
Context-Free Grammar Rewriting and the Transfer of Packed Linguistic
Representations

Marc Dymetman
Xerox Research Centre Europe

6, chemin de Maupertuis
38240 Meylan, France

dymetman @ xrce.xerox.com

Fr~dfiric Tendeau
Lernout & Hauspie

Koning Albert-I laan 64
B- 1780 Wemmel, Belgium
Frederic.Tendeau @ lhs.be

Abstract
We propose an algorithm for the trausfer of packed linguistic
structures, that is, finite collections of labelled graphs which
share certain subparts. A labelled graph is seen as a word over
a vocabulary of description elements (nodes, arcs, labels), and
a collection of graphs as a set of such words, that is, as a hm-
guage over description elements. A packed representation for
the collection of graphs is then viewed as a context-free gram-
mar which generates such a language. We present an algorithm
that uses a conventional set of transfer rules but is capable of
rewriting the CFG representing the source packed structure into
a CFG representing the target packed structure that preserves
the compaction properties of the source CFG.

1 Introduction
There is currently much interest in translation models
that support some amount of ambiguity preservation be-
tween source and target texts, so as to minimize disam-
biguation decisions that the system, or an interactive user,
has to make during the translation process (Kay et al.,
1994)..

An important aspect ol' such models is the ability to
handle, during all the stages of the translation process,
packed linguistic structures, that is, structures which fac-
torize in a compact fashion all the different readings of
a sentence and obviate the need to list and treat all these
readings in isolation of each other (as is standard in more
traditional models for machine translation).

In the case of parsing, and more specifically, parsing
with unification-based formalisms such as LFG, tech-
niques for producing packed structures have been in
existence for some time (Maxwell and Kaplan, 1991;
Maxwell and Kaplan, 1993; Maxwell and Kaplan, 1996;
D6rre, 1997; Dymetman, 1997). More recently, tech-
niques have been appearing for the generation from
packed structures (Shemtov, 1997), the transfer between
packed structures (Emele and Dorna, 1998; Rayner and
Bouillon, 1995), and the integration of such mechanisms
into the whole translation process (Kay, 1999; Frank,
1999).

This paper focuses on the problem of transfer. The
method proposed is related to those of (Emele and Dorna,
1998) and (Kay, 1999). As in these approaches, we view
packed representations as being descriptions of a finite
collection of directed labelled graphs (similar to the func-
tional structures of LFG), each representing a different
non-ambiguous reading, which share certain subparts.

The representations of (Emele and Dorna, 1998) and
(Kay, 1999) arc based on a notion of propositional con-
texts (see (Maxwell and Kaplan, 1991)), where each
possible non-ambiguous reading included ill the packed
source representation is extracted by selecting the value
(true or false) of a certain number of propositional vari-
ables that index elements of the labelled source graph.
Transfer is then seen as a process of rewriting source
graph elements (e.g, nodes labelled with French lexemes)
into target graph elements (e.g. nodes labelled with En-
glish lexemes), while preserving the propositional con-
texts in which these graph elements were selected.

In contrast, our approach, following (Dymetman,
1997), views a packed representation as being a gram-
mar (more specifically, a context-flee grammar) over the
vocabulary of graph elements (labelled nodes and edges),
where each word (in the sense of formal language theory)
generated by the grammar represents one of the possible
non-ambiguous readings of the packed representation. In
other terms, the collection of non-ambiguous graphs be-
longing to the packed representation is seen as a km-
guage over a vocabulary of graph elements, and a packed
representation is seen as a grammar which generates such
a language. Packing comes fi'om the fact that a context-
free grammar is an cMcicnt representation lbr the lan-
guage it generates. Another essential feature of such a
representation is that it is interaction-free, that is, each
nondeterministic top-down traversal of the grammar suc-
ceeds without ever backtracking and it results in a certain
reading, without the need for checking the consistency of
a set of associated propositional constraints: the repre-
sentation for the collection of readings is as direct as can
be while permitting a filctorization of common parts.

