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The Alignment Template Approach to
Statistical Machine Translation
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Google RWTH Aachen

A phrase-based statistical machine translation approach — the alignment template approach — is
described. This translation approach allows for general many-to-many relations between words.
Thereby, the context of words is taken into account in the translation model, and local changes
in word order from source to target language can be learned explicitly. The model is described
using a log-linear modeling approach, which is a generalization of the often used source–channel
approach. Thereby, the model is easier to extend than classical statistical machine translation
systems. We describe in detail the process for learning phrasal translations, the feature functions
used, and the search algorithm. The evaluation of this approach is performed on three different
tasks. For the German–English speech Verbmobil task, we analyze the effect of various sys-
tem components. On the French–English Canadian Hansards task, the alignment template
system obtains significantly better results than a single-word-based translation model. In the
Chinese–English 2002 National Institute of Standards and Technology (NIST) machine transla-
tion evaluation it yields statistically significantly better NIST scores than all competing research
and commercial translation systems.

1. Introduction

Machine translation (MT) is a hard problem, because natural languages are highly
complex, many words have various meanings and different possible translations, sen-
tences might have various readings, and the relationships between linguistic entities
are often vague. In addition, it is sometimes necessary to take world knowledge into
account. The number of relevant dependencies is much too large and those depen-
dencies are too complex to take them all into account in a machine translation system.
Given these boundary conditions, a machine translation system has to make decisions
(produce translations) given incomplete knowledge. In such a case, a principled ap-
proach to solving that problem is to use the concepts of statistical decision theory to try
to make optimal decisions given incomplete knowledge. This is the goal of statistical
machine translation.

The use of statistical techniques in machine translation has led to dramatic im-
provements in the quality of research systems in recent years. For example, the statis-
tical approaches of the Verbmobil evaluations (Wahlster 2000) or the U.S. National
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Institute of Standards and Technology (NIST)/TIDES MT evaluations 2001 through
20031 obtain the best results. In addition, the field of statistical machine translation is
rapidly progressing, and the quality of systems is getting better and better. An im-
portant factor in these improvements is definitely the availability of large amounts of
data for training statistical models. Yet the modeling, training, and search methods
have also improved since the field of statistical machine translation was pioneered by
IBM in the late 1980s and early 1990s (Brown et al. 1990; Brown et al. 1993; Berger et
al. 1994). This article focuses on an important improvement, namely, the use of (gen-
eralized) phrases instead of just single words as the core elements of the statistical
translation model.

We describe in Section 2 the basics of our statistical translation model. We suggest
the use of a log-linear model to incorporate the various knowledge sources into an
overall translation system and to perform discriminative training of the free model
parameters. This approach can be seen as a generalization of the originally suggested
source–channel modeling framework for statistical machine translation.

In Section 3, we describe the statistical alignment models used to obtain a word
alignment and techniques for learning phrase translations from word alignments. Here,
the term phrase just refers to a consecutive sequence of words occurring in text and
has to be distinguished from the use of the term in a linguistic sense. The learned
bilingual phrases are not constrained by linguistic phrase boundaries. Compared to
the word-based statistical translation models in Brown et al. (1993), this model is based
on a (statistical) phrase lexicon instead of a single-word-based lexicon. Looking at the
results of the recent machine translation evaluations, this approach seems currently to
give the best results, and an increasing number of researchers are working on different
methods for learning phrase translation lexica for machine translation purposes (Marcu
and Wong 2002; Venugopal, Vogel, and Waibel 2003; Tillmann 2003; Koehn, Och, and
Marcu 2003). Our approach to learning a phrase translation lexicon works in two
stages: In the first stage, we compute an alignment between words, and in the second
stage, we extract the aligned phrase pairs. In our machine translation system, we then
use generalized versions of these phrases, called alignment templates, that also include
the word alignment and use word classes instead of the words themselves.

In Section 4, we describe the various components of the statistical translation
model. The backbone of the translation model is the alignment template feature func-
tion, which requires that a translation of a new sentence be composed of a set of align-
ment templates that covers the source sentence and the produced translation. Other
feature functions score the well-formedness of the produced target language sentence
(i.e., language model feature functions), the number of produced words, or the or-
der of the alignment templates. Note that all components of our statistical machine
translation model are purely data-driven and that there is no need for linguistically
annotated corpora. This is an important advantage compared to syntax-based trans-
lation models (Yamada and Knight 2001; Gildea 2003; Charniak, Knight, and Yamada
2003) that require a parser for source or target language.

In Section 5, we describe in detail our search algorithm and discuss an efficient
implementation. We use a dynamic-programming-based beam search algorithm that
allows a trade-off between efficiency and quality. We also discuss the use of heuristic
functions to reduce the number of search errors for a fixed beam size.

In Section 6, we describe various results obtained on different tasks. For the
German–English Verbmobil task, we analyze the effect of various system compo-

1 http://www.nist.gov/speech/tests/mt/.
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Figure 1
Architecture of the translation approach based on a log-linear modeling approach.

nents. On the French–English Canadian Hansards task, the alignment template sys-
tem obtains significantly better results than a single-word-based translation model. In
the Chinese–English 2002 NIST machine translation evaluation it yields results that are
significantly better statistically than all competing research and commercial translation
systems.

2. Log-Linear Models for Statistical Machine Translation

We are given a source (French) sentence f = f J
1 = f1, . . . , fj, . . . , fJ, which is to be trans-

lated into a target (English) sentence e = eI
1 = e1, . . . , ei, . . . , eI. Among all possible

target sentences, we will choose the sentence with the highest probability:2

êI
1 = argmax

eI
1

{Pr(eI
1 | f

J
1)} (1)

The argmax operation denotes the search problem, that is, the generation of the output
sentence in the target language.

As an alternative to the often used source–channel approach (Brown et al. 1993),
we directly model the posterior probability Pr(eI

1 | f J
1) (Och and Ney 2002). An es-

pecially well-founded framework for doing this is the maximum-entropy framework
(Berger, Della Pietra, and Della Pietra 1996). In this framework, we have a set of M fea-
ture functions hm(eI

1, f J
1), m = 1, . . . , M. For each feature function, there exists a model

2 The notational convention employed in this article is as follows. We use the symbol Pr(·) to denote
general probability distributions with (nearly) no specific assumptions. In contrast, for model-based
probability distributions, we use the generic symbol p(·).
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parameter λm, m = 1, . . . , M. The direct translation probability is given by

Pr(eI
1 | f

J
1) = pλM

1
(eI

1 | f
J
1) (2)

=
exp[

∑M
m=1 λmhm(eI

1, f J
1)]∑

e′ I1
exp[

∑M
m=1 λmhm(e′I1, f J

1)]
(3)

This approach has been suggested by Papineni, Roukos, and Ward (1997, 1998) for a
natural language understanding task.

We obtain the following decision rule:

êI
1 = argmax

eI
1

{
Pr(eI

1 | f
J
1)
}

= argmax
eI

1

{
M∑

m=1

λmhm(eI
1, f J

1)

}

Hence, the time-consuming renormalization in equation (3) is not needed in search.
The overall architecture of the log-linear modeling approach is summarized in Figure 1.

A standard criterion on a parallel training corpus consisting of S sentence pairs
{(fs, es): s = 1, . . . , S} for log-linear models is the maximum class posterior probability
criterion, which can be derived from the maximum-entropy principle:

λ̂M
1 = argmax

λM
1

{
S∑

s=1

log pλM
1

(es | fs)

}
(4)

This corresponds to maximizing the equivocation or maximizing the likelihood of the
direct-translation model. This direct optimization of the posterior probability in Bayes’
decision rule is referred to as discriminative training (Ney 1995) because we directly
take into account the overlap in the probability distributions. The optimization prob-
lem under this criterion has very nice properties: There is one unique global optimum,
and there are algorithms (e.g. gradient descent) that are guaranteed to converge to the
global optimum. Yet the ultimate goal is to obtain good translation quality on un-
seen test data. An alternative training criterion therefore directly optimizes translation
quality as measured by an automatic evaluation criterion (Och 2003).

Typically, the translation probability Pr(eI
1 | f J

1) is decomposed via additional hid-
den variables. To include these dependencies in our log-linear model, we extend the
feature functions to include the dependence on the additional hidden variable. Using
for example the alignment aJ

1 as hidden variable, we obtain M feature functions of the
form hm(eI

1, f J
1, aJ

1), m = 1, . . . , M and the following model:

Pr(eI
1, aJ

1 | f
J
1) =

exp
(∑M

m=1 λmhm(eI
1, f J

1, aJ
1)
)

∑
e′ I1,a′J1

exp
(∑M

m=1 λmhm(e′I1, f J
1, a′J1)

)
Obviously, we can perform the same step for translation models with an even richer
set of hidden variables than only the alignment aJ

1.

