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Abstract 

This paper introduces a grammar formalism 
specifically designed for syntax-based sta-
tistical machine translation. The synchro-
nous grammar formalism we propose in 
this paper takes into consideration the per-
vasive structure divergence between lan-
guages, which many other synchronous 
grammars are unable to model. A Depend-
ency Insertion Grammars (DIG) is a gen-
erative grammar formalism that captures 
word order phenomena within the depend-
ency representation. Synchronous Depend-
ency Insertion Grammars (SDIG) is the 
synchronous version of DIG which aims at 
capturing structural divergences across the 
languages. While both DIG and SDIG have 
comparatively simpler mathematical forms, 
we prove that DIG nevertheless has a gen-
eration capacity weakly equivalent to that 
of CFG. By making a comparison to TAG 
and Synchronous TAG, we show how such 
formalisms are linguistically motivated. We 
then introduce a probabilistic extension of 
SDIG. We finally evaluated our current im-
plementation of a simplified version of 
SDIG for syntax based statistical machine 
translation. 

1 Introduction 
Dependency grammars have a long history and 

have played an important role in machine translation 
(MT). The early use of dependency structures in ma-
chine translation tasks mainly fall into the category 
of transfer based MT, where the dependency struc-
ture of the source language is first analyzed, then 
transferred to the target language by using a set of 
transduction rules or a transfer lexicon, and finally 
the linear form of the target language sentence is 
generated. 

While the above approach seems to be plausible, 
the transfer process demands intense human effort in 
creating a working transduction rule set or a transfer 
lexicon, which largely limits the performance and 
application domain of the resultant machine transla-
tion system. 

In the early 1990s, (Brown et. al. 1993) intro-
duced the idea of statistical machine translation, 
where the word to word translation probabilities and 
sentence reordering probabilities are estimated from 
a large set of parallel sentence pairs. By having the 
advantage of leveraging large parallel corpora, the 
statistical MT approach outperforms the traditional 
transfer based approaches in tasks for which ade-
quate parallel corpora is available (Och, 2003). 
However, a major criticism of this approach is that it 
is void of any internal representation for syntax or 
semantics. 

In recent years, hybrid approaches, which aim at 
applying statistical learning to structured data, began 
to emerge. Syntax based statistical MT approaches 
began with (Wu 1997), who introduced a polyno-
mial-time solution for the alignment problem based 
on synchronous binary trees. (Alshawi et al., 2000) 
extended the tree-based approach by representing 
each production in parallel dependency trees as a 
finite-state transducer. (Yamada and Knight, 2001, 
2002) model translation as a sequence of operations 
transforming a syntactic tree in one language into 
the string of the second language. 

The syntax based statistical approaches have 
been faced with the major problem of pervasive 
structural divergence between languages, due to both 
systematic differences between languages (Dorr, 
1994) and the vagaries of loose translations in real 
corpora. While we would like to use syntactic in-
formation in both languages, the problem of non-
isomorphism grows when trees in both languages are 
required to match.  

To allow the syntax based machine translation 
approaches to work as a generative process, certain 
isomorphism assumptions have to be made. Hence a 
reasonable question to ask is: to what extent should 
the grammar formalism, which we choose to repre-
sent syntactic language transfer, assume isomor-
phism between the structures of the two languages? 

(Hajic et al., 2002) allows for limited non-
isomorphism in that n-to-m matching of nodes in the 
two trees is permitted.  However, even after extend-
ing this model by allowing cloning operations on 
subtrees, (Gildea, 2003) found that parallel trees 
over-constrained the alignment problem, and 
achieved better results with a tree-to-string model 



 

using one input tree than with a tree-to-tree model 
using two. 

