
An Integrated Architecture for Example-Based Machine Translation

Alexander Franz, Keiko Horiguchi, Lei Duan,
Doris Ecker, Eugene Koontz, and Kazami Uchida

Spoken Language Technology, Sony US Research Labs
3300 Zanker P, oad

San Jose, CA 95134, USA
{ amf, kei ko, l ei, do ri s,eko ontz, kuchid a } @ sit. sel. so ny.com

Abstract

This paper describes a machine translation
architecture that integrates the use el'
examples for flexible, idiomatic translations
with the use o1' linguistic rules for broad
coverage and grammatical acctu'acy. We
have implemented a prototype for
English-to-Japanese translation, and our
ewfluation shows lhat tile system has good
translation quality, and only requires
reasonable computational resources.

1 Introduction

Machine translation by analogy lo pairs of
corresponding expressions in the source and
target languages, or "example-based transhtlion",
was firs! proposed by (Nagao 1984). Recent
work in the example-based I'ramework inchldes
memory-based translation (Sate & Nagao 1990),
similarity-driven translation (Watanabe 1992),
transl'cr-driven nlachine translation (Furusc &
Iida 1996), and patten>based machine
translation (Watanabe & Takeda 1998).

The example-based approach promises easy
translation knowledge acquisition, more flexible
transfer than brittle rule-based approaches, and
idiomatic translations. At the same time, the use
o1' linguistic rules offers a number of important
benel'its. Detailed linguistic analysis can allow
an example-based machine translation system to
handle a wide variety of input, since rules can be
used to factor out all linguistic wMations that do
not influence tile exampled)ased transfer.
Rule-based language generation from detailed
linguistic representations can lead to higher
grammatical output quality. Finally, a modular
system architecture that uses
domain-independent linguistic regularities in

separate linguistic modules allows extending the
system to much broader domains. The
HARMONY architecture for lkybrid Analogical
aud rule-based njachine translation of naturally_
occurring colloquial hmguagc combines the
adwmtages of both these approaches.

2 The Travel Domain

Our prototype implementation o1' the HARMONY
architecture was designed to cover the "travel
domain". This is composed of words, phrases,
expressions, and sentences related to

international travel, similar to what is covered
by typical travel phrase books.

Two principles guided our detailed definition of
the translation domain. FirsL the translation
domain should not be limited to a narrow
sub-domain, such as appointment scheduling or
hotel rcscrwttions. Second, the expressions
considered in the domain should reflect the fact
that people quickly adapt to limitations in
human-machiue or machine-mediated
communication by simplifying the input. For
example, (Sugaya et al. 1999) found that the
average length el' actual human utterances in a
hotel resmwation task using speech translation
was only 6.1 words, much shorter than some o1'
the data that has been used in previous work on
speech translation.

'File current vocabulary o1' 7,500 woMs is
divided into a group o1' general words, a number
of extensiblc word groups (such as names el'
food items or diseases), and a number of
area-specific woM groups (such as names of
cities or tourist destinations).The travel domain
is divided into eight "situations": A general
situation (including everyday conversation);
transportation; accommodation; sightseeing;

1031

shopping; wining, dining, and nightlife; banking
and postal; and doctor and pharmacy.

We created a corpus for this dolnain, and
divided it into a development set o1' 7,000
expressions, and a separate, unseen test set of
5,000 expressions. The development set is
used for creation and refinelnent of the
translation knowledge sources, and the test set is
only used for evaluations. (Each evaluation
uses a new, random 500-word sample from the
5,000 word test set.)

The corpus was balanced to illustrate the widest
possible variety of types o1' words, phrases,
syntactic structures, semantic patterns, and
pragmatic functions. The average length el' the
expressions in the corpus is 6.5 words. Some
examples from the development corpus are
shown below. Even though this dolnain might
seem rather limited, it still contains inany
challenges for machine translation.

• Can I have your last name, please ?

• Is this the bus f o r Shinagawa station ?

• 1 would like to make a reservation for two
people for eight nights.

• Can you tell us where we can see some
Buddhist temples ?

• Most supermarkets sell liquor.

