productively with a bilingual French-English dictionary in or-
der to improve retrieval results using a standard cross-language IR test collection (En-
glish queries against the CLEF-2000 French collection, which contains approximately
21 million words from articles in Le Monde). During document translation, backing off
from the dictionary to the STRAND translation lexicon accounted for over 8% of the
lexicon matches (by token), reducing the number of untranslatable terms by a third
and producing a statistically significant 12% relative improvement in mean average
precision as compared to using the dictionary alone. Similarly, Nie and Cai (2001) have
demonstrated improved cross-language IR results for English and Chinese using data
gathered by the PTMiner system (Chen and Nie 2000), a related approach that we
discuss in Section 2.3.

Second, since bag-of-words IR experiments are not very illuminating with respect
to fluency and translation quality, we conducted a ratings-based assessment of English-
Chinese data, asking two native Chinese speakers (who are fluent in English) to assign
ratings to a set of English-Chinese items. The set contained:

• 30 human-translated sentence pairs from the FBIS (Release 1)
English-Chinese parallel corpus, sampled at random.

• 30 Chinese sentences from the FBIS corpus, sampled at random, paired
with their English machine translation output from AltaVista’s Babelfish
〈http://babelfish.altavista.com〉.
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• 30 paired items from Chinese-English Web data, sampled at random
from “sentence-like” aligned chunks as identified using the HTML-based
chunk alignment process of Section 2.1.3.

The human-translated and machine-translated pairs were included in order to provide
upper-bound and lower-bound comparisons. The items were presented to one judge
in a random order, and to the other judge in the reverse order.

Chinese-English Web data were those collected by Jinxi Xu using a modified ver-
sion of STRAND (see Section 2.3), excluding those that did not pass STRAND’s struc-
tural filter with the manually set thresholds. Sentence-like chunk pairs were defined
as those in which the English side was 5–50 whitespace-delimited tokens long and
that began with an uppercase alphabetic character and contained at least one token
from an English stop list.3 This fairly strict filter provided a set of approximately 7,000
pairs from which the 30 test items were sampled.

Participants were asked to provide each pair of items with three ratings, assess-
ing English fluency, Chinese fluency, and adequacy of the translation. The choice and
wording of the ratings criteria were derived from the human evaluation measures pro-
posed by Dabbadie et al. (2002), with the wording of the translation assessment crite-
rion modified to eliminate references to the direction of translation. (See Appendix B.)

For all three measures, the two judges’ ratings were significantly correlated (p <
0.0001). Figure 3 shows additional quantitative results of the assessment, comparing
judgments among human-translated, Web-generated, and machine-translated data.

The ratings indicate that pairs from the Web contain on average somewhere be-
tween “mostly the same meaning” and “entirely the same meaning” (median 3.25).4

In comparison, current commercial-quality machine translation output achieves per-
formance only between “much of the same meaning” and “mostly the same meaning”
(median 2.5). Moreover, it is very likely that the Web translation quality is an under-
estimate: Some of the low-scoring outliers within the Web data could be eliminated
by using state-of-the-art sentence alignment techniques and automatic detection and
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Figure 3
Translation adequacy ratings: Distribution over scores for human-translated (Human),
Web-generated (WWW), and machine-translated (MT) data. The left plot provides results for
judge 1, the right plot for judge 2.

3 We also excluded pairs either side of which contained a curly bracket, since these were almost
invariably fragments of Javascript code.

4 The medians noted refer to the median of R1+R2
2 within the set, where Rn is the rating given by judge

n. We use the median rather than the mean because it is less sensitive to outliers.



357

Resnik and Smith The Web as a Parallel Corpus

elimination of noisy pairs at the sentence level (cf. Nie and Cai [2001]). We observe
that the distribution of scores for Web data peaks at the highest rating and that the
data are in both cases modestly bimodally distributed. Machine-translated pairs, on
the other hand, have generally lower quality. This suggests that high-quality parallel
translations are present in this corpus and that poor-quality parallel translations are
very poor (whether because of misalignment or simply because of poor translation
quality at the document level) and might therefore be easily distinguishable from the
better material. We plan to address this in future work.

Qualitatively, the results are a source of optimism about parallel data from the
Web. Looking monolingually, fluency of the English side is statistically comparable to
that of English sentences from the FBIS parallel corpus (essentially at ceiling), and on
average the Chinese Web data are judged somewhere between “fairly fluent” and “very
fluent,” with the median at “very fluent” (only the second judge found the fluency
of the Chinese Web sentences to be significantly worse than the human-generated
Chinese sentences, Mann-Whitney test, p < 0.02).

2.2.3 Optimizing Parameters Using Machine Learning. Based on experiments with
several language pairs, it appears that STRAND’s structure-based filter consistently
throws out around one-third of the candidate document pairs it has found in order
to maintain its precision in the 98–100% range. It does so by respecting parameter
thresholds that were determined manually using English-Spanish development data;
the same parameters seem to have worked reasonably well not only for English-
Spanish, but also for English-French and English-Chinese pairs. It is possible, however,
that classification can be tuned for better performance. In order to investigate this
possibility, we took a machine-learning approach: We used the four structural values
(dp, n, r, and p) as features characterizing each document pair and treated the problem
as a binary decision task, using supervised learning to make an attempt at better
predicting human judgments.

Using the English-French data, we constructed a ninefold cross-validation experi-
ment using decision tree induction to predict the class assigned by the human judges.
The decision tree software was the widely used C5.0 〈http://www.rulequest.com/
demoeula.html〉. We used a decision tree learner because it is transparent (it is easy to
see which features are being used to classify page pairs). In addition, a decision tree
produced by C5.0 can be translated into a fast C program that is a rapid classifier of
document pairs.

Each fold had 87 test items and 174 training items; the fraction of good and bad
pairs in each fold’s test and training sets was roughly equal to the overall division
(33% to 67%, respectively). Precision and recall results are reported in Table 1, together
with baseline results from STRAND’s untuned classifier as reported above.

Looking at the decision trees learned, we see that they are very similar to one
another. In every case a tree that looked like the following was learned:

if dp > 37 then BAD
else

if n > 11 then GOOD
else ...

where the remaining branch involved various additional partitionings of the candi-
date pairs that had few aligned text chunks (small n) and relatively low (but perhaps
unreliable) difference percentage (dp). That branch handled around 10% of the docu-
ment set and was prone to overtraining. (The documents handled by this branch were
mostly marked “bad” by the judges but appear to have been difficult to classify based
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Table 1
Effects of parameter tuning.

Precision Recall

Untuned 1.000 0.686

Fold 1 0.875 1.000
Fold 2 0.857 0.667
Fold 3 1.000 1.000
Fold 4 1.000 0.923
Fold 5 1.000 0.875
Fold 6 1.000 1.000
Fold 7 0.889 0.667
Fold 8 1.000 0.889
Fold 9 1.000 0.545

Average 0.958 0.841

on the structural features.) Note that the learned classifiers were substantially different
from the heuristic threshold used earlier.