3. Learning Translation Lexica

In this section, we describe methods for learning the single-word and phrase-based
translation lexica that are the basis of the machine translation system described in
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Section 4. First, we introduce the basic concepts of statistical alignment models, which
are used to learn word alignment. Then, we describe how these alignments can be
used to learn bilingual phrasal translations.

3.1 Statistical Alignment Models
In (statistical) alignment models Pr(f J

1, aJ
1 | eI

1), a “hidden” alignment a = aJ
1 is intro-

duced that describes a mapping from a source position j to a target position aj. The
relationship between the translation model and the alignment model is given by

Pr(f J
1 | eI

1) =
∑

aJ
1

Pr(f J
1, aJ

1 | eI
1) (5)

The alignment aJ
1 may contain alignments aj = 0 with the “empty” word e0 to account

for source words that are not aligned with any target word.
In general, the statistical model depends on a set of unknown parameters θ that is

learned from training data. To express the dependence of the model on the parameter
set, we use the following notation:

Pr(f J
1, aJ

1 | eI
1) = pθ(f J

1, aJ
1 | eI

1) (6)

A detailed description of different specific statistical alignment models can be found in
Brown et al. (1993) and Och and Ney (2003). Here, we use the hidden Markov model
(HMM) alignment model (Vogel, Ney, and Tillmann 1996) and Model 4 of Brown et
al. (1993) to compute the word alignment for the parallel training corpus.

To train the unknown parameters θ, we are given a parallel training corpus con-
sisting of S sentence pairs {(fs, es): s = 1, . . . , S}. For each sentence pair (fs, es), the
alignment variable is denoted by a = aJ

1. The unknown parameters θ are determined
by maximizing the likelihood on the parallel training corpus:

θ̂ = argmax
θ

{
S∏

s=1

[∑
a

pθ(fs, a | es)

]}
(7)

This optimization can be performed using the expectation maximization (EM) algo-
rithm (Dempster, Laird, and Rubin 1977). For a given sentence pair there are a large
number of alignments. The alignment âJ

1 that has the highest probability (under a
certain model) is also called the Viterbi alignment (of that model):

âJ
1 = argmax

aJ
1

pθ̂(f J
1, aJ

1 | eI
1) (8)

A detailed comparison of the quality of these Viterbi alignments for various statistical
alignment models compared to human-made word alignments can be found in Och
and Ney (2003).

3.2 Symmetrization
The baseline alignment model does not allow a source word to be aligned with two
or more target words. Therefore, lexical correspondences like the German compound
word Zahnarzttermin for dentist’s appointment cause problems because a single source
word must be mapped onto two or more target words. Therefore, the resulting Viterbi
alignment of the standard alignment models has a systematic loss in recall. Here, we
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Figure 2
Example of a (symmetrized) word alignment (Verbmobil task).

describe various methods for performing a symmetrization of our directed statistical
alignment models by applying a heuristic postprocessing step that combines the align-
ments in both translation directions (source to target, target to source). Figure 2 shows
an example of a symmetrized alignment.

To solve this problem, we train in both translation directions. For each sentence
pair, we compute two Viterbi alignments aJ

1 and bI
1. Let A1 = {(aj, j) | aj > 0} and

A2 = {(i, bi) | bi > 0} denote the sets of alignments in the two Viterbi alignments. To
increase the quality of the alignments, we can combine (symmetrize) A1 and A2 into
one alignment matrix A using one of the following combination methods:

• Intersection: A = A1 ∩ A2.

• Union: A = A1 ∪ A2.

• Refined method: In a first step, the intersection A = A1 ∩ A2 is
determined. The elements of this intersection result from both Viterbi
alignments and are therefore very reliable. Then, we extend the
alignment A iteratively by adding alignments (i, j) occurring only in the
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alignment A1 or in the alignment A2 if neither fj nor ei have an alignment
in A, or if the following conditions both hold:

• The alignment (i, j) has a horizontal neighbor (i− 1, j), (i + 1, j)
or a vertical neighbor (i, j− 1), (i, j + 1) that is already in A.

• The set A ∪ {(i, j)} does not contain alignments with both
horizontal and vertical neighbors.

Obviously, the intersection yields an alignment consisting of only one-to-one align-
ments with a higher precision and a lower recall. The union yields a higher recall
and a lower precision of the combined alignment. The refined alignment method is
often able to improve precision and recall compared to the nonsymmetrized align-
ments. Whether a higher precision or a higher recall is preferred depends on the final
application of the word alignment. For the purpose of statistical MT, it seems that a
higher recall is more important. Therefore, we use the union or the refined combination
method to obtain a symmetrized alignment matrix.

The resulting symmetrized alignments are then used to train single-word-based
translation lexica p(e | f ) by computing relative frequencies using the count N(e, f ) of
how many times e and f are aligned divided by the count N(f ) of how many times
the word f occurs:

p(e | f ) =
N(e, f )

N(f )

3.3 Bilingual Contiguous Phrases
In this section, we present a method for learning relationships between whole phrases
of m source language words and n target language words. This algorithm, which
will be called phrase-extract, takes as input a general word alignment matrix (Sec-
tion 3.2). The output is a set of bilingual phrases.

In the following, we describe the criterion that defines the set of phrases that is
consistent with the word alignment matrix:

BP(f J
1, eI

1, A) =
{(

f j+m
j , ei+n

i

)
: ∀(i′, j′) ∈ A : j ≤ j′ ≤ j + m↔ i ≤ i′ ≤ i + n (9)

∧∃(i′, j′) ∈ A : j ≤ j′ ≤ j + m ∧ i ≤ i′ ≤ i + n
}

Hence, the set of all bilingual phrases that are consistent with the alignment is con-
stituted by all bilingual phrase pairs in which all words within the source language
phrase are aligned only with the words of the target language phrase and the words
of the target language phrase are aligned only with the words of the source language
phrase. Note that we require that at least one word in the source language phrase be
aligned with at least one word of the target language phrase. As a result there are no
empty source or target language phrases that would correspond to the “empty word”
of the word-based statistical alignment models.

These phrases can be computed straightforwardly by enumerating all possible
phrases in one language and checking whether the aligned words in the other lan-
guage are consecutive, with the possible exception of words that are not aligned at
all. Figure 3 gives the algorithm phrase-extract that computes the phrases. The algo-
rithm takes into account possibly unaligned words at the boundaries of the source or
target language phrases. Table 1 shows the bilingual phrases containing between two
and seven words that result from the application of this algorithm to the alignment
of Figure 2.
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Table 1
Examples of two- to seven-word bilingual phrases obtained by applying the algorithm
phrase-extract to the alignment of Figure 2.

ja , yes ,
ja , ich yes , I

ja , ich denke mal yes , I think
ja , ich denke mal , yes , I think ,

ja , ich denke mal , also yes , I think , well
, ich , I

, ich denke mal , I think
, ich denke mal , , I think ,

, ich denke mal , also , I think , well
, ich denke mal , also wir , I think , well we

ich denke mal I think
ich denke mal , I think ,

ich denke mal , also I think , well
ich denke mal , also wir I think , well we

ich denke mal , also wir wollten I think , well we plan to
denke mal , think ,

denke mal , also think , well
denke mal , also wir think , well we

denke mal , also wir wollten think , well we plan to
, also , well

, also wir , well we
, also wir wollten , well we plan to

also wir well we
also wir wollten well we plan to

wir wollten we plan to
in unserer in our

in unserer Abteilung in our department
in unserer Abteilung ein neues Netzwerk a new network in our department
in unserer Abteilung ein neues Netzwerk set up a new network in our department

aufbauen
unserer Abteilung our department

ein neues a new
ein neues Netzwerk a new network

ein neues Netzwerk aufbauen set up a new network
neues Netzwerk new network

It should be emphasized that this constraint to consecutive phrases limits the ex-
pressive power. If a consecutive phrase in one language is translated into two or three
nonconsecutive phrases in the other language, there is no corresponding bilingual
phrase pair learned by this approach. In principle, this approach to learning phrases
from a word-aligned corpus could be extended straightforwardly to handle noncon-
secutive phrases in source and target language as well. Informal experiments have
shown that allowing for nonconsecutive phrases significantly increases the number of
extracted phrases and especially increases the percentage of wrong phrases. Therefore,
we consider only consecutive phrases.