At the same time, grammar theoreticians have 
proposed various generative synchronous grammar 
formalisms for MT, such as Synchronous Context 
Free Grammars (S-CFG) (Wu, 1997) or Synchro-
nous Tree Adjoining Grammars (S-TAG) (Shieber 
and Schabes, 1990). Mathematically, generative 
synchronous grammars share many good properties 
similar to their monolingual counterparts such as 
CFG or TAG (Joshi and Schabes, 1992). If such a 
synchronous grammar could be learnt from parallel 
corpora, the MT task would become a mathemati-
cally clean generative process. 

However, the problem of inducing a synchronous 
grammar from empirical data was never solved. For 
example, Synchronous TAGs, proposed by (Shieber 
and Schabes, 1990), which were introduced primar-
ily for semantics but were later also proposed for 
translation.  From a formal perspective, Syn-TAGs 
characterize the correspondences between languages 
by a set of synchronous elementary tree pairs. While 
examples show that this formalism does capture cer-
tain cross language structural divergences, there is 
not, to our knowledge, any successful statistical 
learning method to learn such a grammar from em-
pirical data. We believe that this is due to the limited 
ability of Synchronous TAG to model structure di-
vergences. This observation will be discussed later 
in Section 5. 

We studied the problem of learning synchronous 
syntactic sub-structures (parallel dependency treelets) 
from unaligned parallel corpora in (Ding and Palmer, 
2004). At the same time, we would like to formalize 
a synchronous grammar for syntax based statistical 
MT. The necessity of a well-defined formalism and 
certain limitations of the current existing formalisms, 
motivate us to design a new synchronous grammar 
formalism which will have the following properties: 

1. Linguistically motivated: it should be able to 
capture most language phenomena, e.g. compli-
cated word orders such as “wh” movement. 

2. Without the unrealistic word-to-word isomor-
phism assumption: it should be able to capture 
structural variations between the languages. 

3. Mathematically rigorous: it should have a well 
defined formalism and a proven generation ca-
pacity, preferably context free or mildly context 
sensitive. 

4. Generative: it should be “generative” in a 
mathematical sense. This property is essential 
for the grammar to be used in statistical MT. 
Each production rule should have its own prob-
ability, which will allow us to decompose the 
overall translation probability. 

5. Simple: it should have a minimal number of 
different structures and operations so that it will 
be learnable from the empirical data. 

In the following sections of this paper, we intro-
duce a grammar formalism that satisfies the above 
properties: Synchronous Dependency Insertion 
Grammar (SDIG). Section 2 gives an informal look 
at the desired capabilities of a monolingual version 
Dependency Insertion Grammar (DIG) by address-
ing the problems with previous dependency gram-
mars. Section 3 gives the formal definition of the 
DIG and shows that it is weakly equivalent to Con-
text Free Grammar (CFG). Section 4 shows how 
DIG is linguistically motivated by making a com-
parison between DIG and Tree Adjoining Grammar 
(TAG). Section 5 specifies the Synchronous DIG 
and Section 6 gives the probabilistic extension of 
SDIG. 

2 Issues with Dependency Grammars 

2.1 Dependency Grammars and Statistical MT 

According to (Fox, 2002), dependency represen-
tations have the best phrasal cohesion properties 
across languages. The percentage of head crossings 
per chance is 12.62% and that of modifier crossings 
per chance is 9.22%. Observing this fact, it is rea-
sonable to propose a formalism that handles lan-
guage transfer based on dependency structures. 

What is more, if a formalism based on depend-
ency structures is made possible, it will have the 
nice property of being simple, as expressed in the 
following table: 

 CFG TAG DG 
Node# 2n 2n n 

Lexicalized? NO YES YES 
Node types 2 2 1* 

Operation types 1 2 1* 
(*: will be shown later in this paper) 

Figure 1. 

The simplicity of a grammar is very important for 
statistical modeling, i.e. when it is being learned 
from the corpora and when it is being used in ma-
chine translation decoding, we don’t need to condi-
tion the probabilities on two different node types or 
operations. 

