
STONE SOUP TRANSLATION:
THE LINKED AUTOMATA MODEL

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of the Ohio State University

By

Paul C. Davis, M.A.

* * * * *

The Ohio State University
2002

Dissertation Commitee:

Chris Brew, Adviser

Walt Detmar Meurers

Robert T. Kasper

Erhard Hinrichs

Approved by

Adviser
Department of Linguistics

c© Copyright by

Paul C. Davis

2002

ABSTRACT

The automated translation of one natural language to another, known as machine

translation (MT), typically requires successful modeling of the grammars of the

languages and the relationship between them. Rather than hand-coding these

grammars and relationships, some machine translation efforts employ data-driven

methods, where the goal is to learn from a large amount of training examples of

accurate translations. One such data-driven approach is statistical MT, where lan-

guage and alignment models are automatically induced from parallel corpora. This

work has also been extended to probabilistic finite-state approaches, most often via

transducers.

This dissertation introduces and begins an investigation of an MT model consist-

ing of a novel combination finite-state devices. The model proposed is more flexible

than transducer models, giving increased ability to handle word order differences

between languages, as well as crossing and discontinuous alignments between words.

The linked automata MT model consists of a source language automaton, a target

language automaton, and an alignment table—a function which probabilistically

links sequences of source and target language transitions. It is this augmentation

to the finite-state base which gives the linked automata model its flexibility.

The dissertation describes the linked automata model from the ground up, be-

ginning with a description of some of the relevant MT history and empirical MT

ii

literature, and the preparatory steps for building the model, including a detailed

discussion of word alignment and the introduction of a new technique for word align-

ment evaluation. Discussion then centers on the description of the model and its use

of probabilities, including algorithms for its construction from word-aligned bitexts

and for the translation process. The focus next moves to expanding the linked au-

tomata approach, first through generalization and techniques for extracting partial

results, and then by increasing the coverage, both in terms of using additional lin-

guistic information and using more complex alignments. The dissertation presents

preliminary results for a test corpus of English to Spanish translations, and sug-

gests ways in which the model can be further expanded as the foundation of a more

powerful MT system.

iii

ACKNOWLEDGMENTS

I have heard people compare writing a dissertation to running a long-distance race.

It’s a grueling process, testing both your will and your endurance, and there always

seems to be one last hill to climb. You have to run the race yourself, but there are

friends and family who come out to shout an encouraging word, and a whole team

of people whose job it is to support you—be it those who lend a hand on the race

day, or those who have coached you during training. And of course there are the

other runners who have gone before, run with you, or will compete later, ready to

offer advice and to commiserate.

Sometimes you don’t thank everyone who helped—perhaps you don’t even know

who it was that clapped their hands at the moment when you might otherwise have

quit. So it is with this dissertation. I won’t be able to thank everyone who played

a part, and this is especially true for those who helped me prior to the dissertation-

writing phase, such as friends and teachers from the University of Wisconsin, or

everyone who has had an impact on my life at Ohio State. For those I neglect to

name, please know that your help mattered.

So, let me start with my family. A really great part of returning to Ohio was

the opportunity to spend a lot of time with family and friends from Cleveland.

In particular I want to thank my parents, Jay and Jane Davis, and my sister and

brother, Maria and Josh, for their support.

iv

Many others also helped. Philip Resnik and his collaborators at the University of

Maryland graciously made available the parallel corpora from which the dissertation

models were built. Franz Joseph Och made the Giza++ software, which I used

to create word alignments, building on the work done by the researchers who had

selflessly made Giza and the rest of the MT tools in the Egypt toolkit. Dan Melamed

provided advice on both word alignment tools and word alignment evaluation, and

Hiyan Alshawi answered my questions about MT evaluation metrics. Additionally,

a number of anonymous reviewers provided valuable comments on presentations of

portions of this work. We must also follow the money trail—this work would have

been much more difficult without the financial support of a four-year University

Partnerships in Research Grant from Motorola; Bob Kasper and Craige Roberts

deserve thanks for the original grant, as do Mike McLaughlin and Harry Bliss

of Motorola. Portions of the dissertation work were also funded by a summer

grant from the OSU Center for Cognitive Science, made possible by the efforts of

my adviser, Chris Brew, and Neelam Soundarajan, of Computer and Information

Science.

