
Toward a Scoring Function for Quality-Driven Machine Translation

Douglas A. Jones ~ Gregory M. Rusk
Department of Defense RABA Technologies
9800 Savage Road, Suite 6514 10500 Little Patuxent Parkway
Fort Meade, MD 20755-6514 Colulnbia, MD 21044

Abstract
We describe how we constructed an automatic scoring function for machine translation quality;
this function makes use of arbitrarily many pieces of natural language processing software that
has been designed to process English language text. By machine-learning values of fnnctions
available inside the software and by constructing functions that yield values based upon the
software output, we are able to achieve preliminary, positive results in machine-learning the
difference between human-produced English and machine-translation English. We suggest
how the scoring ftmction may be used for MT system development.

Introduction to the MT Plateau
We believe it is fair to say that the field of
machine translation has been on a plateau for at
least the past decade. 2 Traditional, band-built
MT systems held up very well in the ARPA
MT evaluation (White and O'Connell 1994).
These systems are relatively expensive to build
and generally require a trained staff working
for several years to produce a mature system.
This is the current commercial state of the art:
hand-building specialized lexicons and
translation rules. A completely different type of
system was competitive in this evaluation,
namely, the purely statistical CANDIDE
system built at IBM. It was generally felt that
this system had also reached a plateau in that
more data and more training was not likely to
improve the quality of the output.

Low Density Machine Translation
However, in the case of "Low Density Machine
Translation" (see Nirenburg and Raskin 1998,
Jones and Havrilla 1998) commercial market
forces are not likely to provide significant
incentives for machine translation systems for
Low Density (Non-Major) languages any time
soon. Two noteworthy efforts to break past the
data and labor bottlenecks for high-quality
machine translation development are the
following. The NSF Summer Workshop on

i Douglas Jones is now at National Institute of
Standards & Technology, Gaithersburg, MD 20899,
Douglas.Jones @NIST.gov

a A sensible, plateau-fi'iendly strategy may be to
accumulate translation memory to improve both the
long-term efficiency of human translators and the
quality of machine translation systems. If we
imagine that the plateau is really a kind of
logarithmic function tending ever upwards, we need
only be patient.

Statistical Machine Translation held at Johns
Hopkins University summer 1999 developed a
public-domain version intended as a platform
for further development of a CANDIDE-style
MT system. Part of the goal here is to improve
the trauslation by adding levels of linguistic
analysis beyond the word N-gram. An effort
addressing the labor bottleneck is the
Expedition Project at New Mexico State
University where a preliminary elicitation
environlnent for a computational field
linguistics system has been developed (the Boas
interface; see Nirenburg and Raskin 1998)

A Scoring Function for MT quality
Our contribution toward working beyond this
plateau is to look for a way to define a scoring
function for the quality of the English output
such that we can use it to machine-learn a good
translation grammar. The novelty of our idea
for this function is that we do not have to define
the internals of it ourselves per se. We are able
to define a successful function for two reasons.
First, there is a growing body of software
worldwide that has been designed to consume
English; all we need is for each piece of
software to provide a metric as to how English-
like its input is. Second, we can tell whether the
software had trouble with the input, either by
system-internal diagnosis or by diagnosing the
software's output. A good illustration is the
facility in current word-processing software to
put red squiggly lines underneath text it thinks
should be revised. We know fi'om experience
that this feature is often only annoying.
Nevertheless, imagine that it is correct some
percentage of the time, and that each piece of
software we use for this purpose is correct solne
percentage of the time. Our strategy is to

376

extract or create nurneric wflues fl'om each
piece of software that corresponds to the degree
to which the software was happy with the input.
That array of numbers is tile heart of our
scorim, function for En~lishness ~- we are
calling these numeric values "indicators" of
Englishness. We then use that array of
indicators to drive the machine translation
development. In this paper we will report on
how we have constructed a prototype of this
function; in separate work we discuss how to
insert this function into a machine-learning
regimen designed to maximize the overall
quality of the rnachine translation output.