Based on this notion, we present an algorithm for
transfer which, starting fi'om a finite set of rewriting
patterns (the transfer lexicon), associates with a given
context-fi'ee grammar representing the source packed
structure a context-free grammar representing the tat'-
get packed structure. Therefore, the target representa-
tion remains interaction-fi'ee and transparently encodes
the target structures; furthermore, under certain natural
"locality" conditions on the rewriting rules (the graph el-
ements in their left-hand sides tend be be "close" from
each other in the source grammar derivations), the target
grmnmar preserves much of the factorization and com-
paction properties of the sotu'ce grammar.

The paper is structtu'ed in the following way. Sec-

1016

tion 2 explains how mnbiguous graphs can be seen as
commutative hmguagcs over graph description elements,
and how context-free grammars provide concise specili-
cations for these languages. Section 3 extends the stan-
dard notion of non-ambiguous transfer to that of am-
biguous transfer. Section 4 presents the basic hmguagc-
theoretic formalism needed and introduces some opera-
|ors on languages. Section 5 presents Ihe detailed rewrit-
ing algorithm, which applies these operators not directly
to hmguages, but to the context-free grammars specify-
ing them. Section 6 gives an example of the algorithm in
operation.

2 Ambiguous structures as languages

O: s e e / s a w z - . _ _

argl~- --'~ ~ a t ' g 2 - - - - - . *nod " " mod
1: i 2: l i gh t z_ ~-Z - -\\- -. \

{ J l f n l () (] - - ~ ~ , - - -- I I l O d \

7: g r e e n I / g r e e n 2 err'g2 ~ ~l
J

4: h i l l - m(~d x t

5 : w i l h

ar£,2 [

(~: l e l e s c o p e

Figure 1 : An informal graphical representation of the 20
possible analyses for "I saw the green light on the hill
with a telescope".

Let's consider the sentence "I saw the green light on
the hill with a telescope". In Fig. I, we have repre-
sented inlbnnally the set of possible analyses for this
sentence. Labels on the nodes correspond to predicate
names ('on ' , 'hill ', etc). A slash is used to indicate dif-
ferent possible readings for a node; for instance, we as-
sume that the surface form "saw" can correspond to the
verbs "to see" or "to saw", and that "green" is ambigu-
ous between the color adjective "green l" and the noun
"green2" (grassy lawn). Relations between nodes are in-
dicated by labels on the edges joining two nodes: ' a rg l '
and 'arg2' for tirst and second argument, 'rood' for mod-
ilier. The solid edges correspond to relations which are
satistied in all the readings for |be sentence, dotted edges
to relations that are satistied only for certain readings.
Thus, the preprositional phrase "on the hill" can modify
either "light" or "see/saw", the phrase "with a telescope"
either "hill", "light", or "see/saw'. The informal picture
of Fig. 1 does not make explicit exactly which structures
are actually possible analyses of the sentence. For in-
stance the two crossing edges modo3 and rood25 (where
indices are used to denote the origin and destination of
the edge) cannot appear together in a reading of the given
sentence. As a consequence only five of the apparent
2 x 3 prepositional attachments combinations are possi-
ble, which multiplied by the four possible lexical variants
for "saw" and "green" gives 20 possible readings for tim
s e n t e n c e .

Each of these readings is a graph where nodes 0 and
7 now carry one label, and where one 'rood' edge has
been selected for the attachment of nodes 3 and 5. One

way to describe such a graph is by listing a collection of
"description elenmnts" for it, where each such dement
is either a labelled node such as scco or a labelled edge
such as rood27. Using this format, the pragmatically pre-
ferred analysis for our sentence is the set {SCCo, mglol ,
il, arg202, light2, mod27, gwenlT, mod.23, on3, arg234,
hill4, modo5, with~,, zug2.~a, tclescope~ }.

If we consider the collection of all possible analyses,
we then obtain a collection of sets of description ele-
ments. It is convenient to view such a collection as a
commutative language over the vocabulary of all possi-
ble description elements; each word in such a hmguage
corresponds to one analysis and is a list of description
elements the order of which is considered irrelevant.

The main advantage of taking this view of ambiguous
structures is that fomml language theory provides stan-
dard tools for representing languages compactly. Thus
it is well-known in computational lexicography tlmt a
large list of word strings can be represented efliciently by
means of a tinite-stale atltoma|on which factorizes com-
mon subs|rings. Such a representation is both compact
and "explicit": accessing and using it is as direct as the
flat list of words would be.