Without tuning, the manually set parameters result in good document pairs’ be-
ing discarded 31% of the time. Our cross-validation results indicate that tuning the
parameters cuts that figure in half: Only 16% of the good pairs will be discarded, at a
cost of admitting 4 false positives from every 100 candidate pairs.

This approach is quite general and uses only a minimum of language-dependent
knowledge. The features we are using are the same for any language pair. The tuning
process needs to be done only once per language pair and requires only a few hours
of annotation from untrained speakers of both languages to obtain the small labeled
sample.

2.3 Related Work
Several other systems for discovering parallel text, developed independently, can be
described as operating within the same three-stage framework as STRAND.

Parallel Text Miner (PTMiner) (Chen and Nie 2000) exploits already-existing Web
search engines to locate pages by querying for pages in a given language that contain
links to pages that are likely to be in the other language of interest. Once bilingual sites
are located, they are crawled exhaustively. In order to generate candidate pairs, PT-
Miner uses a URL-matching process similar to the one described above; for example,
the French translation of a URL like 〈http://www.foo.ca/english-index.html〉 might
be 〈http://www.foo.ca/french-index.html〉. PTMiner’s matching process uses a map-
ping of language-specific prefixes and suffixes and does not handle cases in which URL
matching requires multiple substitutions. PTMiner also applies a length filter and auto-
matic language identification to verify that the pages are in the appropriate languages.
Chen and Nie report a 95% precise English-French corpus of 118MB/135MB of text and
a 90% precise English-Chinese corpus of 137MB/117MB of text, based on inspection.

Later versions of PTMiner include a final filtering stage to clean the extracted
corpus; Nie and Cai (2001) independently used features similar to those described
here to eliminate noisy pairs. Specifically, they used a file length ratio filter, the pro-
portion of sentences that are aligned to empty (after a sentence alignment algorithm
is applied), and a criterion that rewards sentence pairs that contain elements from a
bilingual dictionary. Nie and Cai showed that hand-tuned combination of these crite-



359

Resnik and Smith The Web as a Parallel Corpus

ria improved the quality of their parallel English-Chinese corpus by 8% (F-measure)
at the text level.

Bilingual Internet Text Search (BITS) (Ma and Liberman 1999) starts with a given
list of domains to search for parallel text. It operates by sampling pages from each
domain and identifying their languages; if a domain is deemed to be multilingual,
all pages on the site are crawled exhaustively. BITS appears to consider all possible
combinations of Web page pairs in the two languages (i.e., the full cross product within
each site) and filters out bad pairs by using a large bilingual dictionary to compute a
content-based similarity score and comparing that score to a threshold. For each page
pair, the similarity score is

similarity(A, B) =
number of translation token pairs

number of tokens in A
(1)

Translation token pairs are considered within a fixed window (i.e., a distance-based
measure of co-occurrence is used).5 In addition to cross-lingual lexical matching, BITS
filters out candidate pairs that do not match well in terms of file size, anchors (num-
bers, acronyms, and some named entities), or paragraph counts. Using an English-
German bilingual lexicon of 117,793 entries, Ma and Liberman report 99.1% precision
and 97.1% recall on a hand-picked set of 600 documents (half in each language) con-
taining 240 translation pairs (as judged by humans). This technique yielded a 63MB
parallel corpus of English-German.

Other work on Web mining has been done by Jinxi Xu of BBN (personal com-
munication), who began with our STRAND implementation and added a module for
automatically learning string substitution patterns for URLs and also implemented
a different dynamic programming algorithm for assessing structural alignment. Xu
used the modified STRAND to obtain 3,376 Chinese-English document pairs, which
we evaluated formally (see above), determining that the set has 98% precision and
61% recall.

In addition, STRAND has been reimplemented by David Martinez and colleagues
at Informatika Fakultatea in the Basque Country (personal communication), in order
to perform exploratory experiments for discovering English-Basque document pairs.

It is worth noting that STRAND, PTMiner, and BITS are all largely independent of
linguistic knowledge about the particular languages, and therefore very easily ported
to new language pairs. With the exception of the use of a bilingual dictionary (in BITS
and later versions of PTMiner), these systems require, at most, a set of URL substring
patterns for the URL pattern-matching stage (e.g., big5 ∼ english in the example above;
see further discussion in Section 4.3), and a modest amount of monolingual data for
training n-gram-based language identifiers (typically 50,000 to 100,000 characters of
text per language).

Word-level translations are worth exploiting when they are available. In Section 3
we describe a bitext-matching process using a content-based similarity score grounded
in information theory, and in Section 5 we show how structural and content-based
criteria can be combined in order to obtain performance superior to that obtained
using either method alone.

5 Many details of this technique are left unspecified in Ma and Liberman (1999), such as the threshold
for the similarity score, the distance threshold, and matching of non-one-word to one-word entries in
the dictionary.
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Maria does n’t like fruit

Maria n’ aime pas de fruits

X:

Y:

NULLNULL
NULL

Figure 4
An example of two texts with links shown. There are seven link tokens, five of which are
lexical (non-NULL) in X (the English side), six in Y (French).

3. Content-Based Matching

The approach discussed thus far relies heavily on document structure. However, as Ma
and Liberman (1999) point out, not all translators create translated pages that look like
the original page. Moreover, structure-based matching is applicable only in corpora
that include markup, and there are certainly multilingual collections on the Web and
elsewhere that contain parallel text without structural tags. Finally, other applications
for translation detection exist, such as subdocument text alignment and cross-lingual
duplicate detection (i.e., location of already-existing translations in a multilingual cor-
pus). All these considerations motivate an approach to matching translations that pays
attention to similarity of content, whether or not similarities of structure exist.

We present here a generic score of translational similarity that is based upon
any word-to-word translation lexicon (hand-crafted or automatically generated, or a
combination, and possibly highly noisy). The technique is shown to perform competi-
tively to the structure-based approach of STRAND on the task of identifying English-
French document translations.

3.1 Quantifying Translational Similarity
We define a cross-language similarity score, tsim , for two texts by starting with a
generative, symmetric word-to-word model of parallel texts (Melamed’s [2000]
Method A). Let a link be a pair (x, y) in which x is a word in language L1 and y
is a word in L2. The model consists of a bilingual dictionary that gives a probability
distribution p over all possible link types. Within a particular link, one of the words
may be NULL, but not both. In the generative process, a sequence of independent link
tokens is sampled from the distribution. The model does not account for word order.
An example of two texts with links is illustrated in Figure 4.

Next, we desire to compute the probability of the most probable link sequence
that could have accounted for the two texts.6 The probability of a link sequence is
simply the product of the probabilities p of the links it contains. As noted by Melamed
(2000), the problem of finding the best set of links is the maximum-weighted bipartite
matching (MWBM) problem: Given a weighted bipartite graph G = (V1 ∪ V2, E) with
edge weights ci,j(i ∈ V1, j ∈ V2), find a matching M ⊆ E such that each vertex has at
most one edge in M and

∑
e∈M ci,j is maximized. The fastest known MWBM algorithm

runs in O(ve+v2 log v) time (Ahuja, Magnati, and Orlin 1993). Applied to this problem,
that is O(max(|X|, |Y|)3), where X and Y are the text lengths in words.