A Reverse Turing Test
People can generally tell the difference between
human-produced English and machine
translation Englisll~ assuming all tile obvious
constraints such as that tile reader and writer
have command of the language. Whether or
not a machine can tell the difference depends of
course, on how good tim MT system is. Can we
get a machine to tell tile difference? Of course
it depends on how good the MT system is: if it
were perfecL neither we nor the machines
ought to be able to distinguish them. MT
quality being what it is, that is not a problem
for us now. An essential first step toward
Q1)MT is what we are calling a "Reverse
Turing Test". In the ordinary Turing Test, we
want to fool a person into thinking the machine
is a person. Here, we are turning that on its
head. We want to define a function that can tell
tile difference between English that a human
being has produced versus English that the
machine has produced) To construct the test,
we use a bilingual parallel aligned corpus: we
take tile foreign language side and send that
through the MT system; then we see if we can
define a scoring function that can distinguish
the two w:rsions (original English and MT
English). With our current indicators and
corpus, we can machiue-leam a function that
behaves as follows: if you hand it a human
sentence, it conect ly classifies it as human 74%
of the time. If you hand it a machine sentence,
it correctly classifies it as a machine sentence
57% of the time. In tile remainder of the paper,
we will step through the details of tile
experiment; we will also discuss why we

3Obviously the end goal here is to fail this Reverse
Turing Test for a "perfect" machine translation
system. We are very far away from this, but we
would like to use this function to drive the process
toward that eventual alld ti)rtunate failure.

neither expect nor require 100% accuracy for
this function. Our boundary tests behave as
expected and are shown ill the final section --
we use tile same test to distinguish between
English and (a) English word salad, (b) English
alphabet soup, (c) Japanese, and (d) the identity
case of more human-produced English.

Case Study: Japanese-English
In this paper, we report on results using a small
corpus of 2,340 sentences drawn from the
Kenkyusha New Japanese-English Dictionary.
It was important in this particular experiment to
use a very clean corpus (perfectly aligned and
minimally formatted). This case study is
situated in a broader context: we have
conducted exploratory experiments on samples
from several corpora, for example the ARPA
MT Evaluation corpus, samples from European
Corpus Initiative Data corpus (ECI-I) and
others. Since we found that the scoring
function was quite sensitive to forrnatting
problems (for example, the presence of tables
and sentence segmentation enors cause
problems) we are examining a small corpus that
is free f lom these issues. The sentences are on
average relatively short (7.0 words per
sentence; 37.6 characters/sentence), this makes
our task both easier and harder. It is easier
because we have overcome tile forlnatting
problems. It is harder because the MT system
is able to perform much better on the shorter,
cleaner sentences than it was on longer
sentences with formatting problems. Since the
output is better, it is more difficult to define a
function that can tell the difference between the
original English and the machine translation
English. On balance, this corpus is a good one
to illustrate our technique.

i(l) #208 .~ j ~ 0) ~z:~: {j ~: {.a ff~:3;]~ b j3';']-2 ~ x _3]-7_o

}tie beauty ballled descnptu n

MT It described he, beauty and the abno,mal
play applied

, She was radiant with happiness

MT she had shone happily

In terror the child seized his father's]
/ a l l l l .

! MT !Becoming fearful, the child ,]
I : ",c a,m fa!h e'- I
lFigure 1. Subjective Quality Ranking]

377

Figure 1 shows a range of output quality. (1) is
the worst -- it is obviously MT output. For us
this output is only partially intelligible. (2) is
not so bad, but it is still not perfect English. But
(3)is nearly perfect. We want to design a
system that can tell the difference. We will
now walk through our suite of indicators; the
goal is to get the machine to see what we see in
terms of quality.