• Can you recommend a good Chinese
restaurant in this area ?

• I 'd like to change 500 Dollars' in traveller's
checks into Yen.

• Are there any English..speaking doctolw at
the hospital?

3 NLP Infrastructure

The prototype implementation is coustructed out
of components that are based on a powerful
infrastructure for natural language processing
and language engineering. The three inain
aspects of this infrastructure are the Grammar
Programming Language (GPL), the GPL
compiler, and the GPL runtime environment.

3.1 The Grammar Programming Language

The Gralnmar Programming Language (GPL) is
an imperative programming language for

feature-structure-based rewrite grammars. GPL
is a l'ormalism that allows the direct expression
of linguistic algorithms l'or parsing, transfer, and
generation. Some ideas in GPL can be traced
back to Tolnita's pseudo-unification fornmlisln
(Tomita 1988), and to Lexical-Functional
Grammar (Dalrymple et al. 1995). GPL
includes variables, simple and complex tests,
and various manipulation operators. GPL also
includes control flow statements including
if-then-else, switch, iteration over
sub-feature-structures, and other features. An
example of a silnplified GPL rule for English
generation is shown in Figure 1.

Wll SENT --) NP YN_SENT {
!exist[Sin VP SUBJ WH];
local-variable WIt_VP = [$m VP];
local-wlriable WH PHP, ASE;

$WH PHRASE = find-subfstruct in $ W H V P
where (?exist[$x WH]);

$d I = [$WH_PHRASE SLOT-VALUE];
[$WH PHRASE SLOT-VALUE TRACE] = '+';
$d2 = $m;

/

Figure I Example of a GPLGeneration P, ule

3.2 The GPL Compiler

GPL grammars are compiled into C code by the
GPL compiler. The GPL compiler was created
using the Unix tools lex and yacc (Levine et al.
1990). For each rewrite rule, the GPL compiler
creates a main action function, which carries out
most of the tests and manipulatious specified by
the GPL statements.

The GPL compiler handles disiunctive feature
structures in an efficient manner by keeping
track of sub-feature-structure references within
each GPL rule, and by generating an expansion
function that is called once before the action
function. The coinpiler also tracks variable
references, and generates and tracks separate test
functions for nested test expressions.

3.3 The GPL Run-time Environment

The result of compiling a GPL grainmar is an
encapsulated object that can be accessed via a
public interface function. This interface fnnction
serves as the link between the compiled GPL
grammars, and the various
language-independent and domain-independent
software engines for parsing, transfer, generation,
and others. This is illustrated in Figure 2.

1032

GI)I+ Grammar J Feature Slructure]
l)cfinitions

.,...----

GI)L Compiler]
1

hllcrface Function

Aclion leunctions
l£xpansion Funclions
Test Ftmctions

Compiled GI)L Grammar

Software Engine
(parsers, Iransfers,

gellcrators, ...)

I"7
Feature Structtlre Library

P, el)resentaiion
Testing code
Manipulalion code
Memory Management

) Figure 2 GI L Run-time Environmenl

The compiled GPI. grammars use the feature
structure library, which provides services for
efficiently representing, testing, manipulating,
and managing memory for feature structures. A
special-purpose inemory manager maintains
separate stacks of memory pages for each object
size. This scheme allows garbage colleclion
that is so fast that it can be performed after every
aUempted GPL rule execution. In our
experiments with Japanese and English parsing,
we found that l)el'-rule garbage collection
reduced the overall read/write memory
requirements by as much as a factor of four to
six.

4 Source Language Analysis

Translation is divided into the steps ot' analysis,
transfer, and generation. Sourcc-hmguage
analysis is illustrated in Figure 3.

English analysis begins with tokenization and
morphological analysis, which creates a lattice
that contains lexical feature structures. I)uring
multi-word matching, expressions from tile
multi-word lexicon (such as White House or take
on) are detected in the word lattice, and new arcs
with the appropriate lexical feature structures are
added.