At the same time, dependency grammars are in-
herently lexicalized in that each node is one word. 
Statistical parsers (Collins 1999) showed perform-
ance improvement by using bilexical probabilities, 
i.e. probabilities of word pair occurrences. This is 
what dependency grammars model explicitly. 



 

2.2 A Generative Grammar? 

Why do we want the grammar for statistical MT 
to be generative? First of all, generative models have 
long been studied in the machine learning commu-
nity, which will provide us with mathematically rig-
orous algorithms for training and decoding. Second, 
CFG, the most popular formalism in describing 
natural language phenomena, is generative. Certain 
ideas and algorithms can be borrowed from CFG if 
we make the formalism generative. 

While there has been much previous work in 
formalizing dependency grammars and in its appli-
cation to the parsing task, until recently (Joshi and 
Rambow, 2003), little attention has been given to the 
issue of making the proposed dependency grammar 
generative. And in machine translation tasks, al-
though using dependency structures is an old idea, 
little effort has been made to propose a formal 
grammar which views the composition and decom-
position of dependency trees as a generative process 
from a formal perspective. 

There are two reasons for this fact: (1) The 
“pure” dependency trees do not have nonterminals. 
The standard solution to this problem was intro-
duced as early as (Gaifman 1965), where he pro-
posed adding syntactic categories to each node on 
the dependency tree. (2) However, there is a deeper 
problem with dependency grammar formalisms, as 
observed by (Rambow and Joshi 1997). In the de-
pendency representation, it is hard to handle com-
plex word order phenomena without resorting to 
global word order rules, which makes the grammar 
no longer generative. This will be explored in the 
next subsection (2.3).  

2.3 Non-projectivity 

Non-projectivity has long been a major obstacle 
for anyone who wants to formalize dependency 
grammar. When we draw projection lines from the 
nodes in the dependency trees to a linear representa-
tion of the sentence, if we cannot do so without hav-
ing one or more projection lines going across at least 
one of the arcs of the dependency tree, we say the 
dependency tree is non-projective. 

A typical example for non-projectivity is “wh” 
movement, which is illustrated below.  

 

Figure 2. 

 

Our solution for this problem is given in section 
4 and in the next section we will first give the formal 

definition of the monolingual Dependency Insertion 
Grammar. 

3 The DIG Formalism 

3.1 Elementary Trees 

Formally, the Dependency Insertion Grammar is 
defined as a six tuple ),,,,,( RSBALC . C  is a set 
of syntactic categories and L  is a set of lexical 
items. A  is a set of Type-A trees and B  is a set of 
Type-B trees (defined later). S  is a set of the start-
ing categories of the sentences. R  is a set of word 
order rules local to each node of the trees. 

Each node in the DIG has three fields:  

A Node consists of: 
1. One lexical item 
2. One corresponding category 
3. One local word order rule.  

We define two types of elementary trees in DIG: 
Type-A trees and Type-B trees. Both types of trees 
have one or more nodes. One of the nodes in an 
elementary tree is designated as the head of the ele-
mentary tree. 

Type-A trees are also called “root lexicalized 
trees”. They roughly correspond to the α  trees in 
TAG. Type-A trees have the following properties: 

Properties of a Type-A elementary tree: 

1. The root is lexicalized. 
2. The root is designated as the head of the 

tree 
3. Any lexicalized node can take a set of 

unlexicalized nodes as its arguments. 
4. The local word order rule specifies the 

relative order between the current node 
and all its immediate children, including 
the unlexicalized arguments. 

Here is an example of a Type-A elementary tree 
for the verb “like”. Note that the head node is 
marked with (@).  

Please note that the placement of the dependency 
arcs reflects the relative order between the parent 
and all its immediate children. 

Figure 3 

Type-B trees are also called “root unlexicalized 
trees”. They roughly correspond to β  trees in TAG 
and have the following properties: 



 

Properties of a Type-B elementary tree: 

1. The root is the ONLY unlexicalized node 
2. One of the lexicalized nodes is desig-

nated as the head of the tree 
3. Similar to Type-A trees, each node also 

have a word order rule that specifies the 
relative order between the current node 
and all its immediate children. 