Suite of Indicators
We have defined a suite of functions that
operate at various levels of linguistic analysis:
syntactic, semantic, and phonological
(orthographic). For each of these levels, we
have integrated at least one tool for which we
construct an indicator function. The task is to
use these indicators to generate an array of
values which we can use to capture the
subjective quality we see wheu we read the
sentences. We will step through these indicator
functions one by one. In some cases, in order
to get numbers, we take what amounts to
debugging information from the tool (lnany of
the tools have very nice API's that give access
to a variety of information about how it
processed input). In other cases, we define a
function that yields an output based oil the
output of the tool (for example, we defined a
function that indicated the degree to which a
parse tree was balanced; it turned out that a
balanced tree was a negative indicator of
Englishness, probably because English is right-
branching).

Syntactic Indicators
Two sources of local syntactic information are
(a) parse trees and (b) N-grams. Within tile
parsers, we looked at internal processing
information as well as output structures. For
example, we measured the probability of a
parse and number of edges in the parse from the
Collins parser. The Apple Pie Parser provided
various weights which we used. The Appendix
lists all of the indicator functions that we used.

N-Gram Language Model (Cross-Perplexity)
An easy number to calculate is the cross-
perplexity of a given text, as calculated using
an N-gram language model. 4

4 We used the Cambridge/CMU language modeling
toolkit, trained on the Wall Street Journal (4/1990
through 3/1992), (hn parameters: n=4, Good-Turing
smoothing)

- C I ' O S S -

perplexity

_ _ (1) 2439 It described her beauty and the
_ abnormal play applied

(2) ~ 2185 She had shone happily

(3 ~ 1836 Becoming fearful, the child
grasped the arm of the father
tightly

Figure 2. Cross-Perplexity Indicator
Notice that the subjective order is mirrored by
the cross-perl?lexity scores in Figure 2.

Collins Parser
The task here is to write functions that process
the parse trees and return a number. We have
experimented with lnore elaborate functions
that indicate how balanced the parse tree is and
less complicated functions such as the level of
embedding, number of parentheses, and so oil.
Interestingly, the number of parentheses in the
parse was a helpful indicator in conjunction
with other indicators.

Indicators of Semantic Cohesiveness
For the semantic indicators, we want some
indication as to how nmch the words in a text
are related to each other by virtue of their
meaning. Which words belong together,
regardless of exactly how they are used in the
seutence? Two resources we have begun to
integrate for this purpose are WordNet and the
Trigger Toolkit (measuring mutual
information). The overall experimental design
is roughly the same in both cases. Our method
was to remove stop words, lemmatize the text,
and then take a measurement of pairwise
semantic cohesiveness of the iemmatized
words 5. For WordNet, we are counting how
many ways two words are related by the
hyponylny relation (future indicators will be
snore sophisticated). For the Trigger Toolkit,
we weighted the connections (by mutual
information).

Orthographic
We had two motivations for an orthographic
level: one was methodological (we wanted to
look at each of tile traditional levels of
linguistic analysis). The other was driven by
our experience in looking at the MT output.
Some MT systems leave untranslated words

5The following parameters were used to build and
calculate mutual information using the Trigger
Toolkit: (1) All uppercase letters were converted 1o
lowercase (2) All numbers were converted to a
"NUMBER" token (3) Punctuation stripped (4)
Stopwords removed (5) Words lcnunatized.

378

alone, or transliterate them, or insert a dummy
synlbol, such as "X". These cities were
adequate to give us apl)ropriate hints as to
whether the text was produced by human or by
machine. But some of our tools missed these
clues because of how they were designed.
Robust parsers often treat uukllowu words as
UOUlIS,; SO if we got au u u t r a u s l a t e d te l i l l o r an

"X", the parser simply treats it as a noun. Five
X's in a row might be a noun phrase followed
by a verb. a Smoothed N-gram models of words
usually treat any string of letters as a possible
word.

MT
output

wors t

(1)
mid
(2)
best
(3)

Word N- Num.
gram Edges
Cross Per-i
plexity

2439 i152

2185 27i

1836 1654

Pie
Parser

~core

247

139

302

A1;plo Sumof [Char
=

mutual !N-gram
infer- !cross
ina/ ion per-

!plexily

0 '8.1

0 16.3

1.7E-4 9 ;3

Figure 3. Subjective and Objective Ranidngs
Because the parsers and N-gram models were
designed to be very robust, they are not
necessarily sensitive to these obvious clues. In
order to get at these hints, we built a character-
based N-gram model of English. Although
these indicators were not very informative on
their own for distinguishing htunan froln
machine English, they boosted l)erforlnancc in
conjunction with the syntactic aud semantic
indicators.