I’d like to thank a number of friends and colleagues, at OSU and elsewhere, who

played some part in the dissertation process, from providing LaTeX style files to

keeping me company while I typed—this list is far from complete: Laurie Maynell,

Ed Hubbard, Jennifer Venditti, Svetlana Godjevac, Martin Jansche, Vanessa Met-

calf, Kordula DeKuthy, Nathan Vaillette, Wes Collins, Neal Whitman, Markus

Dickinson, James Levy, and, in particular, Hope Dawson, who generously took on

the task of proofreading the entire manuscript; the Clippers discussion group; the

v

participants of TMI 2002; and current and former members of the NLP group at

Motorola Labs, especially Harry Bliss, Dale Russell, Will Thompson, Tom Hayosh,

and Guido Minnen.

Last, I would like to thank those people who had the most direct impact on

the dissertation, the members of the dissertation committee: Chris Brew, Erhard

Hinrichs, Bob Kasper, and Detmar Meurers. Detmar came last to the work—

offering new perspectives, fresh insights, and lots of encouragement. I feel lucky to

have had the chance to both work with him and call him a friend. Erhard deserves

special thanks, serving as both a mentor at OSU and in Tübingen, and having the

special ability to pinpoint exactly where a key comment needs to be made and how

work is likely to be perceived; his comments always constructive and his advice

invariably wise—he’s a great person to have in your corner. I had two advisers

at OSU: Bob for the early years and Chris for the later ones. Both taught courses

which had direct impact on this work. Bob and Erhard co-taught a great seminar on

finite-state methods which kicked off my interest in automata in NLP. Chris opened

the world of statistical NLP to me, sparking a whole new range of interests; as the

adviser in my final years at OSU, he had the most influence on the linked automata

work, for which I am very grateful. The synergy of these sorts of influences led me

to the ideas which developed into this dissertation. Although Bob and Chris were

my advisers at different times—they share many traits: They are both incredible

researchers and teachers. More importantly, they are extremely good people, who

always take time out for their students, regardless of what else they have to do. I

cannot imagine having had better advisers.

vi

VITA

1966 . Born in Cleveland, Ohio

1988 . B.S. in Business-Economics,
Miami University

1996 . M.A. in Linguistics, University of
Wisconsin-Madison

PUBLICATIONS

Davis, Paul C. and Chris Brew. 2002. Stone soup translation. In Proceedings of the
9th Conference on Theoretical and Methodological Issues in Machine Translation
(TMI-02), 31–41, Keihanna, Japan.

Davis, Paul C. 2000. Presupposition resolution with discourse information struc-
tures. In Varia. Ohio State University Working Papers in Linguistics, ed. by
Jennifer S. Muller, Tsan Huang, and Craige Roberts, vol. 54: 25–58.

Kasper, Robert T., Paul C. Davis, and Craige Roberts. 1999. An Integrated Ap-
proach to Reference and Presupposition Resolution. In Proceedings of the ACL’99
Workshop on the Relationship Between Discourse/Dialogue Structure and Refer-
ence, 1–10, College Park, Maryland.

Kasper, Robert T., Mike Calcagno, and Paul C. Davis. 1998. Know When to
Hold ’Em: Shuffling Deterministically in a Parser for Nonconcatenative Grammars.
In Proceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and the 17th International Conference on Computational Linguistics,
pp. 663–669, Montreal, Canada.

vii

FIELDS OF STUDY

Major field: Linguistics

Specialization: Computational Linguistics

viii

TABLE OF CONTENTS

Abstract . ii

Acknowledgments . iv

Vita . vii

List of Figures . xiii

List of Tables . xvi

CHAPTER PAGE

1 Introduction . 1

1.1 Thesis Overview . 3
1.2 A Brief History of Machine Translation 4
1.3 Why MT Is Difficult . 11

1.3.1 Programmatic Issues . 11
1.3.2 MT Task-Specific Issues . 14

1.3.2.1 Ambiguity . 14
1.3.2.2 Mismatches . 17

2 Empirical MT: A Review of the Literature 22

2.1 Introduction . 22
2.2 Statistical Machine Translation . 27

2.2.1 Pure Statistical Methods . 27
2.2.2 Finite-State Methods . 36

2.2.2.1 Stochastic Inversion Transduction Grammars 38
2.2.2.2 Composed Transducers 41
2.2.2.3 Subsequential Transducers 44
2.2.2.4 Weighted Head Transducers 50
2.2.2.5 Two Models in One: Lexical Selection and Reordering 54
2.2.2.6 A Hybrid Finite-State Model 58