Although one might think o1' using tinite-statc mod-
els for representing compaclly the language associated
with a collection of graphs, they do not seem as relevant
as context-free models for our purposes. The reason is
that the source packed representations are typically ob-
tained as the results of chart-parsing processes. A chart
used in the parsing of a context-fi'ee grammar can itself
be viewed as a context-free grammar, which is a spe-
cialization of the original granllllar l'or the string being
parsed, and which directly generates tim deriwltion trees
for this string relative to the ot t ,q,," "'o'.aL grammar (Billot and
Lang, 1989). 1 The generalization of this approach to uni-
tication grammars (ot' the LFG or DCG type) proposed
in (Dymemmn, 1997) shows that, in tt, rn, chart-parsing
with these unilication grammars conducts naturally to
packed representations for the parse results very close to
the ones we are about to introduce.

Let's consider the CFG Go:

S ~ SAW ()r~ Wnlt D3
Saw -9 I)0 a.'gl01 i, arg2o:~ Lt<irr
Lit;in' --4" O~H~n Inod27 light2
Gi~lit~N --+ grcelll7 [green27
O~ -9 on3 arg23a hill4
W.ll -9 with5 a/g256 telcscope~i
1)0 -9 seco] sawo
I)3 -9 modo3 D30 [mod.2a I)32
D30 -4 modo5] mod4~
D32 -9 modo5] mod.2~] mod4~

Nontenninals of that grammar arc written in upper-
case, terminals (which are graph description elements) in
lowercase. It can be verified that the language generated
by this grammar is the collection of commutative words

IThis context-free grammar has polynomial size relative to the
length of the string. While it is also possible in principle to use a linite-
stale model for representing lhe sallle sel of derivation trees, it can be
showll Ihal such at model may be exponential relative to string length
(remark due to John Maxwell).

1017

corresponding precisely to all the possible analyses for
the sentence.

The fact that there are 20 such words can be es-
tablished by a simple bottom-up computation involving
multiplications and sums. I1' we call ambiguity degree
ad(N) of a nonterminal N tim ntunber of words it gen-
erates, then it is obvious that, for instance, ad(D30) = 2,
ad(D3) = 2+3 , ad(S) = 4.1.1-5 = 20. In fact, it is the mul-
tiplications which appear in such computations which are
responsible for the compactness of the grammar as com-
pared to the direct listing of the words: each time a mul-
tiplication appears, a factorization is being cashed in. 2

3 Transfer as language rewriting
When working with non-ambiguous structures, transfer
is a rewriting process which takes as input a source-
language graph and constructs a target-language graph
by applying transfer rules of the form lhs --4 rhs, where
lhs and rhs are finite sets of description elements for
source graph and target graph respectively. In outline, the
"non-ambiguous" transfer process works in the Mlowing
way: for each non-overlapping covering of the source
graph with left-hand sides of transfer rules, the corre-
sponding right-hand sides are produced and taken to-
gether represent a target graph (this is a non-deterministic
ftmction as there can be several such coverings).

In the case of ambigt, ous structures, the aim of transfer
is to take as input a language of source graphs and to pro-
duce a language of target graphs. The language of target
graphs should be equal to the union of all the graphs that
would have obtained if one had enumerated one-by-one
the source graphs, applied non-ambiguous transfer, and
taken the collection of all target graphs obtained. The
goal of ambiguous transfer is to perform the same task
on the basis o1' a compact representation for the collec-
tion of source graphs, yielding a compact representation
for the collection of target graphs.

For illustratkm purposes, we will consider the follow-
ing collection of transfer rules:

seeo --+ voitb, sawo -+ sciero,
gl"eenl7 --+ Vel17, g r e e n 2 7 - + g a z o n T ,

light2, rood27, greenl7 --+ lcu2, rood'27, vcrlT,
light2 --+ lumi&e2, etc.

We have only listed a few rules, and have assumed that
the remaining ones are straighlorward one-to-one corre-
spondences (11 --+ jet, medea -+ mod'o3 [we prime la-
bels such as mod, argl in order to have disjointness of
source and target vocabulary], etc.))

2As the example shows, conlexl-flee representations of ambigu-
ous slructures have the important properly (related to their inte,'aclion-
freeness as described in the i,~troduction) of being easily "countable".
This is to be contrasted with other possible representations for ambigu-
ous structures, such as ones based on propositional axioms determining
which desc,'iption elemenls can be jointly p,esent in a given analysis.
In these representations, the problem of determining whether there ex-
ists one structure satisfying the specification can be of high complexity,
let alone the problem of counting such structures.