To use MWBM to find the most probable link sequence, let the L1 words be V1 and
the L2 words be V2. If two words x, y have p(x, y) > 0, an edge exists between them
with weight log p(x, y). If a word x (or y) may link to NULL with nonzero probability,
then that potential link is added as an additional edge in the graph between x (or y)

6 Of course, all permutations of a given link sequence will have the same probability (since the links are
sampled independently from the same distribution), so the order of the sequence is not important.
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and a NULL vertex added to V2 (or V1). Each such x (or y) gets its own NULL vertex,
so that multiple words may ultimately link to NULL. A sum of weights of links in a
matching will be the log-probability of the (unordered) link sequence, and maximizing
that sum maximizes the probability.

The similarity score should be high when many of the link tokens in the best
sequence do not involve NULL tokens. Further, it should normalize for text length.
Specifically, the score is

tsim =
log Pr (two-word links in best matching)

log Pr (all links in best matching)
(2)

This score is an application of Lin’s (1998) information-theoretic definition of similarity.
Starting with a set of axioms relating intuitions about similarity to the mathematical
notion of mutual information (Shannon 1948), Lin derives the measure

sim(X, Y) =
log Pr (common(X, Y))

log Pr (description(X, Y))
(3)

where X and Y are any objects generated by a probabilistic model.
This technique of using a translation model to define translational similarity is

generic to different sources of lexical translation information. An important feature
is that it can be used with any symmetric translation model in which events can be
divided into those that both sides of a bitext have in common and those that affect
only one side.

The measure is simplified by assuming that all links in a given translation lexicon
are equiprobable. The assumption reduces the formula for tsim to

tsim =
number of two-word links in best matching

number of links in best matching
(4)

The key reason to compute tsim under the equiprobability assumption is that we
need not compute the MWBM, but may find just the maximum cardinality bipartite
matching (MCBM), since all potential links have the same weight. An O(e

√
v) (or

O(|X| · |Y| ·
√
|X| + |Y|) for this purpose) algorithm exists for MCBM (Ahuja, Magnati,

and Orlin 1993). For example, if the matching shown in Figure 4 is the MCBM (for
some translation lexicon), then tsim(X, Y) = 4

7 under the simplifying assumption.
In earlier work (Smith 2002), we sought to show how multiple linguistic resources

could be exploited in combination to recognize translation, and how the equiproba-
bility assumption allowed straightforward combination of resources (i.e., set union of
translation lexicon entries). In Section 3.2.1 we provide a clean solution to the problem
of using unweighted translation lexicons along with probabilistic ones that improves
performance over the earlier result.

This would appear to make the equiprobability assumption unnecessary (apart
from concerns about computational expense). However, we found that, if p(x, y) is set
to the empirically estimated joint probability of the lexical link type (x, y), then per-
formance turns out to be dismal. This is understandable: Using parameter estimation
techniques like the one we used, a great deal of probability mass in the distribution
p tends to go to frequent words, which are relatively uninformative with regard to
whether texts are mutual translations. The equiprobability assumption helps to coun-
teract this; in fact one could apply scoring techniques from information retrieval and
cross-lingual information retrieval in weighting the lexicon. We leave this area of ex-
ploration to future work.
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Melamed (2000) used a greedy approximation to MWBM called competitive link-
ing. Competitive linking iteratively selects the edge with the highest weight, links
the two vertices of the edge, then removes them from the graph. (Ties are broken at
random.) A heap-based implementation of competitive linking runs in O(max(|X|, |Y|)
log max(|X|, |Y|)). Under the equiprobability assumption, all the weights are the same,
so that competitive linking proceeds simply by randomly making legal links (those
allowed by the translation lexicon) until no more can be made.

If definition (4) is applied to pairs of documents in the same language, with a
‘‘translation lexicon” defined by the identity relation, then tsim is a variant of resem-
blance (r), as defined by Broder et al. (1997) for the problem of monolingual duplicate
detection, except that tsim has the advantage of being token-based rather than type-
based, incorporating word frequency.

We have demonstrated that the tsim score can be used to extract translationally
equivalent English-Chinese sentence pairs from even a noisy space with high precision
(Smith 2002). It was also shown that combining multiple sources of word-level trans-
lation information (dictionaries, word-to-word translation models, cognates) had pos-
itive effects on performance on the sentence-matching task. These information sources
were presumed to be extremely noisy (they are so presumed here, as well), though
no independent evaluation was carried out on them. If the ad hoc translation lexicon
induction techniques used here give good performance, then better techniques might
lead to further improvement. In addition, the competitive linking approximation was
shown to perform nearly as well as MCBM.

3.2 Experiment
We now apply our content-based similarity measure to the candidate pair classification
task presented by STRAND. Recall that both the original STRAND classifier and those
learned using decision tree methods, described in Section 2.2.3, employ only structural
features of the documents to determine whether they are translations. Here we apply
the tsim score to the same task and compare the results with those of the original
STRAND classifier.

3.2.1 Translation Lexicon. The word-level translation lexicon is derived from several
sources. We begin with an English-French dictionary (a total of 34,808 entries, 4,021 of
which are not one-to-one).7 Next, a word-to-word translation model (Melamed 2000)
was trained on the dictionary. Note that the parameter estimation task here is very
simple; in most cases the pairs are one-word to one-word, making the hidden link
structure unambiguous (modulo NULLs). The training primarily served the purpose
of breaking down multiword entries, informed by the rest of the entries, so as to obtain
a fully one-word-to-one-word dictionary. The training procedure was an expectation-
maximization (EM) procedure like that used by Melamed (2000), except that maximum
weighted bipartite matching was used instead of competitive linking. Any entry con-
taining a NULL was then removed.

We add to this dictionary a list of English-French cognate pairs, identified using
the method of Tiedemann (1999). Tiedemann’s approach involved learning language-
specific character weights for the computation of weighted edit distance to measure
cognateness. He used a list of known cognates to train the weights. We instead used

7 This dictionary was generated by Gina Levow, who kindly made it available to us. It was derived from
data available at 〈http://www.freedict.com〉 and contains morphological variants but not character
accents.
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Table 2
Fifteen randomly chosen cognate pairs. The noise is apparent.

English French English French

closest choses TOXLINE LIABLE
extensions extension RELATIONS ENNEMIS
answer passer TARNOS TARNOS
APPLICATION PROTECTION Generation information
missions maisons Commerce Community
proportion prestation private prêtant
Fischer Fischer traditions attributions
Anglais dAlcatel

the weighted translation pairs in a translation model lexicon built from the Bible.8

The result is 35,513 word pairs from the corpus of Web pages under consideration.
An additional set of 11,264 exact string matches were added (also from the corpus of
Web pages). Qualitatively, these entries were highly noisy; a random selection of the
cognate pairs is shown in Table 2. All of these word pairs were added to the dictionary,
each with a count of one.