Combined Indicators
Let's come back to the three sentences t'rom
Figure 1: we want to capture our subjective
ranking of tile sentences with appropriate
indicator willies. In other words, we want the
machine to be able to see differences which a
human might see.
For these three examples, some scores correhtte
well with our subjective ranking of Englishuess
(e.g. cross-perplexity, Edges). However, the
other scores on their own only partially
correlate. The expectation is that an indicator
on its own will not be sutTicient to score tile
Englishness. It is the combined effect of all
indicators which ultimately decides the

6We found that we cot, ld often guess the "del'ault"
behavior that a parser used and we have begun to
design indicators that can tell when a parser has
defaulled to these.

Englishness. Now we have enough raw data to
begin machine-learning a way to distinguish
these kinds of sentences.

Simple Machine Learning Regimen
We have started out with very simple memory-
based machine learning techniques. Since we
are del'ining a range of functions, we wanted to
keep things relatively simple for debugging and
didactic purposes.

KNN
One of the simplest methods we can use for
classification is to collect values of the N
indicators for a set of training cases and for the
test cases, to find tile K nearest training cases
(using Euclidean distance in N-dimensional
space). For K, we used 5 for our general
CXl)el'iments (but see below fol" sonic
variations). For a concrete example in two
dimensions, imagine that wc use the cross-
perplexity of an N-granl language model for the
Y-axis and the probability of a parse from the
Collins parser for tile X-axis. Human sentences
tended to have bettor (lower) cross-perplexity
numbers and better (higher) parse probabilities.
If the 5 nearest neighbors to a data point were
(h,h,h,h,m) four human sentences and olle
machine our KNN function guesses that it is a
human sentence.
Figure 4 lists some of the parameters we used
for KNN. The vahles for cross perplexity
ranged fronl around 100 to 10,000 and the
Collins parse probability (log) ranged from
around -1000 to 0. These wlhles were
n0rmalizcd t o r a n g e fi'om 0-1.
Al l columns were scaled between 0 and 1.
- Value for K in KNN was set to 5.
- Value for L in KNN was set to 0 (L is the

i minimum number of positive neighbors
I required for a confident classification

i.e. L=5 means all neighbors must be of
i one class)
i- Distance calculation is Euclidean
'- We used 10-fold cross-validation and
i calculated the average classification
l accuracy for the overall score.

t:Figure 4. KNN l~arametel's
To get an indication of how much guessing
figured into tile classification, we wwied L fl'om
3 to 5, keeping K at 5. We found that we get the
same overall shape for tile classification, with
fewer guesses made. Of course the penalty for
not guessing as nmch is that more cases are left
unclassified. When we reduced guessing by
setting L to 4, we correctly classified 47% of
the human sentences as human and incorrectly
chlssified 9% of the human sentences as

379

machine (the remaining 44% were not
classified). By setting L to 5 (eliminating
guessing) these numbers dropped to 18% and
2% respectively. When we varied K (for
example, trying K of 101) we found that we can
increase the performance of the human
classifier to nearly 90%. Performance of KNN
tended to top out at around 74% with the
parameters in Figure 4.

Indicator Monotonicity
There is no guarantee that classification will
perform better with more dimensions in KNN.
However, we found that we generally got a
monotonically increasing performance in
classification when we added indicator
functions. A helpful analogy might be to
consider the blind men and the elephant. In our
case, "English" is the elephant, and each of our
indicator functions is one blind man grasping at
the elephant. One is grasping at semantics, one
at syntax, and so on. Figure 5 shows how
classification improves with more indicators
(the back of the elephant, so to speak).