3.4 Alignment Templates
In the following, we add generalization capability to the bilingual phrase lexicon by
replacing words with word classes and also by storing the alignment information
for each phrase pair. These generalized and alignment-annotated phrase pairs are
called alignment templates. Formally, an alignment template z is a triple (FJ′

1 , EI′
1 , Ã)
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INPUT: eI
1, f J

1, A
i1 := 1
WHILE i1 ≤ I

i2 := i1
WHILE i2 ≤ I

TP := {j|∃i : i1 ≤ i ≤ i2 ∧ A(i, j)}
IF quasi-consecutive(TP)

THEN j1 := min(TP)
j2 := max(TP)
SP := {i|∃j : j1 ≤ j ≤ j2 ∧ A(i, j)}

IF SP ⊆ {i1, i1 + 1, . . . , i2}
THEN BP := BP ∪ {(ei2

i1
, f j2

j1
)}

WHILE j1 > 0 ∧ ∀i : A(i, j1) = 0
j′′ := j2
WHILE j′′ ≤ J ∧ ∀i : A(i, j′′) = 0

BP := BP ∪ {(ei2
i1

, f j′′

j1
)}

j′′ := j′′ + 1
j1 := j1 − 1

OUTPUT: BP
Figure 3
Algorithm phrase-extract for extracting phrases from a word-aligned sentence pair. Here
quasi-consecutive(TP) is a predicate that tests whether the set of words TP is consecutive,
with the possible exception of words that are not aligned.

that describes the alignment Ã between a source class sequence FJ′

1 and a target class
sequence EI′

1 . If each word corresponds to one class, an alignment template corresponds
to a bilingual phrase together with an alignment within this phrase. Figure 4 shows
examples of alignment templates.

The alignment Ã is represented as a matrix with J′ · (I′ + 1) binary elements. A
matrix element with value 1 means that the words at the corresponding positions are
aligned, and the value 0 means that the words are not aligned. If a source word is not
aligned with a target word, then it is aligned with the empty word e0, which is at the
imaginary position i = 0.

The classes used in FJ′

1 and EI′
1 are automatically trained bilingual classes using

the method described in Och (1999) and constitute a partition of the vocabulary of
source and target language. In general, we are not limited to disjoint classes as long
as each specific instance of a word is disambiguated, that is, uniquely belongs to a
specific class. In the following, we use the class function C to map words to their
classes. Hence, it would be possible to employ parts-of-speech or semantic categories
instead of the automatically trained word classes used here.

The use of classes instead of the words themselves has the advantage of better
generalization. For example, if there exist classes in source and target language that
contain town names, it is possible that an alignment template learned using a specific
town name can be generalized to other town names.

In the following, ẽ and f̃ denote target and source phrases, respectively. To train
the probability of applying an alignment template p(z = (FJ′

1 , EI′
1 , Ã) | f̃ ), we use an

extended version of the algorithm phrase-extract from Section 3.3. All bilingual
phrases that are consistent with the alignment are extracted together with the align-
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Figure 4
Examples of alignment templates obtained in training.

ment within this bilingual phrase. Thus, we obtain a count N(z) of how often an
alignment template occurred in the aligned training corpus. The probability of using
an alignment template to translate a specific source language phrase f̃ is estimated by
means of relative frequency:

p(z = (FJ′

1 , EI′
1 , Ã) | f̃ ) =

N(z) · δ(FJ′

1 , C(f̃ ))

N(C(f̃ ))
(10)

To reduce the memory requirement of the alignment templates, we compute these
probabilities only for phrases up to a certain maximal length in the source language.
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Depending on the size of the corpus, the maximal length in the experiments is be-
tween four and seven words. In addition, we remove alignment templates that have
a probability lower than a certain threshold. In the experiments, we use a threshold
of 0.01.

It should be emphasized that this algorithm for computing aligned phrase pairs
and their associated probabilities is very easy to implement. The joint translation model
suggested by Marcu and Wong (2002) tries to learn phrases as part of a full EM
algorithm, which leads to very large memory requirements and a rather complicated
training algorithm. A comparison of the two approaches can be found in Koehn, Och,
and Marcu (2003).

4. Translation Model

To describe our translation model based on the alignment templates described in the
previous section in a formal way, we first decompose both the source sentence f J

1 and
the target sentence eI

1 into a sequence of phrases (k = 1, . . . , K):

f J
1 = f̃ K

1 , f̃k = fjk−1+1, . . . , fjk (11)

eI
1 = ẽK

1 , ẽk = eik−1+1, . . . , eik (12)

Note that there are a large number of possible segmentations of a sentence pair into K
phrase pairs. In the following, we will describe the model for a specific segmentation.
Eventually, however, a model can be described in which the specific segmentation is
not known when new text is translated. Hence, as part of the overall search process
(Section 5), we also search for the optimal segmentation.

To allow possible reordering of phrases, we introduce an alignment on the phrase
level πK

1 between the source phrases f̃ K
1 and the target phrases ẽK

1 . Hence, πK
1 is a

permutation of the phrase positions 1, . . . , K and indicates that the phrases ẽk and
f̃πk are translations of one another. We assume that for the translation between these
phrases a specific alignment template zk is used:

ẽk
zk←→ f̃πk

Hence, our model has the following hidden variables:

πK
1 , zK

1

Figure 5 gives an example of the word alignment and phrase alignment of a
German–English sentence pair.

We describe our model using a log-linear modeling approach. Hence, all knowl-
edge sources are described as feature functions that include the given source language
string f J

1, the target language string eI
1, and the above-stated hidden variables. Hence,

we have the following functional form of all feature functions:

h(eI
1, f J

1,πK
1 , zK

1 )

Figure 6 gives an overview of the decisions made in the alignment template model.
First, the source sentence words f J

1 are grouped into phrases f̃ K
1 . For each phrase f̃ an

alignment template z is chosen and the sequence of chosen alignment templates is
reordered (according to πK

1 ). Then, every phrase f̃ produces its translation ẽ (using the
corresponding alignment template z). Finally, the sequence of phrases ẽK

1 constitutes
the sequence of words eI

1.
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Figure 5
Example of segmentation of German sentence and its English translation into alignment
templates.

Figure 6
Dependencies in the alignment template model.
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4.1 Feature Functions
4.1.1 Alignment Template Selection. To score the use of an alignment template, we
use the probability p(z | f̃ ) defined in Section 3. We establish a corresponding feature
function by multiplying the probability of all used alignment templates and taking the
logarithm:

hAT(eI
1, f J

1,πK
1 , zK

1 ) = log
K∏

k=1

p(zk | f
jπk
jπk−1+1) (13)

Here, jπk−1 + 1 is the position of the first word of alignment template zk in the source
language sentence and jπk is the position of the last word of that alignment template.

Note that this feature function requires that a translation of a new sentence be
composed of a set of alignment templates that covers both the source sentence and
the produced translation. There is no notion of “empty phrase” that corresponds to
the “empty word” in word-based statistical alignment models. The alignment on the
phrase level is actually a permutation, and no insertions or deletions are allowed.

4.1.2 Word Selection. For scoring the use of target language words, we use a lexicon
probability p(e | f ), which is estimated using relative frequencies as described in Sec-
tion 3.2. The target word e depends on the aligned source words. If we denote the
resulting word alignment matrix by A := AπK

1 ,zK
1

and the predicted word class for word
ei by Ei, then the feature function hWRD is defined as follows:

hWRD(eI
1, f J

1,πK
1 , zK

1 ) = log
I∏

i=1

p(ei | {fj | (i, j) ∈ A}, Ei) (14)

For p(ei | {fj | (i, j) ∈ A}) we use a uniform mixture of a single-word model p(e | f ),
which is constrained to predict only words that are in the predicted word class Ei:

p(ei | {fj | (i, j) ∈ A}, Ei) =

∑
{j|(i,j)∈A} p(ei | fj)
|{j | (i, j) ∈ A}| · δ(C(ei), Ei)

A disadvantage of this model is that the word order is ignored in the translation
model. The translations the day after tomorrow or after the day tomorrow for the German
word übermorgen receive an identical probability. Yet the first one should obtain a
significantly higher probability. Hence, we also include a dependence on the word
positions in the lexicon model p(e | f , i, j):

p(ei | fj,
i−1∑
i′=1

[(i′, j) ∈ A],
j−1∑
j′=1

[(i, j′) ∈ A]) (15)

Here, [(i′, j) ∈ A] is 1 if (i′, j) ∈ A and 0 otherwise. As a result, the word ei depends
not only on the aligned French word fj, but also on the number of preceding French
words aligned with ei and on the number of the preceding English words aligned with
fj. This model distinguishes the positions within a phrasal translation. The number of
parameters of p(e | f , i, j) is significantly higher than that of p(e | f ) alone. Hence,
there is a data estimation problem especially for words that rarely occur. Therefore,
we linearly interpolate the models p(e | f ) and p(e | f , i, j).