We took the enhanced dictionary with counts to define a Dirichlet prior, which is
the conjugate prior to a multinomial distribution over discrete events (like the distri-
bution p over link types we seek to estimate) (MacKay and Peto 1995). Such a prior is
characterized by counts of all such events; when it is used in an EM procedure, these
prior counts are added to those produced by the E step on every iteration. Intuitively,
if a word pair (x, y) is expected to be a likely lexical word pair in the dictionary and
cognate set, then models that make (x, y) probable are more likely (according to the
prior). Therefore the expected count of (x, y) is increased at each iteration of training
to the extent that the prior favors it.

Using the enhanced, weighted lexicon as a Dirichlet prior (containing 77,699 entries
and a total count of 85,332), a word-to-word translation model (Melamed 2000) was
trained on a verse-aligned Bible (15,548 verses, averaging 25.5 English words, 23.4
French words after tokenization). As before, we used the maximum weighted bipar-
tite matching algorithm. The final lexicon consists of all word pairs with nonzero
probability and contains 132,155 entries. Note that all word pairs in the enhanced
dictionary are included; we have merely added to that dictionary by bootstrapping
additional entries from the Bible.

3.2.2 Results. In order to compare tsim with structural similarity scoring, we applied
it to 325 English-French Web document pairs for which human evaluations were car-
ried out in Section 2. As there is only one feature under consideration (tsim), the
classifier must be a threshold on that value. At different thresholds, Cohen’s κ score
of agreement (with each of Resnik’s (1999) two judges and their intersection) may be
computed for comparison with STRAND, along with recall and precision against a
gold standard (for which we use the intersection of the judges: the set of examples

8 There is some circularity here; the cognates were derived using weighted word pairs from the Bible,
then used again in the prior distribution. We note that the resources required to extract cognates in this
way are no different from those required for the translation model.
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Table 3
Comparison with STRAND. The test set contains 293 of the 326 pairs in Resnik’s (1999) test
set. The 32 development pairs were used to select manually the 0.44 threshold. N is the
number of examples for which judgment comparison was possible in each case (human judges
were sometimes undecided; those cases are ignored in computing κ).

Comparison N Pr(Agree) κ prec rec F

J1, J2 245 0.98 0.96

J1, STRAND 250 0.88 0.70
J2, STRAND 284 0.88 0.69
J1 ∩ J2, STRAND 241 0.90 0.75 1.000 0.684 0.812

J1, tsim(τ = 0.44) 249 0.96 0.92
J2, tsim(τ = 0.44) 283 0.95 0.88
J1 ∩ J2, tsim(τ = 0.44) 240 0.97 0.92 0.833 0.921 0.875

for which the judges agreed). The gold standard contained 86 page pairs marked as
“good” by both judges and 174 page pairs marked as “bad” by both judges.9

Computing tsim (MCBM on the words in the document pair) is not tractable for
very large documents and translation lexicons. However, in preliminary comparisons,
we found that representing tsim for long documents by as few as their first 500 words
results in excellent performance on the κ measure.10 This allows O(1) estimation of
tsim for two documents. Further, the competitive linking algorithm appears to be as
reliable as MCBM, and it runs significantly faster in practice. The results reported here
approximated tsim in this way.

Of the 325 pairs, 32 were randomly selected as a development set, which we used
to select manually a threshold τ = 0.44. This value maximized the κ score against gold-
standard human judgments on the development set.11 κ scores against each judge and
their intersection were then computed at that threshold on the test set (the remaining
293 pairs). These are compared to κ scores of the STRAND system (with original,
untuned parameters), on the same test set, in Table 3. In every case, the tsim classifier
agreed more strongly with the human evaluations, and its F score is higher than that
of STRAND. Figure 5 shows κ and the F measure plotted against τ .

In this application, the content-based classifier (at its approximate best perfor-
mance, thresholding at 0.44) complements the structural classifier’s high precision.
Given two high-performing methods that use orthogonal information for identifying
good candidate pairs (one using only structure, the other using only content), the nat-
ural question is whether the techniques can be combined for even better performance.
We repeated the experiment presented in Section 2.2.3, adding the tsim score as a
feature. The same cross-validation setup was used, with the same division into folds.
Precision and recall results are reported in Table 4.

9 One additional pair was thrown out because it contained compressed data; it is assumed that this pair
would not pass a language identification filter.

10 This does, of course, run the risk of failing to identify that a page pair is similar only in the beginning,
with diverging content in later text. When the content-based classifier is combined with a structural
classifier, this problem is expected to be eliminated, since the structural method detects such cases. See
the last experiment described in this section.

11 One could select such a threshold to maximize any objective function over the development set. We
note that this threshold differs from that reported in Smith (2002); it was chosen by the same procedure,
though the translation lexicon is different, moving the distribution of tsim scores into a higher range.
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STRAND’s 
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Figure 5
Performance measures as the threshold varies (all measures are on the test set): the κ
agreement score with the two judges’ intersection and F measure. Scores obtained by
STRAND are shown as well.

Table 4
Effects of parameter tuning with the additional tsim feature.

Precision Recall

Untuned STRAND 1.000 0.686
Tuned STRAND (average) 0.958 0.841
tsim(τ = .44) 0.833 0.921

Fold 1 0.875 1.000
Fold 2 1.000 1.000
Fold 3 1.000 1.000

Fold 4 1.000 1.000
Fold 5 1.000 1.000
Fold 6 0.889 1.000
Fold 7 1.000 1.000
Fold 8 1.000 1.000

Fold 9 1.000 0.818

Average 0.974 0.980

The decision trees learned were once again all quite similar, with eight of the nine
rooted as follows (a few of the trees differed slightly in the numerical values used as
thresholds):

if tsim > 0.432 then GOOD
else

if dp > 22.9 then BAD
else ...

The remainder of each tree varied, and there was some evidence of overtraining.



366

Computational Linguistics Volume 29, Number 3

These results clearly demonstrate the benefit of combining structural and content-
based approaches. We next describe how we have adapted the STRAND architecture
to the Internet Archive, in order to generate the candidate pairs on a scale that has
previously been unattainable.

4. Exploiting the Internet Archive

One of the difficulties with doing research on Web mining is that large-scale crawling of
the Web is a significant enterprise. Chen and Nie’s (2000) PTMiner represents one solu-
tion, a carefully thought-out architecture for mining on a large scale. Here we present a
different solution, taking advantage of an existing large-scale repository of Web pages
maintained on an ongoing basis by an organization known as the Internet Archive.

4.1 The Internet Archive
The Internet Archive 〈http://www.archive.org/web/researcher/〉 is a nonprofit or-
ganization attempting to archive the entire publicly available Web, preserving the
content and providing free access to researchers, historians, scholars, and the general
public. Data come from crawls done by Alexa Internet, and hence they represent an
industry-level resource of the sort not easily constructed within academia. At present,
the Archive contains 120TB (terabytes) of data, by a conservative estimate, and it is
growing at approximately 8TB per month. Text on the archive comprises over 10 bil-
lion Web pages, and the estimated duplicate rate is a factor of two (i.e., two copies of
everything).12

The Internet Archive provides public access to the data via the Wayback Machine
Web interface. As of this writing, a search for the ACL home page brings up links
to 72 snapshots of that page dating back to June 7, 1997.13 The reader can get to that
page directly on the Wayback Machine using a URL that points to the Internet Archive
and provides both the desired page and the time stamp indicating which snapshot to
retrieve.14

The Archive also provides researchers with free, direct access to its data via ac-
counts on their cluster. The data are stored on the disk drives of approximately 300 ma-
chines, each running some variety of UNIX, creating what is in essence one huge file
system. This provides a researcher with the remarkable sensation of having the entire
Web on his or her hard drive.

