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Abstract 
We describe how we constructed an automatic scoring function for machine translation quality; 
this function makes use of arbitrarily many pieces of natural language processing software that 
has been designed to process English language text. By machine-learning values of fnnctions 
available inside the software and by constructing functions that yield values based upon the 
software output, we are able to achieve preliminary, positive results in machine-learning the 
difference between human-produced English and machine-translation English. We suggest 
how the scoring ftmction may be used for MT system development. 

Introduction to the MT Plateau 
We believe it is fair to say that the field of 
machine translation has been on a plateau for at 
least the past decade. 2 Traditional, band-built 
MT systems held up very well in the ARPA 
MT evaluation (White and O'Connell 1994). 
These systems are relatively expensive to build 
and generally require a trained staff working 
for several years to produce a mature system. 
This is the current commercial state of the art: 
hand-building specialized lexicons and 
translation rules. A completely different type of 
system was competitive in this evaluation, 
namely, the purely statistical CANDIDE 
system built at IBM. It was generally felt that 
this system had also reached a plateau in that 
more data and more training was not likely to 
improve the quality of the output. 

Low Density Machine Translation 
However, in the case of "Low Density Machine 
Translation" (see Nirenburg and Raskin 1998, 
Jones and Havrilla 1998) commercial market 
forces are not likely to provide significant 
incentives for machine translation systems for 
Low Density (Non-Major) languages any time 
soon. Two noteworthy efforts to break past the 
data and labor bottlenecks for high-quality 
machine translation development are the 
following. The NSF Summer Workshop on 

i Douglas Jones is now at National Institute of 
Standards & Technology, Gaithersburg, MD 20899, 
Douglas.Jones @NIST.gov 

a A sensible, plateau-fi'iendly strategy may be to 
accumulate translation memory to improve both the 
long-term efficiency of human translators and the 
quality of machine translation systems. If we 
imagine that the plateau is really a kind of 
logarithmic function tending ever upwards, we need 
only be patient. 

Statistical Machine Translation held at Johns 
Hopkins University summer 1999 developed a 
public-domain version intended as a platform 
for further development of a CANDIDE-style 
MT system. Part of the goal here is to improve 
the trauslation by adding levels of linguistic 
analysis beyond the word N-gram. An effort 
addressing the labor bottleneck is the 
Expedition Project at New Mexico State 
University where a preliminary elicitation 
environlnent for a computational field 
linguistics system has been developed (the Boas 
interface; see Nirenburg and Raskin 1998) 

A Scoring Function for MT quality 
Our contribution toward working beyond this 
plateau is to look for a way to define a scoring 
function for the quality of the English output 
such that we can use it to machine-learn a good 
translation grammar. The novelty of our idea 
for this function is that we do not have to define 
the internals of it ourselves per se. We are able 
to define a successful function for two reasons. 
First, there is a growing body of software 
worldwide that has been designed to consume 
English; all we need is for each piece of 
software to provide a metric as to how English- 
like its input is. Second, we can tell whether the 
software had trouble with the input, either by 
system-internal diagnosis or by diagnosing the 
software's output. A good illustration is the 
facility in current word-processing software to 
put red squiggly lines underneath text it thinks 
should be revised. We know fi'om experience 
that this feature is often only annoying. 
Nevertheless, imagine that it is correct some 
percentage of the time, and that each piece of 
software we use for this purpose is correct solne 
percentage of the time. Our strategy is to 
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extract or create nurneric wflues fl'om each 
piece of software that corresponds to the degree 
to which the software was happy with the input. 
That array of numbers is tile heart of our 
scorim, function for En~lishness ~- we are 
calling these numeric values "indicators" of 
Englishness. We then use that array of 
indicators to drive the machine translation 
development. In this paper we will report on 
how we have constructed a prototype of this 
function; in separate work we discuss how to 
insert this function into a machine-learning 
regimen designed to maximize the overall 
quality of the rnachine translation output. 