Here is and example of a Type-B elementary tree for 
the adverb “really” 

 

Figure 4 

3.2 The Unification Operation 

We define only one type of operation: unification 
for any DIG derivation: 

Unification Operation: 

When an unlexicalized node and a head 
node have the same categories, they can 
be merged into one node. 

This specifies that an unlexicalized node cannot 
be unified with a non-head node, which guarantees 
limited complexity when a unification operation 
takes place.  
After unification,  
1. If the resulting tree is a Type-A tree, its root 

becomes the new root; 
2. If the resulting tree is a Type-B tree, the root 

node involved in the unification operation be-
comes the new root. 

Here is one example for the unification operation 
which adjoins the adverb “really” to the verb “like”: 

 
Figure 5 

Note that for the above unification operation the 
dependency tree on the right hand side is just one of 
the possible resultant dependency trees. The strings 
generated by the set of possible resultant depend-
ency trees should all be viewed as the language 

)(DIGL  generated by the DIG grammar. 

Also note that the definition of DIG is preserved 
through the unification operation, as we have: 

1. (Type-A) (unify) (Type A)  =  (Type-A) 
2. (Type-A) (unify) (Type B)  =  (Type-A) 

3. (Type-B) (unify) (Type B)  =  (Type-B) 

3.3 Comparison to Other Approaches 

There are two major differences between our de-
pendency grammar formalism and that of (Joshi and 
Rambow, 2003): 
1. We only define one unification operation, 

whereas (Joshi and Rambow, 2003) defined two 
operations: substitution and adjunction. 

2. We introduce the concept of “heads” in the DIG 
so that the derivation complexity is significantly 
smaller. 

3.4 Proof of Weak Equivalence between DIG 
and CFG 

We prove the weak equivalence between DIG and 
CFG by first showing that the language that a DIG 
generates is a subset of one that a CFG generates, 
i.e. )()( CFGLDIGL ⊆ . And then we show the 
opposite is also true: )()( DIGLCFGL ⊆ . 

3.4.1 )()( CFGLDIGL ⊆  

The proof is given constructively. First, for each 
Type-A tree, we “insert” a “waiting for Type-B tree” 
argument at each possible slot underneath it with the 
category B. This process is shown below: 

 

Figure 6 

Then we “flatten” the Type-A tree to its linear 
form according to the local word order rule, which 
decides the relative ordering between the parent and 
all its children at each of the nodes. And we get: 

}.{}{
}.{}{}.{}.{ 100

Hnji

HHH

CBNTwCNTw
CBNTwCNTwCBNTCANT

LL

L→  

 nww L0 is the strings of lexical items 
 }.{ HCANT  is the nonterminal created for  

this Type-A tree, and HC is the category of the 
head (root). 

 }{ jCNT  is the nonterminal for each category 
 }.{ HCBNT  is the nonterminal for each “Type-

B site” 
Similarly, for each Type-B tree we can create 
“Type-B site” under its head node. So we have: 

nHiHR wCBNTwCBNTwCRBNT }.{}.{}.{ 0 LL→  
Then we create the production to take arguments: 

}.{}{ CANTCNT →  
And the production rules to take Type-B trees: 

}.{}.{}.{ CBNTCRBNTCBNT →  
}.{}.{}.{ CRBNTCBNTCBNT →  



 

Hence, a DIG can be converted to a CFG. 

3.4.2 )()( DIGLCFGL ⊆  

It is known that a context free grammar can be con-
verted to Greibach Normal Form, where each pro-
duction will have the form: 

*aVA → , where V  is the set of nonterminals 
We simply construct a corresponding Type-A 

dependency tree as follows: 

 

Figure 7
 

4 Compare DIG to TAG 
A Tree Adjoining Grammars is defined as a five 

tuple ),,,,( SAINTΣ , where Σ  is a set of terminals, 
NT  is a set of nonterminals, I  is a finite set of fi-
nite initial trees (α  trees), A  is a finite set of auxil-
iary trees ( β  trees), and S  is a set of starting 
symbols. The TAG formalism defines two opera-
tions, substitution and adjunction. 