ix

2.3 Example-Based Machine Translation 60

3 Preliminaries to the Model: Corpora and Alignment 69

3.1 The Parallel Texts and Their Preparation 70
3.2 Alignment . 72

3.2.1 Word Alignment . 74
3.2.2 A Simple Word-Aligner . 78

3.2.2.1 Overview of Word Alignment Algorithm 81
3.2.2.2 Calculating the Word Alignment Scores 85
3.2.2.3 Reducing the Word Alignment Search Space 87

3.2.3 Using a Better Word-Aligner 87
3.2.4 Hand Aligning . 89

3.3 Word Alignment Evaluation . 95
3.3.1 Evaluating the Word Alignments Produced 111

4 The Linked Automata Model . 114

4.1 The Model and Its Motivation . 115
4.2 A Look Inside the Linked Automata Model 120

4.2.1 The Automata . 120
4.2.2 The (Simple) Transition Alignment Table 123

4.3 Making the Model Probabilistic . 124
4.3.1 Automata Probabilities . 125
4.3.2 Table Probabilities . 127
4.3.3 Combining Probabilities . 129
4.3.4 Fragments . 130
4.3.5 Probabilities for Empty Transitions 134

4.4 Constructing the Model: The Algorithms for Training 137
4.5 Using the Model: The Algorithms for Translation 141

4.5.1 Translation Stage I: Parsing The Source Sentence 142
4.5.2 Translation Stage II: Activating Linked Target Transition

Sequences . 144
4.5.2.1 A Digression on Alignment Probabilities 148

4.5.3 Translation Stage III: Assembling Activated Target Transitions
to Find the Best Translation 151
4.5.3.1 Handling Empty Transitions in Translation 157

4.6 Comparing the Linked Automata Model to Previous Work 162
4.6.1 Pure Statistical Machine Translation 162
4.6.2 Probabilistic Finite-State Models 163

4.6.2.1 The Linked Automata Model and SITGs 164

x

4.6.2.2 The Linked Automata Model and Subsequential
Transducer Models . 165

4.6.2.3 Comparison with Weighted Head Transducers 166
4.6.2.4 Comparison with Lexical Selection and Reordering . . 168

4.6.3 Example-Based Machine Translation 170
4.6.4 Summary . 171

5 Preliminary Evaluation . 173

5.1 Introduction . 173
5.2 Types of MT Evaluation . 174
5.3 Other Aspects of Evaluation to Consider 179
5.4 An Evaluation Method for the Proposed System 183

6 Extending the Model, Part I: Generalization 191

6.1 Introduction . 191
6.2 Merging . 192

6.2.1 Merging at the Automaton Level 192
6.2.2 Merging at the Translation System Level 197
6.2.3 The Effects of Merging and When to Merge 201
6.2.4 A Complication of Merging . 204

6.3 Additional Increased-Coverage Techniques 205
6.3.1 Fragment Processing . 208

6.3.1.1 A Few Implementation Details Concerning Fragments . 210
6.3.2 Unknown Word Fall-Through 217
6.3.3 Partial Source Parsing . 219
6.3.4 Partial Target Parsing . 224

6.4 Evaluation After Generalization . 230

7 Extending the Model, Part II: Using More Linguistic Information and More
Complex Alignments . 242

7.1 On the Effect of Training Set Size 243
7.2 Extending the Model with More Linguistic Information 246

7.2.1 A POS Tagging Experiment 247
7.2.1.1 Results of the POS Tagging Experiment 250

7.3 Extending Model Coverage: Discontinuous Alignments 252
7.3.1 Motivation . 253
7.3.2 A Review of (Discontinuous) Alignment Terminology 254
7.3.3 Handling Discontinuous Alignments in the Model 257