4.1.3 Phrase Alignment. The phrase alignment feature simply takes into account that
very often a monotone alignment is a correct alignment. Hence, the feature function
hAL measures the “amount of nonmonotonicity” by summing over the distance (in the
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source language) of alignment templates that are consecutive in the target language:

hAL(eI
1, f J

1,πK
1 , zK

1 ) =

K+1∑
k=1

|jπk−1 − jπk−1 | (16)

Here, jπ0 is defined to equal 0 and jπK+1−1 is defined to equal J. The above-stated sum
includes k = K + 1 to include the distance from the end position of the last phrase to
the end of sentence.

The sequence of K = 6 alignment templates in Figure 5 corresponds to the follow-
ing sum of seven jump distances: 0 + 0 + 1 + 3 + 2 + 0 + 0 = 6.

4.1.4 Language Model Features. As a default language model feature, we use a stan-
dard backing-off word-based trigram language model (Ney, Generet, and Wessel 1995):

hLM(eI
1, f J

1,πK
1 , zK

1 ) = log
I+1∏
i=1

p(ei | ei−2, ei−1) (17)

In addition, we use a 5-gram class-based language model:

hCLM(eI
1, f J

1,πK
1 , zK

1 ) = log
I+1∏
i=1

p(C(ei) | C(ei−4), . . . , C(ei−1)) (18)

The use of the language model feature in equation (18) helps take long-range depen-
dencies better into account.

4.1.5 Word Penalty. To improve the scoring for different target sentence lengths, we
also use as a feature the number of produced target language words (i.e., the length
of the produced target language sentence):

hWP(eI
1, f J

1,πK
1 , zK

1 ) = I (19)

Without this feature, we typically observe that the produced sentences tend to be too
short.

4.1.6 Conventional Lexicon. We also use a feature that counts how many entries of a
conventional lexicon co-occur in the given sentence pair. Therefore, the weight for the
provided conventional dictionary can be learned:

hLEX(eI
1, f J

1,πK
1 , zK

1 ) = #CO-OCCURRENCES(LEX, eI
1, f J

1) (20)

The intuition is that the conventional dictionary LEX is more reliable than the auto-
matically trained lexicon and therefore should get a larger weight.

4.1.7 Additional Features. A major advantage of the log-linear modeling approach
used is that we can add numerous features that deal with specific problems of the
baseline statistical MT system. Here, we will restrict ourselves to the described set
of features. Yet we could use grammatical features that relate certain grammatical
dependencies of source and target language. For example, using a function k(·) that
counts how many arguments the main verb of a sentence has in the source or target
sentence, we can define the following feature, which has a nonzero value if the verb
in each of the two sentences has the same number of arguments:

h(f J
1, eI

1,πK
1 , zK

1 ) = δ(k(f J
1), k(eI

1)) (21)

In the same way, we can introduce semantic features or pragmatic features such as
the dialogue act classification.
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4.2 Training
For the three different tasks on which we report results, we use two different training
approaches. For the Verbmobil task, we train the model parameters λM

1 according
to the maximum class posterior probability criterion (equation (4)). For the French–
English Hansards task and the Chinese–English NIST task, we simply tune the model
parameters by coordinate descent on held-out data with respect to the automatic eval-
uation metric employed, using as a starting point the model parameters obtained on
the Verbmobil task. Note that this tuning depends on the starting point of the model
parameters and is not guaranteed to converge to the global optimum on the training
data. As a result, this approach is limited to a very small number of model parame-
ters. An efficient algorithm for performing this tuning for a larger number of model
parameters can be found in Och (2003).

A standard approach to training the log-linear model parameters of the maximum
class posterior probability criterion is the GIS (Generalized Iterative Scaling) algorithm
(Darroch and Ratcliff 1972). To apply this algorithm, we have to solve various practi-
cal problems. The renormalization needed in equation (3) requires a sum over many
possible sentences, for which we do not know of an efficient algorithm. Hence, we ap-
proximate this sum by extracting a large set of highly probable sentences as a sample
from the space of all possible sentences (n-best approximation). The set of considered
sentences is computed by means of an appropriately extended version of the search
algorithm described in Section 5.

Using an n-best approximation, we might face the problem that the parameters
trained with the GIS algorithm yield worse translation results even on the training
corpus. This can happen because with the modified model scaling factors, the n-best
list can change significantly and can include sentences that have not been taken into
account in training. Using these sentences, the new model parameters might perform
worse than the old model parameters. To avoid this problem, we proceed as follows.
In a first step, we perform a search, compute an n-best list, and use this n-best list to
train the model parameters. Second, we use the new model parameters in a new search
and compute a new n-best list, which is combined with the existing n-best list. Third,
using this extended n-best list, new model parameters are computed. This process is
iterated until the resulting n-best list does not change. In this algorithm, convergence
is guaranteed, as in the limit the n-best list will contain all possible translations. In
practice, the algorithm converges after five to seven iterations. In our experiments this
final n-best list contains about 500–1000 alternative translations.

We might have the problem that none of the given reference translations is part
of the n-best list because the n-best list is too small or because the search algorithm
performs pruning which in principle limits the possible translations that can be pro-
duced given a certain input sentence. To solve this problem, we define as reference
translation for maximum-entropy training each sentence that has the minimal number
of word errors with respect to any of the reference translations in the n-best list. More
details of the training procedure can be found in Och and Ney (2002).

5. Search

In this section, we describe an efficient search architecture for the alignment template
model.

5.1 General Concept
In general, the search problem for statistical MT even using only Model 1 of Brown
et al. (1993) is NP-complete (Knight 1999). Therefore, we cannot expect to develop
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efficient search algorithms that are guaranteed to solve the problem without search
errors. Yet for practical applications it is acceptable to commit some search errors
(Section 6.1.2). Hence, the art of developing a search algorithm lies in finding suitable
approximations and heuristics that allow an efficient search without committing too
many search errors.

In the development of the search algorithm described in this section, our main
aim is that the search algorithm should be efficient. It should be possible to translate
a sentence of reasonable length within a few seconds of computing time. We accept
that the search algorithm sometimes results in search errors, as long as the impact
on translation quality is minor. Yet it should be possible to reduce the number of
search errors by increasing computing time. In the limit, it should be possible to
search without search errors. The search algorithm should not impose any principal
limitations. We also expect that the search algorithm be able to scale up to very long
sentences with an acceptable computing time.

To meet these aims, it is necessary to have a mechanism that restricts the search
effort. We accomplish such a restriction by searching in a breadth-first manner with
pruning: beam search. In pruning, we constrain the set of considered translation can-
didates (the “beam”) only to the promising ones. We compare in beam search those
hypotheses that cover different parts of the input sentence. This makes the comparison
of the probabilities problematic. Therefore, we integrate an admissible estimation of
the remaining probabilities to arrive at a complete translation (Section 5.6)

Many of the other search approaches suggested in the literature do not meet the
described aims:

• Neither optimal A* search (Och, Ueffing, and Ney 2001) nor optimal
integer programming (Germann et al. 2001) for statistical MT allows
efficient search for long sentences.

• Greedy search algorithms (Wang 1998; Germann et al. 2001) typically
commit severe search errors (Germann et al. 2001).

• Other approaches to solving the search problem obtain polynomial time
algorithms by assuming monotone alignments (Tillmann et al. 1997) or
imposing a simplified recombination structure (Nießen et al. 1998).
Others make simplifying assumptions about the search space
(Garcı́a-Varea, Casacuberta, and Ney 1998; Garcı́a-Varea et al. 2001), as
does the original IBM stack search decoder (Berger et al. 1994). All these
simplifications ultimately make the search problem simpler but
introduce fundamental search errors.

In the following, we describe our search algorithm based on the concept of beam
search, which allows a trade-off between efficiency and quality by adjusting the size of
the beam. The search algorithm can be easily adapted to other phrase-based translation
models. For single-word-based search in MT, a similar algorithm has been described
in Tillmann and Ney (2003).