A TAG derives a phrase-structure tree, called the 
“derived tree” and at the same time, in each step of 
the derivation process, two elementary trees are 
connected through either the substitution or adjunc-
tion operation. Hence, we have a “derivation tree” 
which represents the syntactic and/or logical relation 
between the elementary trees. Since each elementary 
tree of TAG has exactly one lexical node, we can 
view the derivation tree as a “Deep Syntactic Repre-
sentation” (DSynR). This representation closely re-
sembles the dependency structure of the sentence. 

Here we show how DIG models different opera-
tions of TAG and hence handles word order phe-
nomena gracefully.  

We categorize the TAG operations into three dif-
ferent types: substitution, non-predicative adjunction 
and predicative adjunction. 

 Substitution 
We model the TAG substitution operation by 

having the embedded tree replaces the non-terminal 
that is in accordance with its root. An example for 
this type is the substitution of NP. 

 
Figure 8a Substitution in TAG 

 
Figure 8b Substitution through DIG unification 

 Non-predicative Adjunction 
In TAG, this type of operation includes all ad-

junctions when the embedded tree does not contain a 
predicate, i.e. the root of the embedded tree is not an 
S. For example, the trees for adverbs are with root 
VP and are adjoined to non-terminal VPs in the ma-
trix tree. 

 
Figure 9a Non-predicative Adjunction in TAG 

Like[V]@

[N]John[N]really[adv]@

[V] Like[V]@

[N]John[N] really[adv]  
Figure 9b Non-predicative Adjunction through DIG 

unification 

 Predicative Adjunction 
This type of operation adjoins an embedded tree 

which contains a predicate, i.e. with a root S, to the 
matrix tree. A typical example is the sentence: Who 
does John think Mary likes?  

This example is non-projective and has “wh” 
movement. In the TAG sense, the tree for “does 
John think” is adjoined to the matrix tree for “Who 
Mary likes”. This category of operation has some 
interesting properties. The dependency relation of 
the embedded tree and the matrix tree is inverted. 
This means that if tree T1 is adjoined to T2, in non-
predicative adjunction, T1 depends on T2, but in 
predicative adjunction, T2 depends on T1. In the 
above example, the tree with “like” depends on the 
tree with “think”. 

 
Figure 10a “Wh” movement through TAG  

(predicative) adjunction operation 



 

Our solution is quite simple: when we are con-
structing the grammar, we invert the arc that points 
to a predicative clause. Despite the fact that the re-
sulting dependency trees have certain arcs inverted, 
we will still be able to use localized word order rules 
and derive the desired sentence with the simple uni-
fication operation. As shown below: 

 
Figure 10b “Wh” movement through unification 

Since TAG is mildly context sensitive, and we 
have shown in Section 3 that DIG is context free, we 
are not claiming the two grammars are weakly or 
strongly equivalent. Also, please note DIG does not 
handle all the non-projectivity issues due to its CFG 
equivalent generation capacity. 

5 Synchronous DIG 

5.1 Definition 

(Wu, 1997) introduced synchronous binary trees 
and (Shieber, 1990) introduced synchronous tree 
adjoining grammars, both of which view the transla-
tion process as a synchronous derivation process of 
parallel trees. Similarly, with our DIG formalism, 
we can construct a Synchronous DIG by synchroniz-
ing both structures and operations in both languages 
and ensuring synchronous derivations. 