4.2 Properties of the Archive
Mining terabytes on the Archive presents a number of challenges:

• The Archive is a temporal database, but it is not stored in temporal
order. Hence a document and its translation may be in files on different
machines; a global merge of data is required for any hope of complete
extraction.

• Extracting a document for inspection is an expensive operation involving
text decompression.

12 We are grateful to Paula Keezer of Alexa for these figures.
13 http://www.cs.columbia.edu/∼acl/home.html
14 http://web.archive.org/web/19970607032410/http://www.cs.columbia.edu/∼acl/home.html (this is a

single, long URL.)
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• The Archive’s size makes it essential to keep computational complexity
low.

On the other hand, as it turns out, aspects of the Archive’s architecture make rapid
development remarkably feasible:

• Almost all data are stored in compressed plain-text files, rather than in
databases.

• The data relevant for our purposes are organized into archive files
(arcfiles), which contain the stored pages, and index files, which contain
plain text tuples 〈URL, time stamp, arcfile, offset, . . .〉.

• A suite of tools exists for processing the archive (e.g., for extracting
individual pages from archive files).

• The Archive’s infrastructure for cluster computing makes it easy to write
UNIX scripts or programs and run them in parallel across machines.

The last of these, the cluster computing tools,15 is turned out to reduce drastically the
time needed to port STRAND to the Archive, as well as the size of the STRAND code
base. The centerpiece in Archive cluster computing is a parallelization tool called p2,
which offers a UNIX command-line interface that allows one to specify (1) a paral-
lelizable task, (2) a way to split it up, (3) a way to combine the results, and (4) a set of
processors among which to divide the task. The p2 tool divides up tasks intelligently,
invoking each parallel computation on the local machine where the data reside.

4.3 STRAND on the Archive
In adapting STRAND’s three-stage process to the Internet Archive, the primary chal-
lenge was in the first two steps, locating possible translations and matching them
up to produce candidate document pairs. Structural filtering remained essentially un-
changed.

Generating candidate pairs on the Archive involves the following steps:

1. Extracting URLs from index files using simple pattern matching

2. Combining the results from step 1 into a single huge list

3. Grouping URLs into buckets by handles

4. Generating candidate pairs from buckets

Steps 1 and 2 are performed via a parallel search operation plus combination of results;
for example, extracting all URLs in the Hong Kong, Taiwan, or China domains (and
their associated bookkeeping data) using a pattern like /(.hk|.tw|.cn)/.16

Step 3 is potentially tricky owing to computational complexity issues. As noted
in Section 2.1.2, examining the cross product of a site’s page sets in two different
languages is potentially very expensive, and matching documents by similarity of
URLs can represent a combinatoric process in the general case.

15 The Archive intends to release these cluster tools under the GNU Public License.
16 We also take advantage of the Archive’s list of .com domains paired with the nation in which each is

registered, making it possible to include commercial sites in the search without an explosion of
irrelevant possibilities.
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URLs:

saudifrenchbank.com.sa/English/English.htm

→ saudifrenchbank.com.sa/English/English.htm

patterns removed:

a e a a english english

saudifrenchbank.com.sa/Arabic/arabic.htm

→ saudifrenchbank.com.sa/Arabic/arabic.htm

patterns removed:

a e a a arabic arabic

Same handle for both URLs:

sudifrchbnk.com.s//.htm

Figure 6
Example of LSS subtraction.

We arrived at an algorithmically simple solution that avoids this problem but is
still based on the idea of language-specific substrings (LSSs). The idea is to identify a
set of language-specific URL substrings that pertain to the two languages of interest,
(e.g., based on language names, countries, character codeset labels, abbreviations, etc.).
For example, a set of LSSs for English-Arabic might be as follows (those containing
numerals correspond to character code sets):

1256, 437, 864, 8859-1, 8859-6, a, ar, ara, arab, arabic, cp1256, cp437,
cp864, e, en, eng, english, gb, iso, iso-8859-1, iso-8859-6, latin, latin-1,
latin1, uk, us, usa

For each URL, we form a “handle” by subtracting any substrings that match (insensi-
tive to case) any item on the LSS pattern list. The subtraction process is implemented
reasonably efficiently: If there are p patterns with maximum length l, and the URL’s
length in characters is u, then the current implementation will do at most p × u string
matches of length no more than l.17 (Currently we use C strcmp for string matching.)
In practice, this is extremely fast: We can generate handles for nearly 5,000 URLs per
second on a six-year-old Sun Ultra 1 workstation.

Figure 6 illustrates handle generation on two real URLs. As one would hope, these
two URLs produce the same handle, and as a result, they wind up in the same bucket
in step 3.18

In step 4, the URLs in each bucket are used to generate candidate pairs by taking
the cross product and keeping those URL pairs for which the URL bookkeeping data
indicate pages that are in the correct languages. For example, given the bucket con-
taining the two URLs in Figure 6, this step would generate a single pair consisting of

17 We are grateful to Bill Pugh of the University of Maryland for suggesting this algorithm.
18 Conceptually, they hash to the same bucket in a hash table; in practice on the Archive, it turns out to

be more efficient to create buckets by doing a parallel sort of the entire URL set using the handle as the
key, and then creating buckets based on identical handles’ being on adjacent lines.
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the URL for the English page and the URL for the Arabic page, assuming the language
ID information associated with each URL confirmed it was in the proper language.19

At this point, the candidate generation process is complete. The final step is to
apply STRAND’s filtering step to each candidate pair, an operation that can itself be
parallelized, since each candidate pair can be processed independently. The filtering
pass will eliminate those page pairs (roughly 10% in our experience) whose URLs
show similarity to each other but whose content and/or structure do not.

It is interesting to note that by taking advantage of the Archive’s p2 cluster
computing tool, together with its simple flat-text representations, adapting STRAND’s
candidate generation process resulted in a dramatic reduction in the size of the pro-
gram, cutting it literally in half, as measured in lines of code.