A Reverse Turing Test 
People can generally tell the difference between 
human-produced English and machine 
translation Englisll~ assuming all tile obvious 
constraints such as that tile reader and writer 
have command of the language. Whether  or 
not a machine can tell the difference depends of 
course, on how good tim MT system is. Can we 
get a machine to tell tile difference? Of  course 
it depends on how good the MT system is: if it 
were perfecL neither we nor the machines 
ought to be able to distinguish them. MT 
quality being what it is, that is not a problem 
for us now. An essential first step toward 
Q1)MT is what we are calling a "Reverse 
Turing Test". In the ordinary Turing Test, we 
want to fool a person into thinking the machine 
is a person. Here, we are turning that on its 
head. We want to define a function that can tell 
tile difference between English that a human 
being has produced versus English that the 
machine has produced) To construct the test, 
we use a bilingual parallel aligned corpus: we 
take tile foreign language side and send that 
through the MT system; then we see if we can 
define a scoring function that can distinguish 
the two w:rsions (original English and MT 
English). With our current indicators and 
corpus, we can machiue-leam a function that 
behaves as follows: if you hand it a human 
sentence, it conect ly  classifies it as human 74% 
of the time. If you hand it a machine sentence, 
it correctly classifies it as a machine sentence 
57% of the time. In tile remainder of the paper, 
we will step through the details of tile 
experiment; we will also discuss why we 

3Obviously the end goal here is to fail this Reverse 
Turing Test for a "perfect" machine translation 
system. We are very far away from this, but we 
would like to use this function to drive the process 
toward that eventual alld ti)rtunate failure. 

neither expect nor require 100% accuracy for 
this function. Our boundary tests behave as 
expected and are shown ill the final section -- 
we use tile same test to distinguish between 
English and (a) English word salad, (b) English 
alphabet soup, (c) Japanese, and (d) the identity 
case of more human-produced English. 

Case Study: Japanese-English 
In this paper, we report on results using a small 
corpus of 2,340 sentences drawn from the 
Kenkyusha New Japanese-English Dictionary. 
It was important in this particular experiment to 
use a very clean corpus (perfectly aligned and 
minimally formatted). This case study is 
situated in a broader context: we have 
conducted exploratory experiments on samples 
from several corpora, for example the ARPA 
MT Evaluation corpus, samples from European 
Corpus Initiative Data corpus (ECI-I) and 
others. Since we found that the scoring 
function was quite sensitive to forrnatting 
problems (for example, the presence of tables 
and sentence segmentation enors  cause 
problems) we are examining a small corpus that 
is free f lom these issues. The sentences are on 
average relatively short (7.0 words per 
sentence; 37.6 characters/sentence), this makes 
our task both easier and harder. It is easier 
because we have overcome tile forlnatting 
problems. It is harder because the MT system 
is able to perform much better on the shorter, 
cleaner sentences than it was on longer 
sentences with formatting problems. Since the 
output is better, it is more difficult to define a 
function that can tell the difference between the 
original English and the machine translation 
English. On balance, this corpus is a good one 
to illustrate our technique. 

i(l) #208 .~ j ~ 0 )  ~z:~: {j ~: {.a ff~:3;]~ b j3';']-2 ~ x _3 ]-7_o 

}tie beauty ballled descnptu n 

MT It described he, beauty and the abno,mal 
play applied 

, She was radiant with happiness 

MT she had shone happily 

In terror the child seized his father's] 
/ a l l l l .  

! MT !Becoming fearful, the child , ] 
I : ",c a,m fa!h e'- I 
lFigure 1. Subjective Quality Ranking ] 
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Figure 1 shows a range of output quality. (1) is 
the worst -- it is obviously MT output. For us 
this output is only partially intelligible. (2) is 
not so bad, but it is still not perfect English. But 
(3)is nearly perfect. We want to design a 
system that can tell the difference. We will 
now walk through our suite of indicators; the 
goal is to get the machine to see what we see in 
terms of quality. 

Suite of Indicators 
We have defined a suite of functions that 
operate at various levels of linguistic analysis: 
syntactic, semantic, and phonological 
(orthographic). For each of these levels, we 
have integrated at least one tool for which we 
construct an indicator function. The task is to 
use these indicators to generate an array of 
values which we can use to capture the 
subjective quality we see wheu we read the 
sentences. We will step through these indicator 
functions one by one. In some cases, in order 
to get numbers, we take what amounts to 
debugging information from the tool (lnany of 
the tools have very nice API's that give access 
to a variety of information about how it 
processed input). In other cases, we define a 
function that yields an output based oil the 
output of the tool (for example, we defined a 
function that indicated the degree to which a 
parse tree was balanced; it turned out that a 
balanced tree was a negative indicator of 
Englishness, probably because English is right- 
branching). 