5.2 Search Problem
Putting everything together and performing search in maximum approximation, we
obtain the following decision rule:

êI
1 = argmax

eI
1,πK

1 ,zK
1

{
M∑

m=1

λm · hm(eI
1, f J

1,πK
1 , zK

1 )

}
(22)
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Using the four feature functions AT, AL, WRD, and LM, we obtain the following
decision rule:3

êI
1 = argmax

eI
1,πK

1 ,zK
1

{
(23)

I∑
i=1

(
λLM log p(ei | ei−2, ei−1) + λWRD log p(ei | {fj | (i, j) ∈ A}, Ei)

)
(24)

+

K∑
k=1

(
λAT log p(zk | f

jπk
jπk−1 +1) + λAL · |jπk − jπk−1+1|

)
(25)

+λAL · (J − jπK ) + λLM log p(EOS | eI−1, eI)
}

(26)

Here, we have grouped the contributions of the various feature functions into those for
each word (from LM and WRD, expression (24)), those for every alignment template
(from AT and AL, expression (25)), and those for the end of sentence (expression (26)),
which includes a term log p(EOS | eI−1, eI) for the end-of-sentence language model
probability.

To extend this decision rule for the word penalty (WP) feature function, we sim-
ply obtain an additional term λWP for each word. The class-based 5-gram language
model (CLM) can be included like the trigram language model. Note that all these fea-
ture functions decompose nicely into contributions for each produced target language
word or for each covered source language word. This makes it possible to develop
an efficient dynamic programming search algorithm. Not all feature functions have
this nice property: For the conventional lexicon feature function (LEX), we obtain an
additional term in our decision rule which depends on the full sentence. Therefore,
this feature function will not be integrated in the dynamic programming search but
instead will be used to rerank the set of candidate translations produced by the search.

5.3 Structure of Search Space
We have to structure the search space in a suitable way to search efficiently. In our
search algorithm, we generate search hypotheses that correspond to prefixes of target
language sentences. Each hypothesis is the translation of a part of the source language
sentence. A hypothesis is extended by appending one target word. The set of all hy-
potheses can be structured as a graph with a source node representing the sentence
start, goal nodes representing complete translations, and intermediate nodes repre-
senting partial translations. There is a directed edge between hypotheses n1 and n2 if
the hypothesis n2 is obtained by appending one word to hypothesis n1. Each edge has
associated costs resulting from the contributions of all feature functions. Finally, our
search problem can be reformulated as finding the optimal path through this graph.

In the first step, we determine the set of all source phrases in f̃ for which an appli-
cable alignment template exists. Every possible application of an alignment template
z = (FJ′

1 , EI′
1 , Ã) to a subsequence f j+J′−1

j of the source sentence is called an alignment
template instantiation Z = (z, j). Hence, the set of all alignment template instantiations
for the source sentence f J

1 is{
Z = (z, j) | z = (FJ′

1 , EI′
1 , Ã) ∧ ∃j : p(z | f j+J′−1

j ) > 0
}

(27)

3 Note that here some of the simplifying notation of Section 4 has been used.
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If the source sentence contains words that have not been seen in the training data, we
introduce a new alignment template that performs a one-to-one translation of each of
these words by itself.

In the second step, we determine a set of probable target language words for
each target word position in the alignment template instantiation. Only these words
are then hypothesized in the search. We call this selection of highly probable words
observation pruning (Tillmann and Ney 2000). As a criterion for a word e at position
i in the alignment template instantiation, we use

δ(Ei, C(e)) ·
J′∑

j=0

Ã(i, j)∑
i′ Ã(i′, j)

· p(e | fj) (28)

In our experiments, we hypothesize only the five best-scoring words.
A decision is a triple d = (Z, e, l) consisting of an alignment template instantiation

Z, the generated word e, and the index l of the generated word in Z. A hypothesis n
corresponds to a valid sequence of decisions di

1. The possible decisions are as follows:

1. Start a new alignment template: di = (Zi, ei, 1). In this case, the index
l = 1. This decision can be made only if the previous decision di−1
finished an alignment template and if the newly chosen alignment
template instantiation does not overlap with any previously chosen
alignment template instantiation. The resulting decision score
corresponds to the contribution of the LM and the WRD features
(expression (24)) for the produced word and the contribution of AL and
AT features (expression (25)) for the started alignment template.

2. Extend an alignment template: di = (Zi, ei, l). This decision can be made
only if the previous decision uses the same alignment template
instantiation and has as index l− 1: di−1 = (Zi, ei−1, l− 1). The resulting
decision score corresponds to the contribution of the LM and the WRD
features (expression (24)).

3. Finish the translation of a sentence: di = (EOS, EOS, 0). In this case, the
hypothesis is marked as a goal hypothesis. This decision is possible only
if the previous decision di−1 finished an alignment template and if the
alignment template instantiations completely cover the input sentence.
The resulting decision score corresponds to the contribution of
expression (26).

Any valid and complete sequence of decisions dI+1
1 uniquely corresponds to a certain

translation eI
1, a segmentation into K phrases, a phrase alignment πK

1 , and a sequence
of alignment template instantiations zK

1 . The sum of the decision scores is equal to the
corresponding score described in expressions (24)–(26).

A straightforward representation of all hypotheses would be the prefix tree of all
possible sequences of decisions. Obviously, there would be a large redundancy in this
search space representation, because there are many search nodes that are indistin-
guishable in the sense that the subtrees following these search nodes are identical. We
can recombine these identical search nodes; that is, we have to maintain only the most
probable hypothesis (Bellman 1957).

In general, the criterion for recombining a set of nodes is that the hypotheses can be
distinguished by neither language nor translation model. In performing recombination,
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INPUT: implicitly defined search space (functions Recombine, Extend)
H = {initial-hypothesis}
WHILE H �= ∅

Hext := ∅
FOR n ∈ H

IF hypothesis n is final
THEN Hfin := Hfin ∪ {n}
ELSE Hext := Hext ∪ Extend(n)

H := Recombine(Hext)

Q̂ = maxn∈H Q(n)

H := {n ∈ H : Q(n) > log(tp) + Q̂}
H := HistogramPruning(H, Np)

n̂ = argmax
n∈Hfin

Q(n)

OUTPUT: n̂

Figure 7
Algorithm for breadth-first search with pruning.

we obtain a search graph instead of a search tree. The exact criterion for performing
recombination for the alignment templates is described in Section 5.5.

5.4 Search Algorithm
Theoretically, we could use any graph search algorithm to search the optimal path in
the search space. We use a breadth-first search algorithm with pruning. This approach
offers very good possibilities for adjusting the trade-off between quality and efficiency.
In pruning, we always compare hypotheses that have produced the same number of
target words.

Figure 7 shows a structogram of the algorithm. As the search space increases expo-
nentially, it is not possible to explicitly represent it. Therefore, we represent the search
space implicitly, using the functions Extend and Recombine. The function Extend pro-
duces new hypotheses extending the current hypothesis by one word. Some hypothe-
ses might be identical or indistinguishable by the language and translation models.
These are recombined by the function Recombine. We expand the search space such
that only hypotheses with the same number of target language words are recombined.

In the pruning step, we use two different types of pruning. First, we perform prun-
ing relative to the score Q̂ of the current best hypothesis. We ignore all hypotheses that
have a probability lower than log(tp)+Q̂, where tp is an adjustable pruning parameter.
This type of pruning can be performed when the hypothesis extensions are computed.
Second, in histogram pruning (Steinbiss, Tran, and Ney 1994), we maintain only the
best Np hypotheses. The two pruning parameters tp and Np have to be optimized with
respect to the trade-off between efficiency and quality.

5.5 Implementation
In this section, we describe various issues involved in performing an efficient imple-
mentation of a search algorithm for the alignment template approach.

A very important design decision in the implementation is the representation of
a hypothesis. Theoretically, it would be possible to represent search hypotheses only
by the associated decision and a back-pointer to the previous hypothesis. Yet this
would be a very inefficient representation for the implementation of the operations
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that have to be performed in the search. The hypothesis representation should contain
all information required to perform efficiently the computations needed in the search
but should contain no more information than that, to keep the memory consumption
small.