3 In practice, real transfer rules are not specialized lbr specific nodes,
but are panerns containing variables instead of imlnbers; in order to oh-

4 Formal aspects
The cotnmutative monoid over an alphabet A is denoted
by C(~*) , and its words are represented by vectors of
N A, indexed by ..4 and with entries ill N. For each w E
N A, the c(mlponent indexed by a C ..4 is denoted by
w[,] and tells how many a 's occur in w. The product
(concatenation) o fwl and 'w2 in C(.A*) is the vector w E
N A s.t. Vet C A: w[,] = wl [,] + "w2[, 1. A language of
the commutative monoid is a subset of C(A*).

The subword relation is denoted by --<. For a language
L, we write: v--<L iff there exists w E L s.t. v-<w.

The rewriting is performed from a sourcc language £ s
over an alphabet Es to a target language/27, over an al-

Es) w.r.t, a phabet ET (disjoint fi'om set of rewriting
rules 7~ C P,s + x P'T* (rules have the form A-+p). We
assume in the sequel that any a G ES appears at most
once in any left-hand side of each rule of "R. and also at
most once in any word of £ s . This property is preserved
by all the rewritings that we are going to int,'oduce.

Let's deline L I t S (A - + p) = A. For R C ~., we define
L.,~&,(R) = {a E P's' [3r e 17, s.t. et-e, LHS(, ') }.

Tim rewriting is a l'unction qSre. taking £,9 and yielding
L;T, delined as:

, / ,~ (£s) = { m p , , I ~ , , ~ £s.,~,, = ,x~. . .%, /~
k l - -~ 'p l G "J~ A ... A Ap'-q, flp G "R.}.

5 Algorithm
In order to implement the function ()n, it is useful to
introduce rewriting functions q~--+t, and q~?r. They apply
to any language L over C(E*) , where E = Es, tO ET.
They are detined as:

~x-+, , (r) = {m" I aw C L}
O~(L) = {w c L I ~v[. 1 = 0}.

The ~x-~p functions are applied so that source sym-
bols are guaranteed to be removed one by one from £.s':
we consider E.s' is totally ordered by < and we write
E.5' = [(/,1, a2, ..., aN], with ai < eti+l ; then consider the
partition of 7~.: 7Zl, J~2 T~N s.t.R.1 contains all ~.
rules with al in LHS, "R.2 contains all 7¢ rules with a9 but
not al in LHS, etc, "R.N contains all 7Z rules with only aN
in LHS. Then we deline a third rewriting function q')7¢~ :

~l,,e, (L) = qSv(L) U U,.eT~, 4,.(c).
Lemma. £7' can be obtained l;'om £s by applying the

T~i iteratively in the fol lowing manner:

~b~/~N ((/)'~N--I (' " "{J)']~l (CS) °" ")) = j~']'"
PROOF SKETCII. For 1 _< j < N, we deline

£'J = { p l ' ' ' p p x] ~*tJ E J~.S,z E ES*,p > O,w =
A t ' " .Apa ; ,Vk < p Ak-4 Ph. G Oi<_jT~i,Vi ~ j etiT~Z}.

It is cleat" that £ N = £T- Furthermore, we have L;1 =
(/)']~1 (£ S) , and it is easy to show that, for 2 _.5_ n < N,
£n = ()'1¢,~(/3,z-~). From this we have immediately
CN = ~,~, (~,~_, (.. "~'~1 (Cs) - . .)) = Or .

In order to obtain £ r , we will start from £.s' and ac-
tually apply the ~bTa~'s not on languages directly but on

rain g,'otmd, rules, as the ones we are considering, a simple preproces,s ing,
step is necessary.

1018

tim grmnnmrs that deline them. Tiffs computation is per-
formed by the algorithm that we now present.

Let/2~, be detined by the CFG Go = ()2, Ale, 7)o, So).
For A G iV'o, the set o1' all rules having A as I.HS is no-
tated A--> ~A-~a.<;% (t- This additive notation is a for-
111111 represenlion of A - ~ c q I ct2] ... ltcnce A-+0 means
that no rule delines A.