Syntactic Indicators 
Two sources of local syntactic information are 
(a) parse trees and (b) N-grams. Within tile 
parsers, we looked at internal processing 
information as well as output structures. For 
example, we measured the probability of a 
parse and number of edges in the parse from the 
Collins parser. The Apple Pie Parser provided 
various weights which we used. The Appendix 
lists all of the indicator functions that we used. 

N-Gram Language Model (Cross-Perplexity) 
An easy number to calculate is the cross- 
perplexity of a given text, as calculated using 
an N-gram language model. 4 

4 We used the Cambridge/CMU language modeling 
toolkit, trained on the Wall Street Journal (4/1990 
through 3/1992), (hn parameters: n=4, Good-Turing 
smoothing) 

- C I ' O S S -  

perplexity 

_ _ (  1 ) 2439 It described her beauty and the 
_ abnormal play applied 

(2) ~ 2185 She had shone happily 

( 3 ~  1836 Becoming fearful, the child 
grasped the arm of the father 
tightly 

Figure 2. Cross-Perplexity Indicator 
Notice that the subjective order is mirrored by 
the cross-perl?lexity scores in Figure 2. 

Collins Parser 
The task here is to write functions that process 
the parse trees and return a number. We have 
experimented with lnore elaborate functions 
that indicate how balanced the parse tree is and 
less complicated functions such as the level of 
embedding, number of parentheses, and so oil. 
Interestingly, the number of parentheses in the 
parse was a helpful indicator in conjunction 
with other indicators. 

Indicators of Semantic Cohesiveness 
For the semantic indicators, we want some 
indication as to how nmch the words in a text 
are related to each other by virtue of their 
meaning. Which words belong together, 
regardless of exactly how they are used in the 
seutence? Two resources we have begun to 
integrate for this purpose are WordNet and the 
Trigger Toolkit (measuring mutual 
information). The overall experimental design 
is roughly the same in both cases. Our method 
was to remove stop words, lemmatize the text, 
and then take a measurement of pairwise 
semantic cohesiveness of the iemmatized 
words 5. For WordNet, we are counting how 
many ways two words are related by the 
hyponylny relation (future indicators will be 
snore sophisticated). For the Trigger Toolkit, 
we weighted the connections (by mutual 
information). 

Orthographic 
We had two motivations for an orthographic 
level: one was methodological (we wanted to 
look at each of tile traditional levels of 
linguistic analysis). The other was driven by 
our experience in looking at the MT output. 
Some MT systems leave untranslated words 

5The following parameters were used to build and 
calculate mutual information using the Trigger 
Toolkit: (1) All uppercase letters were converted 1o 
lowercase (2) All numbers were converted to a 
"NUMBER" token (3) Punctuation stripped (4) 
Stopwords removed (5) Words lcnunatized. 
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alone, or transliterate them, or insert a dummy 
synlbol, such as "X". These cities were 
adequate to give us apl)ropriate hints as to 
whether the text was produced by human or by 
machine. But some of our tools missed these 
clues because of how they were designed. 
Robust parsers often treat uukllowu words as 
UOUlIS,; SO if we got au u u t r a u s l a t e d  te l i l l  o r  an 

"X", the parser simply treats it as a noun. Five 
X's in a row might be a noun phrase followed 
by a verb. a Smoothed N-gram models of words 
usually treat any string of letters as a possible 
word. 

MT 
output  

wors t  

(1) 
mid 
(2) 
best 
(3) 

Word N- Num. 
gram Edges 
Cross Per-i 
plexity 

2439 i152 

2185 27i 

1836 1654 

Pie 
Parser 

~core 

247 

139 

302 

A1;plo Sumof [Char 
= 

mutual !N-gram 
infer- !cross 
ina/ ion per- 

!plexily 

0 '8.1 

0 16.3 

1.7E-4 9 ;3  

Figure 3. Subjective and Objective Ranidngs 
Because the parsers and N-gram models were 
designed to be very robust, they are not 
necessarily sensitive to these obvious clues. In 
order to get at these hints, we built a character- 
based N-gram model of English. Although 
these indicators were not very informative on 
their own for distinguishing htunan froln 
machine English, they boosted l)erforlnancc in 
conjunction with the syntactic aud semantic 
indicators. 