English lnpul

Morphological Analysis

I lmtlice with Single-word
gexical l:cature ,qlructures

~,
Mulli-word Matching

~.~ LaHice with Single and
Multi-word texical t"eature

Structures

I gexical P, educlion Anlbiguity

P.educed l.exical Feature
N [I'UCI.LII'e Latt ice

V I'm'sing

Senlei|lial Fealure Slruclure

Thesaurus

I Compiled
English
l'arsing

Gialnnlar

Figure 3 Architecture el'the Analysis Module

Lexical ambiguity reduction reduces the nulnber
el' arcs in the word lattice. This module carries
out part-of-speech tagging over the lattice, and
reduces the lattice to those lexical feature
structures that arc part of the number of best
paths that represents tile best speed/accuracy
trade-off (currently two). This calculation is
based on the usual lexical and contextual bigram
probabilities that were estimated from a training
corpus, but it also takes into account manual
costs that can be added to lexicon entries, or to
individual part-of-speech bigrams.

The resulting reduced lattice with lcxical
single-word and multi-word feature structures is
parsed using tilt GLR parsing algorithm
extended to lattice input (Tomita 1986). The
English parsing grammar consists of 540 GPL
rules. The output is a sentential feature structure
that represents the input to the transfer
component.

1033

5 Transfer

Transfer I¥om the source-language sentential
feature structure to the target-language sentential
feature structure is accomplished with a hybrid
rule-based and example-based method. This is
illustrated in Figure 4.

I English Scntcntial)
Feature Structure

[Compiled l
[Tra,,srer / I [Database I

1
1.inguistic ~ Examl)le

! I Tra,,.<er ~ Matching[

;iiiiii!iiiiiiiiiiii

Figure 4 Architecture of the Transfer Module

The input feature structure is passed to the
linguistic transfer procedure. This consists of a
rule-rewriting software engine that executes the
compiled English-to-Japanese transfer grammar.
The transfer grammar consists of 140 GPL rules,
and its job is to specify linguistic constraints on
examples, combine multiple examples, transfer
informatiou that is beyond the scope of the
example database, and perl'orm various other
transformations. The overall effect is to broaden
the linguistic coverage, and to raise the
grammatical accuracy far beyond the level of a
traditional example-based transfer procedure.

The linguistic transfer procedure operates on the
input feature structure in a recursive manner,
and it invokes the example matching procedure
to find the best translation example for various
parts of the input. The example matching
procedure retrieves the best translation examples
from the example database, which contains
14,000 example pairs ranging from individual
words to entire sentences. In an ofl'-line step, the
example pairs are parsed, disambiguated, and
indexed for corresponding constituents using a
Treebanking tool.

At each invocation of the example matching
procedure, linguistic constraints fl'om the
transfer grammar are used to limit the search
space to appropriate examples. In an ol'l'-line
step, these constraints are pre-compiled into a
complex index that allows a preliminary fast
match. Examples that survive the fast match are
matched and aligned with the input feature
structure (or sub-feature-structure, during
recursive invocations) using the thesaurus to
calculate word similarity, and using various
other constraints and costs for inserting, deleting,
or altering slots and features. Rather than rely on
the exact distance in the thesaurus to calculate
lexical similarity, we use a scheme that is based
on the information content of thesaurus nodes,
similar to (Resnik 1995).

6 Target-language Generation

The Japanese target-language feature structure
l'orms the input to the generation module, which
is summarized in Figure 5 below. This module
also consists o1' a rule-rewriting software engine,
executing the compiled GPL Japanese
generation grammar, which consists ol' 200 GPL
rules. The generator uses the Japanese lexicon to
create the Japanese target-language expression.

Feature Slrtlclure Compiled
Generation
Granll/lar

Generation
Module

Expression

Figure 5 Architecture of~.he Generation Module

7 Evaluation and Conclusions

We evaluated the trauslation system using a
random 500-expression sample from the unseen
test set (see Section 2 above). The translatious
were manually assigned to one of the following
categories o1' translatiou quality:

Failure. Complete translation failure, due to
lack of coverage of a rule-based component.