7.3.3.1 Target Discontinuities 257

xi

7.3.3.2 Source Discontinuities 259
7.3.4 Evaluation . 263

7.3.4.1 On Finding A Test Set for Discontinuous Alignments . 266
7.4 Conclusions: Where the Model Stands and a Look to the Future . . 276

7.4.1 The Present . 276
7.4.2 The Future . 278

APPENDICES

A Translation Examples of Various Translation-Accuracies 280

Bibliography . 284

Subject Index . 294

Author Index . 304

xii

LIST OF FIGURES

FIGURE PAGE

2.1 Different types of MT models . 24

2.2 An example English and French word alignment 29

2.3 The noisy channel model for translation 29

2.4 SMT as a cascade of finite-state devices 42

2.5 An example of a subsequential transducer (SST) 45

2.6 The reordering process. The original pair with alignments is shown
on top, and the reordered result on bottom 48

2.7 A head transducer which can reverse a string of arbitrary length in
the alphabet {a,b} . 52

2.8 A dependency tree representation induced in Bangalore & Riccardi
(2001) (left) and a more linguistically motivated representation (right) 56

2.9 The “Vaquois pyramid” for machine translation, adapted for EBMT 61

3.1 An English and French word-aligned bitext 70

3.2 Some typical alignments between source (x) and target (y) words . 74

3.3 A swapping word alignment . 76

3.4 A discontinuous alignment . 77

3.5 The word alignment tool . 92

3.6 A discontinuous English to Spanish alignment from Genesis 94

3.7 Coping with discontinuity when it is not permitted 95

xiii

4.1 A word-aligned English and French bitext 117

4.2 A bitext as represented in the linked automata MT model 118

4.3 Linked automata model of one transition per word, illustrating the
problem of cyclicity . 122

4.4 Linked automata model construction algorithm from aligned bitexts 138

4.5 Automaton construction function for building from aligned bitexts 139

4.6 The construction process . 140

4.7 The linked automata translation algorithm (simple table) 141

4.8 Translation Stage I: Parse the source sentence 143

4.9 The basic idea of the simple table 145

4.10 Translation Stage II: Get links from table 145

4.11 Translation Stage III: Put the target transitions together 154

6.1 Merging on the automaton level . 194

6.2 The algorithm to okay automaton transition merges 197

6.3 Safe merging on the translation system level 198

6.4 Unsafe merging on the translation system level 199

6.5 Overview of (simplified) construction merging algorithm 202

6.6 The algorithm to merge in a translation system 203

6.7 An emerging merging problem . 205

6.8 Results of merging problem . 206

6.9 A two-dimensional hash as a transition function 212

6.10 Overview of depth-first recognition algorithm (pruning not shown) 213

6.11 An inefficient fragment recognition algorithm (pruning not shown) . 214

6.12 Adding a label index for fast fragment recognition 215

6.13 An efficient fragment recognition algorithm using the label index . 216

xiv

6.14 A word-aligned English and French bitext, showing safe segmenta-
tion points (known as rifts) and unsafe segmentation points 223

6.15 Overview of algorithm for selecting best set of target transitions in
partial target parsing . 229

6.16 Overview of algorithm for selecting best transition in partial target
parsing . 230

7.1 The effect of training set size on translation-accuracy 244

7.2 A discontinuous German to English word alignment 253

7.3 A discontinuous English to Spanish alignment from Genesis 254

7.4 Discontinuous constituents without discontinuous alignments 255

7.5 Target discontinuity in a German to English word alignment 256

7.6 The final translation stage . 258

7.7 A bitext in the linked automata MT model 258

7.8 The second translation stage as presented with the simple table ar-
chitecture of section 4.5.2 . 260

7.9 Two table architectures: simple (left) and discontinuous capable
(DC) (right) . 261

xv

LIST OF TABLES

TABLE PAGE

3.1 Seeded CYK array for bitext 〈the cat sleeps; el gato duerme〉, with
alignment window of length 1 . 84

3.2 Word Alignment Agreement (WAA) scores for the five word
alignments, A-E . 108

3.3 Word Alignment Agreement (WAA) scores for the CYK and Giza++

word alignment sets with the hand-aligned gold standard. 112

3.4 WA-Edit-Agreement scores for the CYK and Giza++ word alignment
sets with the hand-aligned gold standard, after removing all null
alignments. 113