Benchmarks
To calibrate' the indicator functions we have
used to classify text into human- or machine-
produced, we tested our method with some
boundary cases, shown in Figure 6. The most
extreme case was to learn the difference

l B u ~ i n I(MT

o

/

] r ,oB~

Top: Truth is human; machine guesses human
Bottom: Truth is MT; machine guesses MT
Figure 5
between Japanese text (in native character
encoding) and English.

Truth is:

Machine
Guesses:

human machine

Japanese 99.6 99.6

A!phabet Soup 99.4 99.2

Word Salad 95[95.4.4 91.1

MT Output [74.0 56.1

Identity Case 52.3 49.4

Figure 6. Baselines
In other words, we have come up with a very
computationally expensive method for
Language Identification. Next less extreme was
what we called "Alphabet Soup"; we took
English sentences from the English side of the
Kenkyusha corpus: for each alphabetic
character, we substituted a randomly-selected
alphabetic character, preserving case and
punctuation. 7 For "Word Salad", we took the
English sentences from the Kenkyusha corpus
and scrambled their order. MT Output is the
case we discussed in detail above. The Identity
Case is to divide the English sentences from the
corpus into two piles and then try to tell them
apart. As Figure 6 shows, the pathological
baseline cases all work out very well: our
machine can ahnost always tell that Japanese,
Alphabet Soup, and Word Salad are not

English. Nor can it distinguish between
two arbitrarily divided piles of human
English.

Other Classification Algorithms
We have performed some initial
experiments with Support Vector
Machines (SVM) as a classification
method. SVM attempts to divide up an n-
dimensional space using a set of support
vectors defining a hyperplane. The basic
approach of the SVM algorithm is
different from KNN in that it actually
deduces a classification model from the
training data. KNN is a memory-based
learning algorithm wherein the model is
essentially a replica of the training
examples.
The initial trials using SVM are yielding
classification accuracies of correctly
classifying 83% of the human sentences
and 64% of the machine sentences (single

7We found that it was often easy to crash some
of the software when we fed it arbitrary binary
data, so we used "Alphabet Soup" instead of
arbitrary binary data.

380

randonl sample of 10% withheld -- no n-fold
cross-validation). These accuracies represent
iml~rovenaents of 11% for truman test sentences
and 14% for tile machine test sentences.
Further tests on this and other classification
methods will be investigated to maximize
performance ill terms of accuracy and
execution time.

Next Steps
There are two general areas we are cominuiug
to work on: (a) to increase the scope and
reliability of our indicators and (b) to insert tile
scoring function into a machine-learning
regimen for producing translation grammars. In
the first area, we have begun to explore tile
degree to which we might recapitulate tile
ARPA MT Evaluation. The data from these
evaluations are freely available, a Of course if
all we did was recapitulate the data in some
non-explanatory way, we would be doing
something analogous to using the Chicago
Bears to predict the stock market. The real
work here is to map the objective scoring
function numbers back to reliable subjective
evaluation of the machine-produced texts. A
crucial task t'or us here is to get a deeper
understanding of how each of the pieces of
software behaves with various types of input
text. We are cnrrently at a quite preliminary
stage in terms of the number of indicators we
are using and the degree to which each is fine-
tuned to out"]mrpose. For machine-learning a
translation gramnmr, we have begun to explore
using our scoring function to drive the
construction of a prototype Low Density
machine translation grammar compatible with a
previous system built by hand. We have found
that the scoring function is sensitive to the word
order difference between the target English
translation and the glosses for the source
language. We would like to re-create a
compatible knowledge base of the English half
of the translation grammar using only the
glosses as input. Such a technique would
reduce the labor requirements in constructing a
translation knowledge base.

Reverse Turing Scores for Machine
Learning Grammars
To illustrate how we can use tile Reverse
Turing scores to machine learn a grammar, let
us consider a simple case of learning lexical
features for a unification-based phrase structure
grammar of the sort discussed ill Jones &

SFrom ursula.gcorgctown.cdu/mt_wcl~.