Combined Indicators 
Let's come back to the three sentences t'rom 
Figure 1: we want to capture our subjective 
ranking of tile sentences with appropriate 
indicator willies. In other words, we want the 
machine to be able to see differences which a 
human might see. 
For these three examples, some scores correhtte 
well with our subjective ranking of Englishuess 
(e.g. cross-perplexity, Edges). However, the 
other scores on their own only partially 
correlate. The expectation is that an indicator 
on its own will not be sutTicient to score tile 
Englishness. It is the combined effect of all 
indicators which ultimately decides the 

6We found that we cot, ld often guess the "del'ault" 
behavior that a parser used and we have begun to 
design indicators that can tell when a parser has 
defaulled to these. 

Englishness. Now we have enough raw data to 
begin machine-learning a way to distinguish 
these kinds of sentences. 

Simple Machine  Learning  Regimen 
We have started out with very simple memory- 
based machine learning techniques. Since we 
are del'ining a range of functions, we wanted to 
keep things relatively simple for debugging and 
didactic purposes. 

KNN 
One of the simplest methods we can use for 
classification is to collect values of the N 
indicators for a set of training cases and for the 
test cases, to find tile K nearest training cases 
(using Euclidean distance in N-dimensional 
space). For K, we used 5 for our general 
CXl)el'iments (but see below fol" sonic 
variations). For a concrete example in two 
dimensions, imagine that wc use the cross- 
perplexity of an N-granl language model for the 
Y-axis and the probability of a parse from the 
Collins parser for tile X-axis. Human sentences 
tended to have bettor (lower) cross-perplexity 
numbers and better (higher) parse probabilities. 
If the 5 nearest neighbors to a data point were 
(h,h,h,h,m) four human sentences and olle 
machine our KNN function guesses that it is a 
human sentence. 
Figure 4 lists some of the parameters we used 
for KNN. The vahles for cross perplexity 
ranged fronl around 100 to 10,000 and the 
Collins parse probability (log) ranged from 
around -1000 to 0. These wlhles were 
n0rmalizcd t o r a n g e  fi'om 0-1. 
Al l  columns were scaled between 0 and 1. 
- Value for K in KNN was set to 5. 
- Value for L in KNN was set to 0 (L is the 

i minimum number of positive neighbors 
I required for a confident classification 

i.e. L=5 means all neighbors must be of 
i one class) 
i- Distance calculation is Euclidean 
'- We used 10-fold cross-validation and 
i calculated the average classification 
l accuracy for the overall score. 

t:Figure 4. KNN l~arametel's 
To get an indication of how much guessing 
figured into tile classification, we wwied L fl'om 
3 to 5, keeping K at 5. We found that we get the 
same overall shape for tile classification, with 
fewer guesses made. Of course the penalty for 
not guessing as nmch is that more cases are left 
unclassified. When we reduced guessing by 
setting L to 4, we correctly classified 47% of 
the human sentences as human and incorrectly 
chlssified 9% of the human sentences as 
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machine (the remaining 44% were not 
classified). By setting L to 5 (eliminating 
guessing) these numbers dropped to 18% and 
2% respectively. When we varied K (for 
example, trying K of 101) we found that we can 
increase the performance of the human 
classifier to nearly 90%. Performance of KNN 
tended to top out at around 74% with the 
parameters in Figure 4. 

Indicator Monotonicity  
There is no guarantee that classification will 
perform better with more dimensions in KNN. 
However, we found that we generally got a 
monotonically increasing performance in 
classification when we added indicator 
functions. A helpful analogy might be to 
consider the blind men and the elephant. In our 
case, "English" is the elephant, and each of  our 
indicator functions is one blind man grasping at 
the elephant. One is grasping at semantics, one 
at syntax, and so on. Figure 5 shows how 
classification improves with more indicators 
(the back of the elephant, so to speak). 

Benchmarks  
To calibrate' the indicator functions we have 
used to classify text into human- or machine- 
produced, we tested our method with some 
boundary cases, shown in Figure 6. The most 
extreme case was to learn the difference 

l B u ~ i n  I( MT 

o 

/ 

] r ,oB~ 

Top: Truth is human; machine guesses human 
Bottom: Truth is MT; machine guesses MT 
Figure 5 
between Japanese text (in native character 
encoding) and English. 