5.1 Summary of feasibility test results (English to Spanish) 189

6.1 Summary of feasibility test results (English to Spanish), merged
systems . 231

6.2 Summary of test suite 2 results . 234

6.3 Summary of test suite 3 results . 238

6.4 Summary of test suite 4 results . 240

7.1 Summary of POS tagging experiment results 251

7.2 Summary of discontinuous alignment test results 265

7.3 Summary of test suite 5 results for target discontinuous alignments 269

7.4 Summary of test suite 6 results for source discontinuous alignments 274

xvi

CHAPTER 1

INTRODUCTION

Perhaps I risk hyperbole but it seems to me that computer translation

ought to rank as one of the noblest of human undertakings, as in its

broadest aspects it attempts to understand, systematize and predict

not just one aspect of life but all human understanding itself. Measured

against such a goal, even its shortcomings have a great deal to tell us.

Perhaps one day it will succeed in such a quest and lead us all out

of the jungle of language and into some better place, although for all

the reasons I have mentioned this appears somewhat unlikely. (Gross

1992:123)

The automated translation of one language to another is known as machine

translation. Quality machine translation (MT) remains one of the quintessential

goals of computational linguistics, as a supremely challenging task bringing to-

gether theoretical linguistics and computer science. MT approaches garner a va-

riety of techniques from both fields, and span differing domains in terms of pairs

and types of languages handled, the amount of language covered, as well as the

breadth of world knowledge encoded in the system. Like most niches of Natural

Language Processing (NLP) research, MT systems range from practical programs

used in real-world applications, to theoretically newborn systems which explore new

frontiers. Everpresent in these efforts is the knowledge that in a task that bilingual

1

humans accomplish with great fluency, MT systems have never yielded high-quality

translations in unlimited domains. This state-of-affairs should not be surprising,

given the difficulty linguists face in modeling one language; machine translation

requires the successful modeling of two languages, as well as modeling a translation

relation between them.

In this thesis a new model for MT is introduced. The linked automata model

brings together very simple technologies, technologies which in isolation should not

be adequate for translation, to explore how far they can be pushed as a translation

system. Previous finite-state translation approaches have centered on transducers,

well-understood but limited finite-state machines, which tie together two languages

in a single device. Transducers can perform well in very restricted language do-

mains, but do not have the ordering flexibility to directly model the word-ordering

differences often found between languages.

The linked automata model breaks the strict coupling of languages found in

transducers into two separate models, using one automaton for each language, and

an alignment function to link words in the languages. The goal for this augmented

probabilistic finite-state model is to more directly encode the correspondence be-

tween sequences of words in two languages than can be accomplished with transduc-

ers alone. As such, the model aims to be a more appropriate translation approach

which still utilizes many of the advantages of finite state devices. This dissertation

thoroughly explores the linked automata MT system from the ground up, detailing

its motivation, construction, use, performance, and the necessary extensions and

heuristics so that it can generalize beyond its modest architecture, as a beginning

investigation of its properties as an automatic translation tool. The model and its

2

exploration should be viewed as a skeleton around which more ambitious translation

models can be built. The linked automata model is an empirical one, automatically

constructed exclusively from parallel texts, which neither fully encodes syntactic

nor semantic structure, much less knowledge from context or culture. In this work

I hope to show that it offers a promising base for future development.

1.1 Thesis Overview

This thesis is organized into seven chapters. In the remainder of this chapter, I

give a brief history of machine translation, in section 1.2, and discuss some of the

major difficulties machine translation efforts are likely to face, in section 1.3. In

Chapter 2, the MT literature most relevant to the linked automata model is re-

viewed, with special emphasis on statistical machine translation and finite-state

machine translation. Chapter 3 details all the preliminaries to the model, includ-

ing the preparation of texts used in the experiments. An essential assumption of

the approach is that training texts have been aligned. Chapter 3 details several

word alignment approaches, and introduces a word alignment evaluation method

for comparing the results to a hand-aligned gold standard. In Chapter 4, the linked

automata model is described in detail. Beginning with the motivation for the model,