Havrilla 1998. The working assumption there is
that an adequate translation grammar can be
created that conforms to the constraiut that the
only reordering that is allowed is the
permutation of nodes in a biuary-branching tree
(as in Wu 1995, among others). How might we
learn that postpositions and verbs generally
trigger inversion? Consider the following
example as shown ill Figure 7 fronl Jones &
Havrilla 1998; let us use +T to indicate that the
lexical item triggers inversion; -T means that it
does not. Let the initial state of the lexicon
mark all lexical items as "-T".

Shobl)a~ karate-men]baiThii hal

~OS N N O IV V

! -T -T +?' I+T ,, [+T
I 'Sh°bha l the_room-in],,.sitting _ J,is

~igurc 7. Shobha is sitting in tile room.

Ore" machine learning process marks lexical
items as "+T" when the Reverse Tnring
classification score for the bilingual corpus
improves.

Conclusion
We are capitalizing on two historical accideuts:
(1) that English is a major world language and
(2) that we want to translate into English. In
addition to a variety of modern, standard NLP
techniques and ideas, we have drawn fi'om two
unlikely sources of intellectual capital: (l)
philosophy of language and (2) the current
ubiquity of hmguagc cnginecring software.
What we have taken from (1) is that we have
assumed that lhere is such a thing as "English".
That might not seem like much of an
assmnption, but we are treading near some very
thorny problems in the philosophy of language.
We can no nlore point to English than we can
point to tile perfect triangle. And like the blind
men grasping at tile elephant, how we
characterize it depends on how we are exploring
it. What is ilnportant is the helpful aggregate of
numeric values that we use for the scoring.
What does this mean for machine translation?
We want to "Begin with the End in Mind"; in
other words, we want the machine translation
system to create output that scores well on our
indicators of Englishness. The rest would be
details, so to speak.

Acknowledgments
This project was funded ill part by the
Advanced Research and Development Activity.
We would like to thank our colleagues at DoD
for very helpful discussions and insights.

381

Appendix
List of current Indicators
1. Word N-Granl (CM U/Cambridge Language Tk)
2. Ntunber of edges in parse (Collins Parser)
3. Log probability (Collins Parser)
4. 1,2xecution time (Collins Parser)
5. Paren count (Collins Parse,')
6. Mean leaf node size of parse live (Collins Parser)
7. Mean NN sequence length (Collins Parser)
8. Overall scorn (Apple Pie Parser)
9. Word level score (Apple Pie Parser)
I 0. Node coun! (Apple Pie Parser)
11. User execution lime (Apple Pie Parser)
12. CD node count (Apple Pie Parser)
13. Mean CD sequence length (Apple Pie Parser)
14. Mean leading spaces in outline tree (fi'om Collins Parse)
15. Tree balance ratio (fl'om Collins Parse)
16. Tree depth (fi'om Collins Parse)
17. Average minimtun hypernym path length in WordNet
18. Average number hypernym paths in WordNel
19. Path found ratio in WordNel
20. Percent words with sense in WordNet
21. Sum of count of relations (Trigger Toolkit)
22. Mean of eotinl of 1elations (T,igger Toolkit)
23. Sum of mutual information (Trigger Toolkil)
24. Mean of mutual information (Trigger Toolkil)
25. Pairs with mutual information (Trigger Toolkit)
26. Weighled pair sum of mutual information (Trigger Toolkit)
27. Number of target paired words (Trigger Toolkil
27 . . N-Gram Cross-perplexity (Cambridge/CMU Lang Tk.)

Tools
TiMBL: Tilburg Memory Based Learner 2.0. ILK

Research Group. http:/lilk.kub.nl/software.html.
PCKIMMO 2.0. Summer Institute of Linguistics.
MXTERMINATOR. Adwait Ratnaparkhi.
WEKA 3.0. University of Waikato.

flp://ftp.cs.waikato.ac.nz/pubhnl/weka-3-O.jar
Collins Parser 98.
Brill Tagger 1.14
R Statistical Package 0.65.0. http://cran.r-

project.org/
Apple Pie Parser 5.8. New York University.

http://cs.nyu.edu/cs/projects/proteus/app
WordNet 1.6. ftp://ftp.cogsci.princeton.edu/-wn/
Trigger Toolkit 1.0. CMU.

http://www.cs.cmu.edu/~aberger/software.
References
Afifi, A.A., Virginia Clark. 1996. Computer-Aided

Multivariate Analysis, 3rd ed.. New York, NY:
Chapman and Hall.