5. Building an English-Arabic Corpus

In the previous sections, we have described methods and results for structural match-
ing, for content-based matching, and for dramatically scaling up the number of candi-
date pairs that can be generated for any given language pair by using the industrial-
strength Web crawls stored on the Internet Archive. In this section we put all these
pieces together, describing an experiment in mining the Internet Archive to find
English-Arabic parallel text. The language pair English-Arabic is of particular global
importance, but resources for it, particularly bilingual text, have generally not been
easy to obtain. Moreover, Arabic is far behind on the Web’s exponential growth curve:
Arabic text (as opposed to images) did not really start emerging on the Web until
the release of Microsoft Windows 98, which provided Arabic support in its version of
Internet Explorer.20

5.1 Finding English-Arabic Candidate Pairs on the Internet Archive
The input resources for our search for English-Arabic candidate pairs were a list of
Internet domains likely to contain Arabic text.21 The list included 24 top-level national
domains for countries where Arabic is spoken by a significant portion of the popula-
tion: Egypt (.eg), Saudi Arabia (.sa), Kuwait (.kw), etc. In addition, we used a list of
.com domains known to originate in Arabic-speaking countries. This list provided an
additional 21 specific domains (e.g., 〈emiratesbank.com〉, 〈checkpoint.com〉); note that
the list is by no means exhaustive.

In the experiments we report here, we mined two crawls from 2001, compris-
ing 8TB and 12TB (i.e., less than one-sixth of the Archive as it existed at the time
of the mining effort in early 2002) spread over 27 machines. Our list of URLs with
relevant domains, obtained through pattern matching in Archive index files, numbers
19,917,923 pages.22 The language-specific substrings given earlier were subtracted from
these URLs to generate handles, resulting in 786,880 buckets with an average of 25
pages per bucket. When all possible English-Arabic page pairs were generated from all

19 The Internet Archive tags its data for language using standard n-gram language identification
techniques.

20 While this article was under review, a large Arabic-English parallel corpus of United Nations
proceedings was released by the Linguistic Data Consortium 〈http://www.ldc.upenn.edu〉. Although
this corpus is certainly of great import, its availability does not detract from the main point of this
study. As noted in Section 1, UN parallel text from LDC is a specialized genre and is encumbered by
fees and licensing restrictions. The experiment reported here provides, at minimum, a supplementary
resource for English-Arabic, and it provides evidence for the viability of the approach.

21 We are grateful to Nizar Habash for constructing this list.
22 Pages with the same URL but different time stamps are counted separately; there were 10,701,622

unique URLs.
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Table 5
English-Arabic structural classification results.

Precision Recall

Baseline (on the full set) 0.8993 1.0000

Without tuning Fold 1 1.0000 0.0227
Fold 2 1.0000 0.1364
Fold 3 0.6667 0.0435
Average 0.8889 0.0675

With tuning Fold 1 0.9111 0.9318
Fold 2 0.9302 0.9090
Fold 3 0.9565 0.9565
Average 0.9326 0.9324

buckets, the result was 8,294 candidate pairs. This number is lower than what might
be expected, given the huge number of buckets, because many buckets were mono-
lingual; note that only pairs of one English and one Arabic document are deemed to
be candidates.

A random sample of two hundred candidate pairs was given to two human eval-
uators, bilingual in English and Arabic, who were asked (independently) to answer,
for each pair, the question “Is this pair of pages intended to show the same material
to two different users, one a reader of English and the other a reader of Arabic?” The
judges’ answers showed a Cohen’s κ agreement of 0.6955, which is generally consid-
ered fair to good reliability. (Qualitatively, one judge was rather more strict than the
other; when the stricter judge identified a page pair as valid translations, the less strict
judge virtually always agreed.)

5.2 Evaluating Structure-Based Matching
Taking the set of 149 labeled pairs on which the two judges agreed (134 were marked
“good,” 15 “bad”), we carried out an evaluation of the full candidate set similar to the
one for English-French discussed in Section 2.2.3. This was a threefold cross-validation
experiment in which decision tree classifiers were tuned on the features extracted for
each candidate pair by structure-based classification.23 In addition to the four structural
scores, we included two language identification confidence scores (one for the English
page, one for the Arabic page); these were available as part of the Internet Archive’s
bookkeeping information for each URL and required no additional computation on
our part. Table 5 shows precision and recall of each fold’s classifier applied to the
corresponding test set of page pairs. The value of the parameter-tuning process is
dramatically confirmed by comparing the learned parameters with STRAND’s default
parameters (manually determined by Resnik [1999]).

Note, however, that the candidate generation system is highly precise to begin
with; only around 10% of the pairs in the random sample of candidates were con-
sidered “bad” by both judges. A baseline system in which no filtering is done at all
achieves 89.93% precision on the full labeled set (with 100% recall). Depending on the
relative importance of precision and recall, these structure-based classifiers might be
considered worse than that baseline.

23 We did not use more than three folds in the cross-validation, since there were only 15 bad pairs and
more folds would have made random division into folds that each contained both “good” and “bad”
pairs difficult.
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Upon inspection, we discovered that nearly 5,000 of the pairs in our candidate
set were from a single domain, 〈maktoob.com〉. This site supports an online market-
place, and many of the pages discovered by our search were dedicated to specific
merchandise categories within that service; a large portion of these were simply “no
items available” and one or two similar messages. We ignored this domain completely
in order to be conservative about the yield of page pairs, though we note that many
of the pages within it are legitimate parallel text that could be extracted if a good
duplicates filter were applied.24

In order to construct a final classifier, we trained a decision tree on all 149 of the
manually judged examples on which both judges agreed. This was then applied to
the candidate pairs, producing a set of 1,741 HTML document pairs hypothesized to
be valid translations of one another. By way of simple duplicate detection, if a pair of
URLs appeared multiple times (under case-insensitive matching), it was counted only
once. (Note that when this occurs, the duplicate pair will differ by at least one time
stamp, and therefore a more sophisticated technique for eliminating duplication might
extract more text.) The remaining set contained 1,399 pairs.25 Converting from HTML
to plain text and tokenizing, the English documents in this corpus total approximately
673,108 tokens, with an average of 481 tokens per document; the Arabic side contains
845,891 tokens, averaging 605 tokens per document.26

5.3 Combining Structural and Content-Based Matching
We combined the structural and content-based approaches to detecting translations
by adding the tsim score to the set of structural features associated with each candi-
date pair, and then training a new decision tree classifier. Because Arabic is a highly
inflected language with many surface forms, we found it necessary to use morpho-
logical preprocessing in order to make effective use of a dictionary. For English, we
tokenized the text and used the WordNet lemmatizer to strip suffixes. The Arabic texts
were tokenized at punctuation, then romanized and converted to root forms using a
morphological analysis tool (Darwish 2002). This approximately halved the vocabulary
size for the Arabic texts (from 89,047 types to 48,212 types).

The translation lexicon used to compute tsim contained 52,211 entries, each contain-
ing one English lemma and one Arabic root.27 Of these, 16,944 contained two items that
were both present in the candidate set of 8,294 Web page pairs. The approximations
discussed in Section 3.2.2 were employed: Competitive linking on the first 500 words
in each document was used to compute the score.

Carrying out the same cross-validation experiment (on the same random split
of data), the combined structural and content-based classifier produced the results
in Table 6. Also shown is the performance of the tsim-only classifier, assuming an

24 One of our human evaluators confirmed that no other domains appeared to significantly dominate the
candidate pairs as did 〈maktoob.com〉, providing some assurance that the rest of the data are diverse.