I describe the two language models and the alignment model, and detail the use

of probabilities. The preliminary algorithms for construction and translation are

also given, and finally the model is compared to some of the other MT approaches

described in Chapter 2. In Chapter 5, the evaluation of the system begins with

a discussion of evaluation for MT in general and identification of the appropriate

evaluation methods for the linked automata model. The model is then evaluated

3

on the two data sets built in Chapter 3. In its basic form, the linked automata

system can only process sentences on which it was trained. In Chapter 6, the model

is extended with several generalization techniques, the most important of which is

merging in the automata. In addition to describing merging and its ramifications,

I give several other increased-coverage heuristics, and reevaluate the system. In

Chapter 7, the final chapter of the dissertation, I describe some of the research

directions the project may take. There are two main threads here, one being using

more linguistic information, and the other being extending the model’s coverage. In

addition to identifying certain of these areas likely to prove fruitful, two final exper-

iments are presented: the use of part-of-speech tags, and the use of discontinuous

word alignments. Lastly, at the end of Chapter 7, I provide an assessment of where

the linked automata model stands and its future in the world of MT research.

1.2 A Brief History of Machine Translation

Before embarking on a description of a new approach to machine translation, a brief

survey of the history of MT may be useful. This mini-history is not intended to be

exhaustive, nor to give details on specific algorithms, but rather to give some of the

highlights (and lowlights) of the field over the last 50 years, and to point interested

readers to further resources.1

Some researchers point as far back as the 1600s, to Leibniz, Descartes, and

others, for proposals of numerical codes to relate the words of different languages to

each other. None of these proposals were for the construction of actual machines,

1For an excellent and thorough history of the early years of MT, see Hutchins (1986), and for
first-hand accounts from some of the early MT pioneers, see Hutchins (2000a).

4

however. Such ideas were not made explicit until the twentieth century, when the

precursors to the computer were being invented (Hutchins 1986). There is some

debate as to who first proposed mechanical translation between natural languages,

but most histories point to conversations between Warren Weaver and Andrew

Booth, in the late 1940s (see Arnold et al. (1994) and Booth & Locke (1955)),

and in particular to a memorandum sent in 1949 by Warren Weaver to some 200

scientists who he thought might be interested in the notion of machine translation

(Hutchins 1986).

The Weaver memorandum, sent on July 15th, 1949 (see Weaver (1955) for a

reprinted version), focused on long-term strategies for MT, made possible by the

invention of the computer. Weaver was well aware of electronic computing capa-

bilities due to his work with computers during Word War II. His memo cited four

key issues for the translation of natural language, and gave preliminary ideas for

how to work with them: 1) The problem of multiple meaning, 2) the (at least

occasional) logical nature of language 3) the use of insights from cryptography

(Weaver followed the work of Claude Shannon, and the two would later co-author a

book), and 4) the possibility of linguistic universals. Weaver thought that context

could be used to disambiguate meanings (presaging many of the statistical meth-

ods for MT to come later, see Chapter 2), and that computers ought to be able

to process those elements in language which were written in a logical style (e.g.,

scientific articles, as opposed to literary works). Weaver employed an example of

relating translation to cryptography, in viewing a Chinese text as just English in a

Chinese code (an idea to be implemented in Brown et al. (1993)). Last, Weaver saw

5

linguistic universals as one of the most promising traits: “the most promising ap-

proach of all is one . . . that goes so deeply into the structure of languages as to come

down to the level where they exhibit common traits” (Weaver 1955:23).

Weaver’s memorandum generated widespread interest in the potential of auto-

matic translation (Booth & Locke 1955), and in the years that followed many re-

search projects were initiated, especially in the United States, with important work

also emanating from England (particularly that of Booth) and the Soviet Union.

The next decade was a time of fruitful research. Yehoshua Bar-Hillel became the

first full-time paid MT researcher (appointed to a position at MIT in 1951), and

he organized the first MT conference in 1952 (Booth & Locke 1955). Thus began

what might be viewed as the first golden-age of MT research.