1034

Wrong. A translation that is COlnpletely wrong,
or that has major errors in an important part,
such as in the main clause.
M a j o r Problem. A translation that has a
missing, extra, or incorrect constituent, such as a
subject, object, or adjectival/prepositional
predicate.
Minor Problem. A translation that l-ms a
missing, extra, or incorrect minor part, such as

an intensifier, tense, aspect, temporal or locative
adjunct, adverb, adjective or other prenominal
modifier, prepositional phrase, verb conjugation
form, adjective form, or required word or
constituent order.
Stylistic Problem. Slylistic problems include
awkward but tolerable word order, incorrect
Japanese particles, incorrect idioms, and silnilar.
Flawless. A translation that does not exhibit any
of the above problems is considered flawless.

The results of the ewtluation are shown in Table
1 below. Overall, 84% of the translations
convey the meaning in an acceptable manner.
We also ewtluated the computational resource
requirements of the system. On a Pentium II1
running at 500 MHz, the average translation
speed was 0.44 seconds. The memory
requirements are summarized in Table 2 below.

Flawless 60%
Stylistic Problem 9%
Minor F'roblcm 14%
Acceptable with OOV 1%
Major ProMem 9%
Wrong Translation 5%
Translation IVailure 3%

Table 1 Translalion Quality

6MB Read-only Memory lbr Code and Data
Read-only Melnory for l)iclionary,
Examples, Fast Match Index, etc.
Read/Write Memory for Feature Slructures
Read/Write Memory fo," Software Engines

Table 2 Memory l,Iequirements

23MB
14MB
4MB

Our plans for further work include extending the
size of the input w)cabulary, and developing
mechanisms for closer integration with speech
recognition and speech synthesis components for
speech-to-speech translation. We are also
working on the Japanese-to-English translation
direction, and we plan to report results on this in
the future.

Acknowledgements

Our thanks go to Robert Bowen, Benjamin
Hartwell, Chigusa Inaba, Kaori Shibatani,
Hirono Stonelake, and Kazue Watanabe for their
language engineering elTorts, and to Edward tto
for user interface and application development.

References

Dalryml)le, M., R.M. Kaplan, J.T. Maxwell lll, and A.
Zacncn, cds. (1995) l;ormal Issues in
Lexical-Functional Grammar. CSLI Lecture Notes
47, Stanford, CA.

Furuse, O. and H. Iida (1996) "incremental
Iranslation utilizing constituent-I~oundary patlcrns",
in Proceedings of COL1NG-96, pages 412-417.

Lcvine, J.R., T. Mason, and D. Brown (1990), lex &
yacc (Second Editio,), O'Rcillcy and Associates,
Sebastopol, CA.

Nagao, M. (1984) "A framework of a Machine
Translation between Japanese and English by
analogy principle", in Artificial and tlumatt
Intelligence, A. 17Jithorn and R. Baneiji (eds.),
North Holland, pages 173--180.

Resnik, P. (1995) "Using information content to
evalualc semantic similarity in a taxonomy", in
Proceedings of LICAI-95.

Sale, S. and M. Nagao (1990) "Toward
memo,y-based lratlslalioD", ill Proceedings of
COLING-90, vol. 3, Helsinki, Finhmd, pages
247--252.

Sugaya, F., T. Takczawam A. Yokoo, and S.
Yamamolo (1999) '%rid-to-end ewtlualion in
ATP,-Matrix", in Proceedings of Fmrospeech-99,
Bt, dapest, Hungary, pages 2431--2434.

Tomita, M. (1988) The Generalized LR
I'ars'eMCompiler (Version 8.1): User's Guide.
Technical Memorandum CMU-CMT-88-Memo,
Cenler for Machine Translation, Carnegie Mellon
University.

Tonlila, M., "All efficient word lattice parsing
algoritlun for conlinuous speech recognition", ill
l'roceedings of ICASSP-86, Tokyo, Japan, pages
1569-1572.

Walanabe, H. (1992) "A similarily-driven transfer
system", in Proceedings of COLING-92, Nantes,
France, pages 770-776.

Walanabe, H. and K. Takeda (1998) "A
pattern-based Machine Translation syslem
extended by exanll~le-based processing", in
Proceedings of ACL-COLING-98, pages
1369-1373.

1035