25 Within that set, some documents (not pairs) were present multiple times; there were 1,385 unique
(apart from case) English URLs and 1,385 unique (apart from case) URLs. Since this is only a 1%
duplication rate for each language, we did not attempt to filter further.

26 We converted HTML to text using the lynx browser, performed cleanups such as removing references,
and tokenized using the tokenizers included with the Egypt statistical MT package (Al-Onaizan et
al. 1999). Those tokenizers are somewhat aggressive about separating out punctuation, so, being
aggressive in the opposite direction, we also tried counting only tokens containing at least one of
[A-Za-z] (which excludes punctuation as well as dates, percentages, etc.). Using that very conservative
counting method, the size of the English side is 493,702 words. Counting only tokens on the Arabic
side that contained at least one non-numeric, nonpunctuation character yielded 745,480 words.

27 This translation lexicon was used with the kind permission of Kareem Darwish.
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Table 6
English-Arabic combined structural/content-based classification results. The baseline and
content-only classifiers are on the full set, and the structure-only classifier is repeated for
reference.

Precision Recall

Baseline 0.8993 1.0000
Structure only (tuned, average) 0.9326 0.9324
Content only (oracle threshold, τ = 0.058) 0.7688 0.9925

Fold 1 0.9167 1.0000
Fold 2 0.9767 0.9545
Fold 3 0.9583 1.0000
Average 0.9506 0.9848

Table 7
Yield: The English-Arabic Internet Archive corpus, tokenized several ways.

Tokenization method English Tokens Arabic Tokens

Without tsim English lemmas, Arabic roots 620,826 641,654
Egypt tokenizers (Al-Onaizan et al. 1999) 673,108 845,891
Egypt tokenizers, words with letters 493,702 745,480

With tsim English lemmas, Arabic roots 960,280 972,392
Egypt tokenizers (Al-Onaizan et al. 1999) 1,021,839 1,326,803
Egypt tokenizers, words with letters 800,231 1,213,066

optimal threshold is chosen. Averaged over three folds, the classifier achieved 95.06%
precision and 98.48% recall (1.8% and 5.24% better than without tsim, respectively).

After building a single classifier on all 149 test pairs (the set on which both human
judges agreed), we reclassified the entire candidate set. Ignoring again pages from the
〈maktoob.com〉 domain, 2,206 pairs were marked as translations. The same crude du-
plicate filter was applied, cutting the set back to 1,821 pairs.28 Table 7 shows word
counts for various tokenization schemes: the morphological analysis used for com-
puting tsim, the Egypt tokenizer (which is aggressive), and counting only tokens with
some alphabetic character from the Egypt tokenizer (a conservative approximation).
The analogous results, using the classifier from Section 5.2, are shown for comparison.
To summarize the results, using the content-based similarity score as a feature not
only improved precision, it increased the size of the corpus (in words) by 51–63%,
depending on the tokenization scheme.29

6. Future Work

A number of the techniques we have used to mine parallel data from the Web can be
improved, and we suggest here some directions.

28 There were 1,796 unique English URLs and 1,779 unique Arabic URLs, giving document duplication
rates of 1.4% and 2.4%, respectively.

29 A list of Wayback Machine URLs is available at 〈http://umiacs.umd.edu/∼resnik/strand/〉; a sample
of the document pairs is included in Appendix A.
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With respect to classifying document pairs as translations, the reader will notice
that our approach to content-based cross-lingual similarity essentially boils down to
a greedy matching of some of the words in a document pair using a dictionary. It
remains to be seen whether weights in the dictionary can be exploited (Smith [2001]
suggests that empirically estimated joint translation probabilities for word pairs are
not useful). We suggest that the incorporation of scores from information retrieval (e.g.,
inverse document frequency) might be useful in discerning which lexicon entries are
the strongest cues of translational equivalence. We also have not explored any filtering
on the noisy translation lexicon; doing so might improve the quality of the tsim score.

The competitive linking approximation (which, without weights, is essentially
random matching of word pairs) and the use of only the initial portion of each doc-
ument provide significant computational savings. In our experience, neither of these
has significantly hurt the performance of tsim-based classifiers (as compared to find-
ing the maximum cardinality bipartite matching and/or using the full documents),
and in some cases competitive linking seems to improve performance. It is possible
that some sample selection of words from document candidates might be profitable
(e.g., creating a sample of size proportional to the document length, as opposed to a
fixed size, or sampling only from content words, or sampling only words present in
the dictionary).

Smith (2002) suggested a bootstrapping paradigm for the construction of parallel
corpora. Beginning with a seed set of translation information (either parallel corpora
or a bilingual dictionary), high-precision initial classifiers might be constructed using
content and/or structural features (whichever are available). We might then iteratively
select additional page pairs in which the current classifier has high confidence of
translational equivalence, gradually increasing the pool of parallel data and at the
same time expanding the bilingual lexicon. This approach to minimally supervised
classifier construction has been widely studied (Yarowsky 1995), especially in cases in
which the features of interest are orthogonal in some sense (e.g., Blum and Mitchell
1998; Abney 2002).

With respect to the generation of candidate pairs, we have described a progression
from index-based searches on AltaVista to exhaustive matching of URLs on the Inter-
net Archive. The combination of these approaches may be profitable, particularly for
languages that are represented only very sparsely on the Web. For such languages,
index-based searches on words from a language of interest might be used to identify
sites potentially containing parallel text. Within such sites, it would likely be profitable
to look for parallel documents in the full cross product of documents in the two lan-
guages of interest, obtained both on the Internet Archive and via crawling all pages
on relevant sites.

Finally, we plan to utilize parallel texts mined from the Web in our work on
machine translation and acquisition of bilingual lexicons, and in the creation of re-
sources for new languages via projection of annotations from English.

7. Conclusions

Although efforts at discovering parallel text on the Web were first reported in 1998,
Web-based parallel corpora appear to have had only a limited impact on the commu-
nity. Three reasons for this suggest themselves.

Too few languages. Parallel text from the Web has been made available to the
community in only a few pairs of languages. As of this writing, the STRAND Web
site 〈http://umiacs.umd.edu/∼resnik/strand/〉, presenting URL pairs discovered via
STRAND runs, contains collections only for English-French, English-Chinese, English-
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Basque, and now English-Arabic, and we are not aware of any other efforts to dissem-
inate Web-based parallel data publicly. Up to this point, it simply has not been easy
to search the Web for parallel text in new language pairs. The most difficult part is
finding the candidates: A year or two ago, we attempted to apply the original Web-
based STRAND to the problem of finding English-Arabic text, and we were unable to
locate enough search engine hits or sites to yield useful results.

Too little data. Very large Web-based parallel text collections are not available to
the community. The largest appear to have been obtained by Chen and Nie (2000),
who acquired collections on the order of 15,000 document pairs for English-French,
English-German, English-Dutch, English-Italian, and English-Chinese using the PT-
Miner system. However, these collections have not been made available to the gen-
eral community.30 In contrast, the STRAND collections, which are available to the
community in the form of URL pairs, are modest in size: The English-Chinese col-
lection contains fewer than 3,500 document pairs, and the English-French fewer than
2,500.