In search, we produce hypotheses n, each of which contains the following infor-
mation:

1. e: the final target word produced

2. h: the state of the language model (to predict the following word)

3. c = cJ
1: the coverage vector representing the already covered positions of

the source sentence (cj = 1 means the position j is covered, cj = 0 means
the position j is not covered)

4. Z: a reference to the alignment template instantiation that produced the
final target word

5. l: the position of the final target word in the alignment template
instantiation

6. Q(n): the accumulated score of all previous decisions

7. n′: a reference to the previous hypothesis

Using this representation, we can perform the following operations very efficiently:

• Determining whether a specific alignment template instantiation can be
used to extend a hypothesis. To do this, we check whether the positions
of the alignment template instantiation are still free in the hypothesis
coverage vector.

• Checking whether a hypothesis is final. To do this, we determine
whether the coverage vector contains no uncovered position. Using a bit
vector as representation, the operation to check whether a hypothesis is
final can be implemented very efficiently.

• Checking whether two hypotheses can be recombined. The criterion for
recombining two hypotheses n1 = (e1, h1, c1, Z1, l1) and
n2 = (e2, h2, c2, Z2, l2) is

h1 = h2∧ identical language model state
c1 = c2∧ identical coverage vector
( (Z1 = Z2 ∧ l1 = l2)∨ alignment template instantiation is identical

(J(Z1) = l1 ∧ J(Z2) = l2) ) alignment template instantiation finished

We compare in beam search those hypotheses that cover different parts of the input
sentence. This makes the comparison of the probabilities problematic. Therefore, we
integrate an admissible estimation of the remaining probabilities to arrive at a complete
translation. Details of the heuristic function for the alignment templates are provided
in the next section.

5.6 Heuristic Function
To improve the comparability of search hypotheses, we introduce heuristic functions.
A heuristic function estimates the probabilities of reaching the goal node from a certain
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search node. An admissible heuristic function is always an optimistic estimate; that
is, for each search node, the product of edge probabilities of reaching a goal node
is always equal to or smaller than the estimated probability. For an A*-based search
algorithm, a good heuristic function is crucial to being able to translate long sentences.
For a beam search algorithm, the heuristic function has a different motivation. It is used
to improve the scoring of search hypotheses. The goal is to make the probabilities of
all hypotheses more comparable, in order to minimize the chance that the hypothesis
leading to the optimal translation is pruned away.

Heuristic functions for search in statistical MT have been used in Wang and Waibel
(1997) and Och, Ueffing, and Ney (2001). Wang and Waibel (1997) have described a
simple heuristic function for Model 2 of Brown et al. (1993) that was not admissible.
Och, Ueffing, and Ney (2001) have described an admissible heuristic function for
Model 4 of Brown et al. (1993) and an almost-admissible heuristic function that is
empirically obtained.

We have to keep in mind that a heuristic function is helpful only if the overhead
introduced in computing the heuristic function is more than compensated for by the
gain obtained through a better pruning of search hypotheses. The heuristic functions
described in the following are designed such that their computation can be performed
efficiently.

The basic idea for developing a heuristic function for an alignment model is that all
source sentence positions that have not been covered so far still have to be translated
to complete the sentence. If we have an estimation rX(j) of the optimal score for
translating position j, then the value of the heuristic function RX(n) for a node n
can be inferred by summing over the contribution for every position j that is not in
the coverage vector c(n) (here X denotes different possibilities to choose the heuristic
function):

RX(n) =
∑

j�∈c(n)

rX(j) (29)

The situation in the case of the alignment template approach is more complicated, as
not every word is translated alone, but typically the words are translated in context.
Therefore, the basic quantity for the heuristic function in the case of the alignment
template approach is a function r(Z) that assigns to every alignment template in-
stantiation Z a maximal probability. Using r(Z), we can induce a position-dependent
heuristic function r(j):

r(j) := max
Z:j(Z)≤j≤j(Z)+J(Z)−1

r(Z)/J(Z) (30)

Here, J(Z) denotes the number of source language words produced by the alignment
template instantiation Z and j(Z) denotes the position of the first source language
word. It can be easily shown that if r(Z) is admissible, then r(j) is also admissible. We
have to show that for all nonoverlapping sequences ZK

1 the following holds:

K∑
k=1

r(Zk) ≤
∑

j∈c(ZK
1 )

r(j) (31)

Here, c(ZK
1 ) denotes the set of all positions covered by the sequence of alignment

templates ZK
1 . This can be shown easily:

K∑
k=1

r(Zk) =

K∑
k=1

J(Zk)∑
j=1

r(Zk)/J(Zk) (32)
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INPUT: coverage vector cJ
1, previously covered position j

ff = min({j′ | cj′ = 0})
mj = |j− ff|
WHILE ff �= (J + 1)

fo := min({j′ | j′ > ff ∧ cj′ = 1})
ff := min({j′ | j′ > fo ∧ cj′ = 0 ∨ j′ = J + 1})
mj := mj + |ff− fo|

OUTPUT: mj

Figure 8
Algorithm min-jumps to compute the minimum number of needed jumps D(cJ

1, j) to complete
the translation.

=
∑

j∈c(ZK
1 )

r(Zk(j))/J(Zk(j)) (33)

≤
∑

j∈c(ZK
1 )

max
Z:j(Z)≤j≤j(Z)+J(Z)−1

r(Z)/J(Z) (34)

Here, k(j) denotes the phrase index k that includes the target language word position j.
In the following, we develop various heuristic functions r(Z) of increasing complexity.
The simplest realization of a heuristic function r(Z) takes into account only the prior
probability of an alignment template instantiation:

RAT(Z = (z, j)) = λAT · log p(z | fj,j+J(z)−1) (35)

The lexicon model can be integrated as follows:

RWRD(Z) = λWRD ·
j(Z)+J(Z)−1∑

j′=j(Z)

max
e

log p(e | fj′) (36)

The language model can be incorporated by considering that for each target word
there exists an optimal language model probability:

pL(e) = max
e′,e′′

p(e | e′, e′′) (37)

Here, we assume a trigram language model. In general, it is necessary to maximize
over all possible different language model histories. We can also combine the language
model and the lexicon model into one heuristic function:

RWRD+LM(Z) =

j(Z)+J(Z)−1∑
j′=j(Z)

max
e

λWRD log(p(e | fj′)) + λLM log(pL(e)) (38)

To include the phrase alignment probability in the heuristic function, we compute
the minimum sum of all jump widths that is needed to complete the translation. This
sum can be computed efficiently using the algorithm shown in Figure 8. Then, an
admissible heuristic function for the jump width is obtained by

RAL(c, j) = λAL ·D(c, j) (39)



439

Och and Ney The Alignment Template Approach to Statistical Machine Translation

Table 2
Statistics for Verbmobil task: training corpus (Train), conventional dictionary (Lex),
development corpus (Dev), test corpus (Test) (Words*: words without punctuation marks).

No Preprocessing With Preprocessing
German English German English

Train Sentences 58,073
Words 519,523 549,921 522,933 548,874
Words* 418,974 453,612 420,919 450,297
Singletons 3,453 1,698 3,570 1,763
Vocabulary 7,940 4,673 8,102 4,780

Lex Entries 12,779
Extended vocabulary 11,501 6,867 11,904 7,089

Dev Sentences 276
Words 3,159 3,438 3,172 3,445
Trigram perplexity — 28.1 — 26.3

Test Sentences 251
Words 2,628 2,871 2,640 2,862
Trigram perplexity — 30.5 — 29.9

Combining all the heuristic functions for the various models, we obtain as final heuris-
tic function for a search hypothesis n

R(n) = RAL(c(n), j(n)) +
∑

j�∈c(n)

(
RAT(j) + RWRD+LM(j)

)
(40)

6. Results

6.1 Results on the Verbmobil Task
We present results on the Verbmobil task, which is a speech translation task in the
domain of appointment scheduling, travel planning, and hotel reservation (Wahlster
2000). Table 2 shows the corpus statistics for this task. We use a training corpus,
which is used to train the alignment template model and the language models, a
development corpus, which is used to estimate the model scaling factors, and a test
corpus. On average, 3.32 reference translations for the development corpus and 5.14
reference translations for the test corpus are used.