First ()7,'.1 is @plied on Go, which builds G1 =
(~l, Af:I, 791, ,91), Ihen ¢-~= is applied on G1 to produce
G:, and so forth. Each time, new non-terminals are in-
troduced: of the form (A)-~,, (A),x-4o or (A)~r, where
A ~ N ' i -~ , A G Ns +, p E NT*, and a G S,s. Each one
is defined by a formal sum as we saw above.

The order of symbols in the RHSs of grammar rules
is irrelevant since we consider commutative languages.
Hence the RHSs ot' grammar rt,les can be denoted by :c/3
s.t. x ~ C(~*) and/':/ E C(N'*), where iV" is the set o1'
all non-terminals considered.

The algorithm consists of the procedure and functions
described below and uses an agenda which contains Dew
i~on-terminals to be defined in Gi. The agenda is handled
with a table: each hen-terminal is treated once.

procedure main is
f o r i G { 1 , . . . , N } do

Initialize 79i with 79i_~ ;
if "R,i # 0 then

Initialize Agenda with (S i_ 1)7,LI ;
repeat

remove NonTerm l'ron~ Agenda;
case NonTerm is

when (A)7,,,~ : add to 79i

when (A)x4t , : add to "l~i
(A) x - ~ . ~ ~..~->,.:7,, , ,l~x-+~,(,~);

when (A), : add to "Pi

end case;
until Agenda is empty
Reduce Gi whose axiom is Si = (S i -~)n~ ;
/:t:I'ClllOVC non-terminals that are non-praductive

(£ (A) = ~) or inaccessihle fi'om Si. */
end for;
end procedure;

flmction R'7,', (x{4) is// fl = A t . . . A k
if ~j ~ {1, ..., k} s.t. Va E L,.,,&,('R.i), a-<£(Aj)
/ / i f all rewritings in "R.i can only q/.'/bct A.4
then add (Aj)vv.i to Agenda;

retnrn xAI" • "Aj-1 (Aj)vz~Aj+I • • .A~;
el,;e re turn , ~ (a ' f l) + y~,,.~x., ~,,. (a'/~);
end function;

(1)
(2)

f lmct ion 'I,~(xfl) is//fl = At-.-A~.
i f~j < {J,..., a:} s.t. a-<Z;(&)
t h e n / * j is unique, see below*/add (Aj)~ t() Agenda;

return :rA~-. "Aj-1 (Aj)~rAj+1-. .A~.; (3)
el,;e if a-qx then return O;

else return xfl;
end fimction;

flmction ff'X-+p(a;fl) i~ / fl = A1. . .Ak
/ /A is seamhed within a:AI. • .-4k
if ~j < {1, ..., k} s.t. Va-<k, a-<12(Aj) ~~if A falls
//entirely within £ (Aj) then the rewriting applies only to A.i
then add (Aj)>,--,,p to Agenda;

re turn x A ~ . . "Aj-1 (Aj) , , ,~oAj+I • - -Ak; (4)
else//A is searched wilhin several symboLv

Consider A = y,wa w.2.. "Wk s.t.
- the longest common subword ot' x and ~ is y,
-- V(t-d, Wj , (t...~£(A j) / / wj is Aj contribution to A
if such decomposition ofA exists//that is, it is

//entirely covered by x and some Aj 's
then /* it is mffque: see below */add to Agenda

all (Aj)wj---}~ S.I. Wj ~ e; l/all those that contribute
,-et,,,-,,.,./:j (FI,,,~#~ (Aj),~,-~) (Fiw,=, A;)/,;(5)

//77te rewriting is actually cqqdied: y is deleted.fiom a:;
//each contributing (i.e. non e) wj is to be deleted
//(i.e. rewritten to e it, Aj); non-contributing A j ' s

//Jvntain tmtoudted; attd p is inserted.
else//A cannot be pJvdtu'ed by xfl

re turn O; ~~No Jvwriting is ~qqdicable
end fnnctlon;

Unicity o f j in ffhr, and unicity of the sequence in ff,),+p:
consider A - ~ a : X Y 7 C 79i-1 ; as each source symbol oc-
curs at most once in every word of £ (S i - 1) , the same
holds for/_2(A) hence the sets of source symbols occur-
ring in £(X) an0 £ (Y) are disioint.