Difficulty with dissemination. Web-based collections are difficult to distribute.
Standard mechanisms of the sort used by the LDC (a CD or downloadable file) are
fraught with difficult legal issues, since, technically speaking, redistributing the ac-
tual content of Web pages could require permission from the author of every page.
For example, presumably as a risk reduction strategy, the Web track for TREC-2002
(Text Retrieval Conference) limited its attention to the .gov domain and required the
recipient of the data to sign a form that reduced the distributor’s liability.31 Simi-
larly, the Google Programming Contest data set arrived with a limited-use license,
indemnification from third-party claims, and a collection limited to the .edu do-
main, from which, presumably, authors are less likely to bring expensive lawsuits
〈http://www.google.com/programming-contest/〉.

A possible fourth reason may have to do with questions about the utility of the
data. For example, a Web-based parallel collection may be unpredictable in terms of its
coverage, and the community is well aware of the dangers of using training data that
are not representative of the test domain. A solution to this problem might be to extract
topically relevant subsets of the collection for particular domains or applications, but
of course this requires a “more is better” approach in order to obtain subsets that are
large enough to be useful.

The work reported in this article addresses each of these major problems. With
respect to the number of language pairs, the Internet Archive offers us a huge sample
of pages on the Web, and our techniques make it easy to explore that collection in an
efficient way. Although it is probably impossible to crawl more than a small fraction of
the Web, the Internet Archive is storing the results of commercial-scale Web crawling
and has as its explicit mission the permanent storage of everything that can be found.
The fact that we were able to find a substantial quantity of English-Arabic text (on
the order of a million words per side, looking at less than a sixth of the Archive in
2002) offers the hope that it will be possible to find data for the less well-represented
language pairs, if and when those data actually exist. Moreover, the final implemen-
tation we described here retains the almost entirely language-independent character
of the original STRAND system, adding only the requirement of a reasonable transla-

30 These data were made available only to participants in the iCLEF evaluations for interactive
cross-language IR (C. Picci, personal communication).

31 “The limitation on permitted use . . . is intended to reduce the risk of any action being brought by
copyright owners, but if this happens the Organisation [recipient] agrees to bear all associated liability”
〈http://www.ted.cmis.csiro.au/TRECWeb/access to data.html〉.
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tion lexicon. Therefore success in mining for parallel text in other languages depends
primarily on whether the data exist in the Archive.

With regard to corpus size, we demonstrated that the recall of structural matching,
and hence its yield, can be significantly improved by simple and automatic classifier
construction, requiring only a few hours’ work from a bilingual annotator to create
the training material. These results are further improved by adding content-based
similarity as a feature. Our success with English-Arabic, a language pair that is not
one of those usually considered well represented on the Web, encourages us to believe
that for other languages of interest, we will be similarly successful. We have also
done a bit of exploration to gauge the potential of the Archive for better-represented
language pairs, using English-Chinese as an example. By way of context, Chen and Nie
(2000) reported that PTMiner found around 15,000 English-Chinese document pairs by
crawling 185 sites in the .hk (Hong Kong) domain, with the run taking about a week.
We did a STRAND search of the two Internet Archive crawls used in the English-Arabic
study, seeking English-Chinese parallel text in multiple domains where Chinese is a
dominant language (e.g., .hk, .tw, .cn). Our initial candidate pair set was generated
in approximately 30 hours, and contains over 70,000 candidate page pairs. We are
optimistic that this can be improved still further by expanding the search to include
all sites that contain at least one Chinese document, regardless of the domain.

In terms of dissemination, the STRAND distribution mechanism models itself af-
ter Web search engines, distributing the URLs rather than the pages themselves. This
places the legal burden on individual users, who are presumably safe under fair use
provisions if they download pages for their individual use. Until recently the diffi-
culty with this solution has been that the collection of URLs deteriorates over time as
sites disappear, pages are reorganized, and underlying content changes: For example,
in April 2002, we attempted to download the documents in the STRAND English-
French, English-Chinese, and English-Basque collections, and we were able to access
successfully only around 67%, 43%, and 40% of the URL pairs, respectively. However,
the Internet Archive’s Wayback Machine provides a way to distribute persistent URLs.

With regard to the quality of the data, in Section 2.2.2 we discussed two studies
that demonstrate the utility of parallel Web data in acquiring translation lexicons for
cross-language information retrieval. We also reported on the results of a human rat-
ings study, which provided evidence that English-Chinese data mined from the Web
contain reasonably fluent, reasonably translated sentence pairs. It is worth pointing
out that, because STRAND expects pages to be very similar in structural terms, the
resulting document collections are particularly amenable to sentence- or segment-level
alignment. Indeed, just using dynamic programming to align the markup, ignoring
the text, produces reasonable first-pass alignments of the intervening text as a side
effect. We are currently adapting statistical text-based sentence alignment techniques
to take advantage of the markup available in Web-based document pairs.

Ultimately, the utility of parallel data from the Web is a question that will need
to be addressed in practice. The potential, of course, is as rich and diverse as the Web
itself, and what we as researchers can do with it is an exciting question that remains
to be answered.

Appendix A: Examples

The following page pairs (Figures 7–8) are representative of English-Arabic paral-
lel corpus extracted from the Internet Archive. The text from the pages is shown
in full. Note that the full corpus is available as a list of Wayback Machine URLs at
〈http://umiacs.umd.edu/∼resnik/strand〉. These pages show the generally high qual-
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Figure 7
Representative English-Arabic page pair: 〈petranews.gov.jo:80/2001/86/tocen.htm〉 (8 April
2001) and 〈petranews.gov.jo:80/2001/86/tocar.htm〉 (6 April 2001).

Figure 8
Representative English-Arabic page pair: 〈www.ole.com.kw:80/pictures.htm〉 (9 April 2001)
and 〈www.ole.com.kw:80/picturesa.htm〉 (17 April 2001).
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ity of the corpus and also illustrate some of the potential difficulties with parallel Web
data. For example, the Arabic page in the first pair includes an additional caption
not present in the English side. These kinds of problems are expected to be overcome
during sentence alignment processing.

Appendix B: Translation Ratings Criteria

For each item, participants were instructed to provide three ratings.
Quality of the English:

3. Very fluent: All of the English is comprehensible.

2. Fairly fluent: The major part of the English passes, but there are
noticeable errors.

1. Barely fluent: Only part of the English meaning is understandable.

0. Unintelligible: Nothing or almost nothing of the English is
comprehensible.

Quality of the Chinese:

3. Very fluent: All of the Chinese is comprehensible.

2. Fairly fluent: The major part of the Chinese passes, but there are
noticeable errors.

1. Barely fluent: Only part of the Chinese meaning is understandable.

0. Unintelligible: Nothing or almost nothing of the Chinese is
comprehensible.

Adequacy of translation:

4. The English and Chinese contain entirely the same meaning.

3. The English and Chinese contain mostly the same meaning.

2. The English and Chinese contain much of the same meaning.

1. The English and Chinese contain little of the same meaning.

0. The English and Chinese contain none of the same meaning.
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