Some work during this decade focused naturally on some of (what would be

viewed today as) the more mundane I/O and hardware issues of the time: Storage

and speed issues were a constant reality of the early computing era. But work also

focused on many of the core issues that remain today: how best to represent lexi-

cons and the grammars of languages, how to map between them (directly or via an

interlingua), and how to deal with ambiguities and disparate syntactic structures

between languages. The Cold War led to much interest in MT between Russian

and English, and a modest MT experiment was given at Georgetown in 1954. The

Georgetown-IBM experiment consisted of translating a small set of highly con-

strained Russian sentences into English. The program applied word lookup (it had

a vocabulary of 250 words), some morphological analysis, and used six grammatical

rules (see Hutchins & Somers (1992) and Vasconcellos (2000)). The experiment was

successful enough that money began to flow to MT in earnest (Hutchins 1986).

6

At the same time, some researchers (especially Bar-Hillel) were beginning to

become skeptical about the possibility of high-quality automatic translation. In

1951 Bar-Hillel already thought it obvious that automatic translation was only

possible at the expense of accuracy, and he suggested that MT might work best when

assisted by humans, a mixed MT; a human partner might be placed on both ends

of the translation process (as a sort of pre- and post-editor) (Hutchins 2000c). Bar-

Hillel’s criticisms would grow by 1959 to a complete loss of confidence in the prospect

of high-quality MT (Hutchins 1986). Meanwhile, even at the same university, while

acknowledging MT’s shortcomings, many researchers continued on enthusiastically.

Victor Yngve led projects at MIT. In 1955 he made a program which searched

text left-to-right, looking for longest matches of word and phrase classes which had

been earlier defined. The approach appeared promising, but it failed to account for

different word ordering in the language being translated to (Yngve 2000). During

the later 1950s, several more MT conferences were held, and Yngve (along with

William Locke) started the first machine translation journal, MT , which would

continue to publish until 1970 (Yngve 2000).

Notwithstanding the enthusiasm some held, the criticisms of Bar-Hillel and oth-

ers would eventually spell the end of much of the funding for MT research. Ac-

cording to Hutchins (1986), Bar-Hillel’s 1959 report stated that not only was high-

quality automatic machine translation unattainable in the present, but altogether

an impossibility! Bar-Hillel’s criticism essentially rested on the utter impossibility

of a computer being able to have enough world-knowledge to resolve ambiguities

unresolvable from context alone, citing the example:

7

(1) The box was in the pen.

in the context of:

Little John was looking for his toy box. Finally, he found it. The box was in
the pen. John was very happy.

Bar-Hillel claimed that the ambiguity between the two meanings of pen could

only be resolved by understanding the relative sizes of objects (i.e., a box could fit

into playpen but not into an ink pen). Hutchins (1986) views some of Bar-Hillel’s

criticisms as too strong, given the field’s infancy and Bar-Hillel’s own withdrawal

from MT work, but concedes that “Bar-Hillel’s case . . . convinced many not involved

in MT research that MT as such was doomed to failure, and it has continued to

represent a challenge and point of departure for arguments about MT to the present

day” (Hutchins 1986:155).

The growing dissent within the field led funding agencies to question their pri-

orities. In 1963, the CIA withdrew funding for the Georgetown MT group, and

in 1964, a committee known as ALPAC (Automatic Language Processing Advi-

sory Committee) was formed by the NSF in order to investigate the state of MT

research in the U.S., and to determine if funding should be continued (Hutchins

2000b). The conclusions of the committee, published in 1966 (Pierce et al. 1966),

seemed predestined. The committee consisted of seven members, of which only two

had worked on MT, David Hays and Anthony Oettinger. Neither believed in a

continuation of MT research. As Oettinger (2000:83) states, “I knew that I was

probably going to end up by taking my own research field ‘down the drain’ but I

already had the firm conviction that MT was not going anywhere and that it made

no sense to perpetuate a fraudulent belief that something might be achieved.” To

8

make matters worse, the two linguists on the committee, Eric Hamp and Charles

Hockett, and the one AI researcher, Alan Perlis, were all, in one form or another,

skeptical of mathematical and computational linguistics (Hutchins 1986).

The ALPAC report recommended that funding for MT research cease, but that

funding for non-MT computational linguistics as well as linguistics in general should

be continued. The committee found that MT quality was too low to be useful, and

that there was indeed no need for any additional non-human translators: “The

supply of translators greatly exceeds the demand The Committee is puzzled

by a rationale for spending substantial sums of money on the mechanization of

a small and already economically depressed industry” (Pierce et al. 1966:11-12).