Truth is: 

Machine 
Guesses: 

human machine 

Japanese 99.6 99.6 

A!phabet Soup 99.4 99.2 

Word Salad 95[95.4.4 91.1 

MT Output [74.0 56.1 

Identity Case 52.3 49.4 

Figure 6. Baselines 
In other words, we have come up with a very 
computationally expensive method for 
Language Identification. Next less extreme was 
what we called "Alphabet Soup"; we took 
English sentences from the English side of the 
Kenkyusha corpus: for each alphabetic 
character, we substituted a randomly-selected 
alphabetic character, preserving case and 
punctuation. 7 For "Word Salad", we took the 
English sentences from the Kenkyusha corpus 
and scrambled their order. MT Output is the 
case we discussed in detail above. The Identity 
Case is to divide the English sentences from the 
corpus into two piles and then try to tell them 
apart. As Figure 6 shows, the pathological 
baseline cases all work out very well: our 
machine can ahnost always tell that Japanese, 
Alphabet Soup, and Word Salad are not 

English. Nor can it distinguish between 
two arbitrarily divided piles of human 
English. 

Other Classification Algorithms 
We have performed some initial 
experiments with Support Vector 
Machines (SVM) as a classification 
method. SVM attempts to divide up an n- 
dimensional space using a set of support 
vectors defining a hyperplane. The basic 
approach of the SVM algorithm is 
different from KNN in that it actually 
deduces a classification model from the 
training data. KNN is a memory-based 
learning algorithm wherein the model is 
essentially a replica of the training 
examples. 
The initial trials using SVM are yielding 
classification accuracies of correctly 
classifying 83% of the human sentences 
and 64% of the machine sentences (single 

7We found that it was often easy to crash some 
of the software when we fed it arbitrary binary 
data, so we used "Alphabet Soup" instead of 
arbitrary binary data. 
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randonl sample of 10% withheld -- no n-fold 
cross-validation). These accuracies represent 
iml~rovenaents of 11% for truman test sentences 
and 14% for tile machine test sentences. 
Further tests on this and other classification 
methods will be investigated to maximize 
performance ill terms of accuracy and 
execution time. 

Next Steps 
There are two general areas we are cominuiug 
to work on: (a) to increase the scope and 
reliability of our indicators and (b) to insert tile 
scoring function into a machine-learning 
regimen for producing translation grammars. In 
the first area, we have begun to explore tile 
degree to which we might recapitulate tile 
ARPA MT Evaluation. The data from these 
evaluations are freely available, a Of course if 
all we did was recapitulate the data in some 
non-explanatory way, we would be doing 
something analogous to using the Chicago 
Bears to predict the stock market. The real 
work here is to map the objective scoring 
function numbers back to reliable subjective 
evaluation of the machine-produced texts. A 
crucial task t'or us here is to get a deeper 
understanding of how each of the pieces of 
software behaves with various types of input 
text. We are cnrrently at a quite preliminary 
stage in terms of the number of indicators we 
are using and the degree to which each is fine- 
tuned to out" ]mrpose. For machine-learning a 
translation gramnmr, we have begun to explore 
using our scoring function to drive the 
construction of a prototype Low Density 
machine translation grammar compatible with a 
previous system built by hand. We have found 
that the scoring function is sensitive to the word 
order difference between the target English 
translation and the glosses for the source 
language. We would like to re-create a 
compatible knowledge base of the English half 
of the translation grammar using only the 
glosses as input. Such a technique would 
reduce the labor requirements in constructing a 
translation knowledge base. 

Reverse Turing Scores for Machine 
Learning Grammars 
To illustrate how we can use tile Reverse 
Turing scores to machine learn a grammar, let 
us consider a simple case of learning lexical 
features for a unification-based phrase structure 
grammar of the sort discussed ill Jones & 

SFrom ursula.gcorgctown.cdu/mt_wcl~. 