Properties of SDIG: 
1. The roots of both trees of the source and 

target languages are aligned, and have the 
same category 

2. All the unlexicalized nodes of both trees 
are aligned and have the same category. 

3. The two heads of both trees are aligned 
and have the same category. 

Synchronous Unification Operation: 
By the above properties of SDIG, we can 

show that unification operations are synchro-
nized in both languages. Hence we can have 
synchronous unification operations. 

5.2 Isomorphism Assumption 

So how is SDIG different from other synchro-
nous grammar formalisms?  

As we know, a synchronous grammar derives 
both source and target languages through a series of 
synchronous derivation steps. For any tree-based 
synchronous grammar, the synchronous derivation 
would create two derivation trees for both languages 
which have isomorphic structure. Thus a synchro-

nous grammar assumes certain isomorphism be-
tween the two languages which we refer to as the 
“isomorphism assumption”. 

Now we examine the isomorphism assumptions 
in S-CFG and S-TAG: 
 For S-CFG, the substitutions for all the non-

terminals need to be synchronous. Hence the 
isomorphism assumption for S-CFG is isomor-
phic phrasal structure. 

 For S-TAG, all the substitution and adjunction 
operations need to be synchronous, and the 
derivation trees of both languages are isomor-
phic. The derivation tree for TAG is roughly 
equivalent to a dependency tree. Hence the 
isomorphism assumption for S-TAG is an iso-
morphic dependency structure. 

As shown by real translation tasks, both of those 
assumptions would fail due to structural divergences 
between languages. 

On the other hand SDIG does NOT assume word 
level isomorphism or isomorphic dependency trees. 
Since in the SDIG sense, the parallel dependency 
trees are in fact the “derived” form rather than the 
“derivation” form. In other words, SDIG assumes 
the isomorphism lies deeper than the dependency 
structure. It is “the derivation tree of DIG” that is 
isomorphic. 

The following “pseudo-translation” example il-
lustrates how SDIG captures structural divergence 
between the languages. Suppose we want to translate: 
 [Source] The girl kissed her kitty cat. 
 [Target] The girl gave a kiss to her cat. 

 

 
Figure 11 

Note that both S-CFG and S-TAG won’t be able 
to handle such structural divergence. However, 
when we view each of the two sentences as derived 
from three elementary trees in DIG, we can have a 
synchronous derivation, as shown below: 



 

6 The Probabilistic Extension to SDIG and 
Statistical MT 

The major reason to construct an SDIG is to have 
a generative model for syntax based statistical MT. 
By relying on the assumption that the derivation tree 
of DIG represents the probability dependency graph, 
we can build a graphical model which captures the 
following two statistical dependencies: 
1. Probabilities of Elementary Tree unification (in 

the target language) 
2. Probabilities of Elementary Tree transfer (be-

tween languages), i.e. the probability of two 
elementary trees being paired 

ET-f3

ET-f1

ET-f2

ET-f4

ET-e3

ET-e1

ET-e2

ET-e4  

Figure 12 

The above graph shows two isomorphic deriva-
tion trees for two languages. ET stands for elemen-
tary trees and dotted arcs denote the conditional 
dependence assumptions). Under the above model, 
the best translation is: )()|(maxarg* ePefPe

e
= ; 

And ∏=
i

ii eETfETPefP ))(|)(()|( ; also we 

have ( )∏=
i

ii eETParenteETPeP ))((|)()( . 

Hence, we can have PSDIG (probabilistic syn-
chronous Dependency Insertion Grammar). Given 
the dynamic programming property of the above 
graphical model, an efficient polynomial time 
Viterbi decoding algorithm can be constructed. 

7 Current Implementation 
To test our idea, we implemented the above syn-

chronous grammar formalism in a Chinese-English 
machine translation system. The actual implementa-
tion of the synchronous grammar used in the system 
is a scaled-down version of the SDIG introduced 
above, where all the word categories are treated as 
one. The reason for this simplification is that word 
category mappings across languages are not straight-
forward. Defining the word categories so that they 
can be consistent between the languages is a major 
goal for our future research. 