A standard vocabulary had been defined for the various speech recognizers used
in Verbmobil. However, not all words of this vocabulary were observed in the train-
ing corpus. Therefore, the translation vocabulary was extended semiautomatically by
adding about 13,000 German–English entries from an online bilingual lexicon avail-
able on the Web. The resulting lexicon contained not only word-word entries, but
also multi-word translations, especially for the large number of German compound
words. To counteract the sparseness of the training data, a couple of straightforward
rule-based preprocessing steps were applied before any other type of processing:

• normalization of
• numbers
• time and date phrases
• spelling (e.g., don’t→ do not)

• splitting of German compound words.
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So far, in machine translation research there is no generally accepted criterion
for the evaluation of experimental results. Therefore, we use various criteria. In the
following experiments, we use:

• WER (word error rate)/mWER (multireference word error rate): The
WER is computed as the minimum number of substitution, insertion,
and deletion operations that have to be performed to convert the
generated sentence into the target sentence. In the case of the
multireference word error rate for each test sentence, not just a single
reference translation is used, as for the WER, but a whole set of reference
translations. For each translation hypothesis, the edit distance to the
most similar sentence is calculated (Nießen et al. 2000).

• PER (position-independent WER): A shortcoming of the WER is the fact
that it requires a perfect word order. An acceptable sentence can have a
word order that is different from that of the target sentence, so the WER
measure alone could be misleading. To overcome this problem, we
introduce as an additional measure the position-independent word error
rate. This measure compares the words in the two sentences, ignoring
the word order.

• BLEU (bilingual evalutation understudy) score: This score measures the
precision of unigrams, bigrams, trigrams, and 4-grams with respect to a
whole set of reference translations, with a penalty for too-short sentences
(Papineni et al. 2001). Unlike all other evaluation criteria used here,
BLEU measures accuracy, that is, the opposite of error rate. Hence, the
larger BLEU scores, the better.

In the following, we analyze the effect of various system components: alignment tem-
plate length, search pruning, and language model n-gram size. A systematic evaluation
of the alignment template system comparing it with other translation approaches (e.g.,
rule-based) has been performed in the Verbmobil project and is described in Tessiore
and von Hahn (2000). There, the alignment-template-based system achieved a sig-
nificantly larger number of “approximately correct” translations than the competing
translation systems (Ney, Och, and Vogel 2001).

6.1.1 Effect of Alignment Template Length. Table 3 shows the effect of constraining
the maximum length of the alignment templates in the source language. Typically, it
is necessary to restrict the alignment template length to keep memory requirements
low. We see that using alignment templates with only one or two words in the source
languages results in very bad translation quality. Yet using alignment templates with
lengths as small as three words yields optimal results.

6.1.2 Effect of Pruning and Heuristic Function. In the following, we analyze the effect
of beam search pruning and of the heuristic function. We use the following criteria:

• Number of search errors: A search error occurs when the search
algorithm misses the most probable translation and produces a
translation which is less probable. As we typically cannot efficiently
compute the probability of the optimal translation, we cannot efficiently
compute the number of search errors. Yet we can compute a lower
bound on the number of search errors by comparing the translation
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Table 3
Effect of alignment template length on translation quality.

AT length PER [%] mWER [%] BLEU [%]
1 29.8 39.9 44.6
2 27.0 33.0 53.6
3 26.5 30.7 56.1
4 26.9 31.4 55.7
5 26.8 31.4 55.7
6 26.5 30.9 56.0
7 26.5 30.9 56.1

Table 4
Effect of pruning parameter tp and heuristic function on search efficiency for direct-translation
model (Np = 50,000).

no heuristic function AT+WRD +LM +AL
time search time search time search time search

tp [s] errors [s] errors [s] errors [s] errors
10−2 0.0 194 0.0 174 0.0 150 0.0 91
10−4 0.2 97 0.2 57 0.3 40 0.2 13
10−6 2.0 61 2.8 21 4.1 11 1.8 3
10−8 11.9 41 15.0 7 19.9 5 9.5 1
10−10 45.6 38 50.9 6 65.2 3 32.0 1
10−12 114.6 34 119.2 5 146.2 2 75.2 0

found under specific pruning thresholds with the best translation that
we have found using very conservative pruning thresholds.

• Average translation time per sentence: Pruning is used to adjust the
trade-off between efficiency and quality. Hence, we present the average
time needed to translate one sentence of the test corpus.

• Translation quality (mWER, BLEU): Typically, a sentence can have many
different correct translations. Therefore, a search error does not
necessarily result in poorer translation quality. It is even possible that a
search error can improve translation quality. Hence, we analyze the effect
of search on translation quality, using the automatic evaluation criteria
mWER and BLEU.

Tables 4 and 5 show the effect of the pruning parameter tp with the histogram
pruning parameter Np = 50,000. Tables 6 and 7 show the effect of the pruning pa-
rameter Np with the pruning parameter tp = 10−12. In all four tables, we provide the
results for using no heuristic functions and three variants of an increasingly infor-
mative heuristic function. The first is an estimate of the alignment template and the
lexicon probability (AT+WRD), the second adds an estimate of the language model
(+LM) probability, and the third also adds the alignment probability (+AL). These
heuristic functions are described in Section 5.6.

Without a heuristic function, even more than a hundred seconds per sentence
cannot guarantee search-error-free translation. We draw the conclusion that a good
heuristic function is very important to obtaining an efficient search algorithm.
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Table 5
Effect of pruning parameter tp and heuristic function on error rate for direct-translation model
(Np = 50,000).

error rates [%]
no heuristic function AT+WRD +LM +AL

tp mWER BLEU mWER BLEU mWER BLEU mWER BLEU
10−2 48.9 46.8 44.3 49.4 40.9 51.3 33.6 53.4
10−4 39.8 50.9 35.0 53.8 32.3 55.0 30.7 55.9
10−6 37.1 51.3 31.8 55.0 30.9 55.6 30.8 56.0
10−8 35.7 53.0 31.4 55.7 31.2 55.7 30.9 56.0
10−10 36.1 52.9 31.3 55.8 31.0 55.9 30.8 56.0
10−12 35.7 52.9 31.2 55.9 31.0 55.9 30.8 56.0

Table 6
Effect of pruning parameter Np and heuristic function on search efficiency for
direct-translation model (tp = 10−12).

no heuristic function AT+WRD +LM +AL
time search time search time search time search

Np [s] errors [s] errors [s] errors [s] errors
1 0.0 237 0.0 238 0.0 238 0.0 232
10 0.0 169 0.0 154 0.0 148 0.0 98
100 0.3 101 0.3 69 0.3 60 0.2 21

1,000 2.2 65 2.3 33 2.4 27 2.0 5
10,000 18.3 40 18.3 10 21.1 5 14.3 1
50,000 114.6 34 119.2 5 146.2 2 75.2 0

Table 7
Effect of pruning parameter Np and heuristic function on error rate for direct-translation
model (tp = 10−12).

error rates [%]
no heuristic function AT+WRD +LM +AL

Np mWER BLEU mWER BLEU mWER BLEU mWER BLEU
1 64.4 29.7 61.9 31.7 59.8 32.4 49.4 38.2
10 46.6 46.9 43.0 49.2 42.0 49.1 34.6 52.3
100 41.0 49.8 36.7 52.6 34.8 53.8 31.3 55.6

1,000 37.8 51.5 33.0 54.5 32.3 55.3 30.6 56.0
10,000 35.5 53.1 31.4 55.6 30.9 55.6 30.8 56.0
50,000 35.7 52.9 31.2 55.9 31.0 55.9 30.8 56.0
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Table 8
Effect of the length of the language model history (Unigram/Bigram/Trigram: word-based;
CLM: class-based 5-gram).

Language model type PP PER [%] mWER [%] BLEU [%]
Zerogram 4781.0 38.1 45.9 29.0
Unigram 203.1 30.2 40.9 37.7
Bigram 38.3 26.9 32.9 53.0
Trigram 29.9 26.8 31.8 55.2
Trigram + CLM — 26.5 30.9 56.1

In addition, the search errors have a more severe effect on the error rates if we
do not use a heuristic function. If we compare the error rates in Table 7, which corre-
spond to about 55 search errors in Table 6, we obtain an mWER of 36.7% (53 search
errors) using no heuristic function and an mWER of 32.6% (57 search errors) using
the combined heuristic function. The reason is that without a heuristic function, often
the “easy” part of the input sentence is translated first. This yields severe reordering
errors.

6.1.3 Effect of the Length of the Language Model History. In this work, we use only
n-gram-based language models. Ideally, we would like to take into account long-range
dependencies. Yet long n-grams are seen rarely and are therefore rarely used on unseen
data. Therefore, we expect that extending the history length will at some point not
improve further translation quality.