Havrilla 1998. The working assumption there is 
that an adequate translation grammar can be 
created that conforms to the constraiut that the 
only reordering that is allowed is the 
permutation of nodes in a biuary-branching tree 
(as in Wu 1995, among others). How might we 
learn that postpositions and verbs generally 
trigger inversion? Consider the following 
example as shown ill Figure 7 fronl Jones & 
Havrilla 1998; let us use +T to indicate that the 
lexical item triggers inversion; -T means that it 
does not. Let the initial state of the lexicon 
mark all lexical items as "-T". 

Shobl)a~ karate-men ]baiThii hal 

~OS N N O IV V 

! -T -T +?' I+T ,, [+T 
I 'Sh°bha l the_room-in ],,.sitting _ J,is 

~igurc 7. Shobha is sitting in tile room. 

Ore" machine learning process marks lexical 
items as "+T" when the Reverse Tnring 
classification score for the bilingual corpus 
improves. 

Conclusion 
We are capitalizing on two historical accideuts: 
(1) that English is a major world language and 
(2) that we want to translate into English. In 
addition to a variety of modern, standard NLP 
techniques and ideas, we have drawn fi'om two 
unlikely sources of intellectual capital: (l) 
philosophy of language and (2) the current 
ubiquity of hmguagc cnginecring software. 
What we have taken from (1) is that we have 
assumed that lhere is such a thing as "English". 
That might not seem like much of an 
assmnption, but we are treading near some very 
thorny problems in the philosophy of language. 
We can no nlore point to English than we can 
point to tile perfect triangle. And like the blind 
men grasping at tile elephant, how we 
characterize it depends on how we are exploring 
it. What is ilnportant is the helpful aggregate of 
numeric values that we use for the scoring. 
What does this mean for machine translation? 
We want to "Begin with the End in Mind"; in 
other words, we want the machine translation 
system to create output that scores well on our 
indicators of Englishness. The rest would be 
details, so to speak. 
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Appendix 
List of current Indicators 
1. Word N-Granl (CM U/Cambridge Language Tk) 
2. Ntunber of edges in parse (Collins Parser) 
3. Log probability (Collins Parser) 
4. 1,2xecution time (Collins Parser) 
5. Paren count (Collins Parse,') 
6. Mean leaf node size of parse live (Collins Parser) 
7. Mean NN sequence length (Collins Parser) 
8. Overall scorn (Apple Pie Parser) 
9. Word level score (Apple Pie Parser) 
I 0. Node coun! (Apple Pie Parser) 
11. User execution lime (Apple Pie Parser) 
12. CD node count (Apple Pie Parser) 
13. Mean CD sequence length (Apple Pie Parser) 
14. Mean leading spaces in outline tree (fi'om Collins Parse) 
15. Tree balance ratio (fl'om Collins Parse) 
16. Tree depth (fi'om Collins Parse) 
17. Average minimtun hypernym path length in WordNet 
18. Average number hypernym paths in WordNel 
19. Path found ratio in WordNel 
20. Percent words with sense in WordNet 
21. Sum of count of relations (Trigger Toolkit) 
22. Mean of eotinl of 1elations (T,igger Toolkit) 
23. Sum of mutual information (Trigger Toolkil) 
24. Mean of mutual information (Trigger Toolkil) 
25. Pairs with mutual information (Trigger Toolkit) 
26. Weighled pair sum of mutual information (Trigger Toolkit) 
27. Number of target paired words (Trigger Toolkil 
27 . .  N-Gram Cross-perplexity (Cambridge/CMU Lang Tk.) 

Tools 
TiMBL: Tilburg Memory Based Learner 2.0. ILK 

Research Group. http:/lilk.kub.nl/software.html. 
PCKIMMO 2.0. Summer Institute of Linguistics. 
MXTERMINATOR. Adwait Ratnaparkhi. 
WEKA 3.0. University of Waikato. 

flp://ftp.cs.waikato.ac.nz/pubhnl/weka-3-O.jar 
Collins Parser 98. 
Brill Tagger 1.14 
R Statistical Package 0.65.0. http://cran.r- 

project.org/ 
Apple Pie Parser 5.8. New York University. 

http://cs.nyu.edu/cs/projects/proteus/app 
WordNet 1.6. ftp://ftp.cogsci.princeton.edu/-wn/ 
Trigger Toolkit 1.0. CMU. 

http://www.cs.cmu.edu/~aberger/software. 
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