The uni-category version of the SDIG is induced 
using the algorithm in (Ding and Palmer, 2004), 
which is a statistical approach to extracting parallel 
dependency structures from large scale parallel cor-
pora. An example is given in Figure 12. We can 
construct the parallel dependency trees as shown in 
Figure 13a. The expected output of the above ap-

proach is shown in Figure 13b. (e) stands for an 
empty node trace. 
 [English]  I have been here since 1947. 
 [Chinese] Wo 1947  nian   yilai   yizhi     zhu   zai  zheli. 

              I             year   since  always  live   in     here 

 

Figure 
13a.  

Input 

 
Figure 13b. Output 

(5 parallel elementary tree pairs) 

We build a decoder for the model in Section 6 for 
our machine translation system. The decoder is 
based on a polynomial time decoding algorithm for 
fast non-isomorphic tree-to-tree transduction (Un-
published by the time of this paper). 

We use an automatic syntactic parser (Collins, 
1999; Bikel, 2002) to produce the parallel unaligned 
syntactic structures. The parser was trained using the 
Penn English/Chinese Treebanks. We then used the 
algorithm in (Xia 2001) to convert the phrasal struc-
ture trees into dependency trees. 

The following table shows the statistics of the 
datasets we used. (Genre, number of sentence pairs, 
number of Chinese/English words, type and usage). 

Dataset Xinhua FBIS NIST 
Genre News News News 
Sent# 56263 21003 206 
Chn W# 1456495 522953 26.3 average 
Eng W# 1490498 658478 32.5 average 
Type unaligned unaligned multi-reference
Usage training training testing 

Figure 14 

The training set consists of Xinhua newswire 
data from LDC and the FBIS data. We filtered both 
datasets to ensure parallel sentence pair quality. We 
used the development test data from the 2001 NIST 
MT evaluation workshop as our test data for the MT 
system performance. In the testing data, each input 
Chinese sentence has 4 English translations as refer-
ences, so that the result of the MT system can be 
evaluated using Bleu and NIST machine translation 
evaluation software. 



 

 1-gram 2-gram 3-gram 4-gram
NIST: 4.3753 4.9773 5.0579 5.0791
BLEU: 0.5926 0.3417 0.2060 0.1353

Figure 15 
The above table shows the cumulative Bleu and 

NIST n-gram scores for our current implementation; 
with the final Bleu score 0.1353 with average input 
sentence length of 26.3 words.  

In comparison, in (Yamada and Knight, 2002), 
which was a phrasal structure based statistical MT 
system for Chinese to English translation, the Bleu 
score reported for short sentences (less than 14 
words) is 0.099 to 0.102.  

Please note that the Bleu/NIST scorers, while 
based on n-gram matching, do not model syntax dur-
ing evaluation, which means a direct comparison 
between a syntax based MT system and a string 
based statistical MT system using the above scorer 
would favor the string based systems. 

We believe that our results can be improved us-
ing a more sophisticated machine translation pipe-
line which has separate components that handle 
specific language phenomena such as named entities. 
Larger training corpora can also be helpful. 

8 Conclusion 
Finally, let us review whether the proposed SDIG 

formalism has achieved the goals we setup in Sec-
tion 1 of this paper for a grammar formalism for Sta-
tistical MT applications: 
1. Linguistically motivated: DIG captures word-

order phenomena within the CFG domain. 
2. SDIG dropped the unrealistic word-to-word 

isomorphism assumption and is able to capture 
structural divergences. 

3. DIG is weakly equivalent to CFG. 
4. DIG and SDIG are generative grammars. 
5. They have both simple formalisms, only one 

type of node, and one type of operation. 

9 Future Work 
We observe from our testing results that the cur-

rent simplified uni-category version of SDIG suffers 
from various grammatical errors, both in grammar 
induction and decoding, therefore our future work 
should focus on word category consistency between 
the languages so that a full-fledged version of SDIG 
can be used.  
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