Brill, Eric. 1995. Transformation-Based Error-
Driven Learning and Natural Language
Processing: A Case Study in Part Of Speech
Tagging. (ACL).

Chambers, John M., William S. Cleveland, Beat
Kleiner, and Paul A. Tukey. 1983. Graphical
Methods for Data Analysis. Boston, MA: Duxbury
Press.

Clarkson, Philip, Ronald Rosenfeld. 1997.
Statistical Language Modeling Using the CMU-
Cambridge Toolkit. Eurospeech97. Rhodes,
Greece

Collins, Michael. 1997. Three Generative,
Lexicalised Models for Statistical Parsing.
Proceedings of the 35th Annual Meeting of the
ACL/EACL), Madrid.

Daelemans, Walter, Jakub Zavrel and Ko van der
Sleet. 1998. TiMBL: Tilbm'g Memory Based
Learner, version 2.0, Reference Guide. Available
l'ronl http://ilk.kub.nl/software.html.

Everitt, Brian S. and Graham Dunn. 1992. Applied
Multivariate Data Analysis. New York, NY:
Oxford University Press.

Fellbaum, Christiane (ed.). 1998. WordNet: An
Electronic Lexical l)atabase. Cambridge, MA: The
MIT Press.

Fhu'y, Bernhard and Hans Riedwyl. 1988.
Multivariate Statistics. New York, NY: Chapman
and Hall.

Hornik, Kurt. 1999. "The R FAQ". Available at
http://www.ci.tuwien.ac.al/Miornik/R/.

Jones, Doug and Rick Haw'ilia. 1998. Twisted Pair
Grammar: Sul~port for Rapid Development of
Machine Translation for Low Density Languages.
AMTA-98. Langhorn, PA.

Knight, Kevin, Ishwar Chandler, Matthew Haines,
Vasilcios, Hatzivassigloglou, Eduard Hovy,
Masayo Ida, Steve Luk, Richard, Whimey, and
Kenji Yamada. 1994. Integrating Knowledge
Bases and Statistics in MT (AMTA-94)

Manning, Christopher D. and Hinrich Schutze. 1999.
Foundations of Statistical Natural Language
Processing. Cambridge, MA: The MIT Press.

Masuda, Koh (ed). 1974. Kcnkyusha's New
Japanese-English Dictionary, 4th Ed. Tokyo:
Kenkyusha.

Michalski, Ryszard S., Ivan Bratko, and Miroslav
Kubat (cds.). 1998. Machine Learning and Data
Mining. John Wiley & Son.

Mitchell, Tom M. 1997. Machine Learning. Boston,
MA: McGraw-Hill.

Nirenburg, S. and V. Raskin. 1998. Universal
Grammar and Lcxis for Quick l~,amp-Ui ~ of MT
Systems. Proceedings of ACL/COL1NG "98.
Montrdal: University el' Montreal (in press).

Reynar, Jeffrey C. and Adwait Ratnaparkhi. 1997. A
Maximum Entropy Approach to ideutifying
Sentence Boundaries. ANLP-97. Washington,
D.C.

Rosenfeld, Ronald. 1996. A Maximum Entropy
Approach to Adaptive Statistical Language
Modeling. Computer, Speech and Language.

Witten, Ian H. and Eibe Frank. 1999. Data Mining:
Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann.

White, J. and T.A. O'Connell. 1994. The ARPA MT
Evahmtion Methodologies: Evolution, Lessons,
and Future Approaches. Proceedings of AMTA-
94

Wu, Dekai and Xuanyin Xia. 1995. Large-Scale
Automatic Extraction of an English-Chinese
Translation Lexicon. Machine Tranlsation. 9:3, 1-
28.

382