6 E x a m p l e

Consider ~2,s, = [i~, green It, grccn27, seed [so that "R.
is partitioned in ~.1 = {ij ~ j e l }, "R.2 = {green 17-+ VCl't7,
grccnlr mod.27 light2-~lbu2 rood27 verl7}, etc. Each
other "R.i contains a single rule.

The lirst iteration of the algorithm computes the gram-
mar Gt = ff"R., (Go). The resuh is:

(So)?,h -+(S,xw)?q ()N Win, 1)3,
(SAW)'p~, --+DO atglol ar, g2o2 L~,,r,.icl,
gKillrl" ---)" Orl!,~N mod27]ight2,
GRliI:N -+ gmen17 I gmcn2r,
On --~ ona mg2a4 hill4,
Wr,~ -+ with~, ar.g256 tclescopca, etc.

We see that the only nonterminals which have been rede-
fined are ,5' = ,5'o and Saw. The computation of (,5'o)~
has been done through step (I) in the algorithm. This is
because the terminals in lefbhand skies of 77q, nmnely
the single terminal i~, are all "concentrated" on the sin-
gle nonterminal Saw on the right-hand side of St}. This
leads in turn to a requirement for a definition of (Saw)hi,
which is fulfilled by step (5) in the algorithm, at which
time the rewriting of il intojel is performed.

For any group of rules "R.i, as long as all terminals in
the left-hand sides of rules ol"R.i a,'e thus concentrated on
at most one nonterminal in a right-hand side, no expan-
sion of rules is necessary. It is only when the terminals
start to be distributed on several RHS terminals or non-
terminals that an expansion is required.

This situatien is illustrated by the second iteration
which maps G1 into (7, 2 = ,I,~,,. e ((71). The result is:

1019

((S0)7~1)7¢2 --+((Saw)rq)7¢2 ON W,,'. D3,
((SAw)~q)g2 -+DO argl01 rag202 (L,¢;,r)r¢2 jOh
(L,t;,'r)~ 2 -+(GR,~,{N)~ mod.2r light.>,

I (G'w.'~N)g,'ee,,tv-+,,e,',7 mod.2r light2,
[(GR,~,~.Je,.ee,,tr-+, feu2 mo~gr vertr,

(GRI~,!N)~ -+ green27 ON -+ o113 atg2a4 hill4,

(Gl~l~N)gmenl7"-+ vertr -+ vertr W,,H -+ with~ arg256 telescope6,
(GlmI{N)greenl7-+ e -+ e, etc.

This time, the terminals in left-hand sides of T~2 are
grcen l7, nlod27 and light> We first need to compute
((S0)~)Tz=. Again, our three terminals are all con-
centrated on (SAw)Tz~. We thus only have to definc
((Saw)Tq)g2. Once again, the three terminals are con-
centrated on L,~;,r,', and we have to define (L~.,)r¢~.

At this point, something interesting happens. It is not
the case any more that one nonterminal on the right-
hand side of the rule defining L~H.r concentrates all
our terminals. In fact, G~H~ only "touches" grcen lT,
but not the other two terminals. The algorithm then
has recourse to step (2), which leads it to dctine three
rules for (L~¢;.,)r¢=, involving recursive calls to ~I'gr~o,,~ ~ ,

teenlT--f~ett7, ~} feet ~ , , The fi~st g. , . g ~lTmod271"gl t'2--+ feu2 mod27 vertT " ".
of these calls involves step (3), the second, step (4), and
the third, step (5), leading to the three exlmnsions shown
for (L,¢~.'r)Tz~, and eventually to the definitions for the
three variants of the nonterminal GEN.

The remaining iterations of the rewriting procedures
arc of the same type as the first iteration. They lead fi-
nally to a target grammar of the form:

S'-+SAw' ON' Win(D3' SAw'-+D0' atgl{i 1 al~2to2 L,{m'/jel
gIdlrr t -+aR,~*~d II10C~.27]tlllli~.rc2

I GRH{N" I170~27 lumi&'e.2
I f~lJ2 n]0C~27 vert7

Om:N' --+ gazon7 Wrm' ~ aVCC5 argO56 hmette6
Gm.:I:N" --+ Vel't7 ON' --+ SUI'3 ~11"~'r'~34 colline4
D30' -+ mo4.5 I mo4.5 D3' -+ ,no4a D30'] mO4a D32'
DO' -+ voiro I sciero D32' --+ mo~g~ I mo4~ I meal45

which is only slightly less compact than the source gram-
mar. It can be checked that this grammar enumerates 30
target graphs, the difference of 10 with the source gram-
mar being due to the addition of the French variant "feu
vert" along with "lumi~re vcrte" for translating "green
light".