Table 8 shows the effect of the length of the language model history on translation
quality. We see that the language model perplexity improves from 4,781 for a unigram
model to 29.9 for a trigram model. The corresponding translation quality improves
from an mWER of 45.9% to an mWER of 31.8%. The largest effect seems to come from
taking into account the bigram dependence, which achieves an mWER of 32.9%. If we
perform log-linear interpolation of a trigram model with a class-based 5-gram model,
we observe an additional small improvement in translation quality to an mWER of
30.9%.

6.2 Results on the Hansards task
The Hansards task involves the proceedings of the Canadian parliament, which are
kept by law in both French and English. About three million parallel sentences of this
bilingual data have been made available by the Linguistic Data Consortium (LDC).
Here, we use a subset of the data containing only sentences of up to 30 words. Table 9
shows the training and test corpus statistics.

The results for French to English and for English to French are shown in Table 10.
Because of memory limitations, the maximum alignment template length has been
restricted to four words. We compare here against the single-word-based search for
Model 4 described in Tillmann (2001). We see that the alignment template approach
obtains significantly better results than the single-word-based search.

6.3 Results on Chinese–English
Various statistical, example-based, and rule-based MT systems for a Chinese–English
news domain were evaluated in the NIST 2002 MT evaluation.4 Using the alignment

4 Evaluation home page: http://www.nist.gov/speech/tests/mt/mt2001/index.htm.
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Table 9
Corpus statistics for Hansards task (Words*: words without punctuation marks).

French English
Training Sentences 1,470,473

Words 24,338,195 22,163,092
Words* 22,175,069 20,063,378
Vocabulary 100,269 78,332
Singletons 40,199 31,319

Test Sentences 5,432
Words 97,646 88,773
Trigram perplexity — 179.8

Table 10
Translation results on the Hansards task.

French→English English→French
Translation approach WER [%] PER [%] WER [%] PER [%]
Alignment templates 61.5 49.2 60.9 47.9
Single-word-based: monotone search 65.5 53.0 66.6 56.3
Single-word-based: reordering search 64.9 51.4 66.0 54.4

Table 11
Corpus statistics for Chinese–English corpora—large data track (Words*: words without
punctuation marks).

No preprocessing With preprocessing
Chinese English Chinese English

Train Sentences 1,645,631
Unique sentences 1,289,890
Words 31,175,023 33,044,374 30,849,149 32,511,418
Words* 27,091,283 29,212,384 26,828,721 28,806,735
Singletons 15,324 24,933 5,336 26,344
Vocabulary 67,103 92,488 45,111 85,116

Lex Entries 80,977
Extended vocabulary 76,182 100,704 54,190 93,350

Dev Sentences 993
Words 26,361 32,267 25,852 31,607
Trigram perplexity — 237,154 — 171,922

Test Sentences 878
Words 24,540 — 24,144 —

template approach described in this article, we participated in these evaluations. The
problem domain is the translation of Chinese news text into English. Table 11 gives
an overview on the training and test data. The English vocabulary consists of full-
form words that have been converted to lowercase letters. The number of sentences
has been artificially increased by adding certain parts of the original training material
more than once to the training corpus, in order to give larger weight to those parts
of the training corpus that consist of high-quality aligned Chinese news text and are
therefore expected to be especially helpful for the translation of the test data.
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Table 12
Results of Chinese–English NIST MT evaluation, June 2002, large data track (NIST-09 score:
larger values are better).

System NIST-09 score
Alignment template approach 7.65
Competing research systems 5.03–7.34
Best of six commercial off-the-shelf systems 6.08

The Chinese language poses special problems because the boundaries of Chinese
words are not marked. Chinese text is provided as a sequence of characters, and it is
unclear which characters have to be grouped together to obtain entities that can be
interpreted as words. For statistical MT, it would be possible to ignore this fact and
treat the Chinese characters as elementary units and translate them into English. Yet
preliminary experiments showed that the existing alignment models produce better
results if the Chinese characters are segmented in a preprocessing step into single
words. We use the LDC segmentation tool.5

For the English corpus, the following preprocessing steps are applied. First, the
corpus is tokenized; it is then segmented into sentences, and all uppercase characters
are converted to lowercase. As the final evaluation criterion does not distinguish case,
it is not necessary to deal with the case information.

Then, the preprocessed Chinese and English corpora are sentence aligned in which
the lengths of the source and target sentences are significantly different. From the
resulting corpus, we automatically replace translations. In addition, only sentences
with less than 60 words in English and Chinese are used.

To improve the translation of Chinese numbers, we use a categorization of Chi-
nese number and date expressions. For the statistical learning, all number and date
expressions are replaced with one of two generic symbols, $number or $date. The num-
ber and date expressions are subjected to a rule-based translation by simple lexicon
lookup. The translation of the number and date expressions is inserted into the out-
put using the alignment information. For Chinese and English, this categorization is
implemented independently of the other language.

To evaluate MT quality on this task, NIST made available the NIST-09 evaluation
tool. This tool provides a modified BLEU score by computing a weighted precision of
n-grams modified by a length penalty for very short translations. Table 12 shows the
results of the official evaluation performed by NIST in June 2002. With a score of 7.65,
the results obtained were statistically significantly better than any other competing
approach. Differences in the NIST score larger than 0.12 are statistically significant at
the 95% level. We conclude that the developed alignment template approach is also
applicable to unrelated language pairs such as Chinese–English and that the developed
statistical models indeed seem to be largely language-independent. Table 13 shows
various example translations.

7. Conclusions

We have presented a framework for statistical MT for natural languages which is
more general than the widely used source–channel approach. It allows a baseline MT

5 The LDC segmentation tool is available at
http://morph.ldc.upenn.edu/Projects/Chinese/LDC ch.htm#cseg.
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Table 13
Example translations for Chinese–English MT.

Reference Significant Accomplishment Achieved in the Economic Construction of
the Fourteen Open Border Cities in China

Translation The opening up of the economy of China’s fourteen City made
significant achievements in construction

Reference Xinhua News Agency, Beijing, Feb. 12—Exciting accomplishment has
been achieved in 1995 in the economic construction of China’s fourteen
border cities open to foreigners.

Translation Xinhua News Agency, Beijing, February 12—China’s opening up to the
outside world of the 1995 in the fourteen border pleased
to obtain the construction of the economy.

Reference Foreign Investment in Jiangsu’s Agriculture on the Increase
Translation To increase the operation of foreign investment in Jiangsu agriculture

Reference According to the data provided today by the Ministry of Foreign Trade
and Economic Cooperation, as of November this year, China has
actually utilized 46.959 billion US dollars of foreign capital, including
40.007 billion US dollars of direct investment from foreign businessmen.

Translation The external economic and trade cooperation Department today
provided that this year, the foreign capital actually utilized by China on
November to US $46.959 billion, including of foreign company direct
investment was US $40.007 billion.

Reference According to officials from the Provincial Department of Agriculture
and Forestry of Jiangsu, the ”Three-Capital” ventures approved by
agencies within the agricultural system of Jiangsu Province since 1994
have numbered more than 500 and have utilized over 700 million US
dollars worth of foreign capital, respectively three times and seven
times more than in 1993.

Translation Jiangsu Province for the Secretaries said that, from the 1994 years,
Jiangsu Province system the approval of the “three-funded”
enterprises, there are more than 500, foreign investment utilization
rate of more than US $700 million, 1993 years before three and seven.

Reference The actual amount of foreign capital has also increased more than 30%
as compared with the same period last year.

Translation The actual amount of foreign investment has increased by more
than 30% compared with the same period last year.

Reference Import and Export in Pudong New District Exceeding 9 billion US
dollars This Year

Translation Foreign trade imports and exports of this year to the Pudong
new Region exceeds US $9 billion

system to be extended easily by adding new feature functions. We have described
the alignment template approach for statistical machine translation, which uses two
different alignment levels: a phrase-level alignment between phrases and a word-
level alignment between single words. As a result the context of words has a greater
influence, and the changes in word order from source to target language can be learned
explicitly. An advantage of this method is that machine translation is learned fully
automatically through the use of a bilingual training corpus. We have shown that the
presented approach is capable of achieving better translation results on various tasks
compared to other statistical, example-based, or rule-based translation systems. This
is especially interesting, as our system is structured simpler than many competing
systems.
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We expect that better translation can be achieved by using models that go beyond
the flat phrase segmentation that we perform in our model. A promising avenue is to
gradually extend the model to take into account to some extent the recursive structure
of natural languages using ideas from Wu and Wong (1998) or Alshawi, Bangalore, and
Douglas (2000). We expect other improvements as well from learning nonconsecutive
phrases in source or target language and from better generalization methods for the
learned-phrase pairs.
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