7 Conclusion

We have presented a model and an algorithm for the
transfer of packed linguistic representations based on
the view that: (1) packed representations are best seen
as context-free grammars over graph description ele-
ments, an approach which permits factorization of com-
mon parts while maintaining a transparent, easily com-
putable, relationship to the set of structures represented
(interaction-freeness, countability) 4, and (2) transfer is
a rewriting process that takes as input such a context-
free representation and that outputs a target context-free

4properties that we believe are essential to all such representations,
whether they are made explicit or not.

representation which maintains these beneficial proper-
tics. Although proofs have not been provided here, the
algorithm can be shown to satisfy our initial formal def-
inition of transfer as nondcterministic, exhaustive, non-
overlapping replacement of description elements in the
source structure by their counterparts as specilied in the
rewriting rules. Tim method described in this paper bears
some obvious analogy to the classical problem of map-
ping a context-free language into another context-fi'ee
language by way of a finite-state transducer (Harrison,
1978). It would be an interesting research question to
make this analogy formal, the main difference here be-
ing the need to work with a commutative concatenation,
as opposed to the standard non-commutative concatena-
tion which is more directly connected with the automaton
view of transductions.

Acknowledgments
Thanks to our colleagues Eric de la Clergerie, Max Copper-
man, Andreas Eisele, Martin Emele, Anette Frank, Pierre Is-
abelle, Ron Kaplan, Martin Kay, Berna~zl Lang, John Maxwell
and Hadar Shemtov for extended discussions and comments at
various stages in the preparation of this paper.

References
S. Billet and B. Lang. 1989. The structure of shared forests in

ambiguous parsing. In 27 th Meeting of the Association for
Computational Lhlguistics.

J. I)6rre. 1997. Efficient construction ofunderspecified seman-
tics under massive ambiguity. In Prec. ACL, Madrid.

M. Dymetman. 1997. Interaction-free grammars, chart-
parsing, and the compact representation of ambiguity. In
Prec. I.ICAI, Nagoya.

Martin Emele and Michael l)orna. 1998. Ambiguity p,'eserv-
ing machine translation using tracked representations. In
Proceedings of Coling-ACL '98, pages 365-371, Montreal,
August.

Anette Frank. 1999. From parallel grammar development to-
wards machine translation. In Proceedings of MT Summit
VII. MT hl the Great 7)'anslation Et:a, pages 134-142, Kent
Ridge Digital Labs, Singapore, September.

Michael A. ltarrison. 1978. hm-oduction to Formal Lcmguage
Theoty. Addison-Wesley, Reading, MA.

M. Kay, J.M. Gawron, and R Norvig. 1994. Verbmobih a
translation system for face to fitce dialog. CSLI.

Martin Kay. 1999. Chart translation. In Proceedings of MT
Summit VII. MT in the Great 7)'anslation Era, pages 9-14,
Kent Ridge Digital Labs, Singapore, September

John Maxwell and Ronald Kaplan. 1991. A method for dis-
junctive constraint satisfaction. In Masaru Tomita, editor,
Current Issues in PatMng Technology. Kluwer, Dordrecht.

John T. Maxwell and Ronald M. Kaplan. 1993. Tbe interface
between phrasal and functional constraints. Computational
Linguistics, 19(4):571-590, l)ecember.

John T. Maxwell and Ronald M. Kaplan.
1996. An efficient parser for LFG. In IO'twt
LFG Colference, Grenoble, France, August.
http : / / w w w - c s l i . stanford, edu/user/mutt/.

M. Rayner and P. Bouillon. 1995. Hybrid Transfer in an
English-French Spoken Language Translator In Proceed-
ings of lA '95, Montpellim, France, Jtme.

H. Shemtov. 1997. Ambiguity Management hz Natural Lan-
guage Generation. Ph.D. thesis, Stanford.

1020