Arnold et al. (1994) find some of these views particularly absurd, given the need for

translation from Russian during the Cold War, and the fact that at the time of the

report at least three MT systems were in use (at the Wright Patterson Air Force

base, at Oak Ridge Laboratory, and at the EURATOM Centre at Ispra, Italy).

These systems provided translations which would need to be post-edited, but still

saved translators time; but the committee seemed focused only on fully-automatic,

high quality translation.

Funding in the United States for MT effectively ceased after the report’s pub-

lication, and the funding death spread to Europe. In the USSR the effect on MT

work was equally devastating (Mel’čuk 2000). There were some notable exceptions,

such as the TAUM group in Canada, who would develop the METEO system,

which has been in daily use since 1977 at the Canadian Meteorological Center

in Montreal (Arnold et al. 1994). Research in MT became somewhat stigmatized

9

and The Association for Machine Translation and Computational Linguistics, first

formed in 1962, became know as The Association for Computational Linguistics in

1968 (Hutchins 1986).

In the late 1970s, MT began to make a bit of a comeback (Arnold et al. 1994).

There was a significant increase of MT activity in Japan, and in Europe an indirect

descendent of the Georgetown system, known as SYSTRAN, was bought by the

Commission of the European Communities, for translation from English to French.

SYSTRAN today remains arguably the most successful commercial MT company.

MT systems also developed along a number of different theoretical lines, from those

which were direct (source language to target language) systems, to those which

went by some means of transfer, such as a syntactic mapping or even an interlingua

(Hutchins 1986).2 In general, research also became more sophisticated linguistically,

resulting in a number of approaches which sought to better capture the grammars

of the languages involved, rather than improve translation algorithms.3

These systems spawned a number of different theoretical approaches, many of

which continue to be developed today, and gradually, funding for MT returned to

the U.S., although it lagged behind the research efforts in Japan and Europe. What

most of these systems shared, whether direct or transfer; word, syntax, semantics,

or interlingua based; fully-automatic or human-aided; is that most aspects of the

translation models were hand-coded. That situation changed greatly in the 1990s,

2Detailed descriptions of some of the varying techniques can be found in Hutchins (1986), and
case studies of some of the projects in Hutchins & Somers (1992).

3Although there was a perception, at least in the 1980s, that many of the more linguistic systems
did not function very well (see section 1.3.1).

10

with the growth of data-driven approaches, such as statistical MT and example-

based MT. These types of empirical approaches will comprise the main part of the

literature review in Chapter 2.

1.3 Why MT Is Difficult

No one well-acquainted with machine translation doubts that it is a very difficult

enterprise. Prior to presenting the linked automata model, it is important to exam-

ine some of the reasons why MT is difficult, especially those bigger picture issues

relevant to all systems, regardless of the approach taken. Of course, the problems

likely to arise in an MT project could fill volumes in themselves, so here I try to

give a brief survey of the types of problems an MT researcher will either have to

remedy or tolerate.

The difficulties found in MT can be divided into two groups: 1) programmatic

or meta issues, i.e., how MT research is done, and the more important, 2) aspects of

the MT task that make it difficult. I begin with the former, and focus more closely

on the latter.

1.3.1 Programmatic Issues

There are critics of MT, and then there are critics of the way that MT is done. One

of the most respected voices among those questioning the MT research process itself

has been Martin Kay (Kay 1982; Kay 1997a; Kay 1997b). Kay’s chief criticisms seem

to be that there is too much focus on the linguistic parts of the task, that not enough

attention is paid to how humans go about translating, and, perhaps most damningly,

that these mistakes are repeated over and over: “the determination of those working

11

in the field doggedly to pursue old questions with old methods is apparently without

bounds” (Kay 1997a:38). Kay’s desire for more research on human translation

techniques is echoed by others, such as Gross (1992), but his views on the over-

focus on linguistics are somewhat more controversial.4 Nevertheless, he makes a

compelling argument:

[S]ystems that are made up entirely of linguistic components actually

degrade as the linguistics on which they are based improves. This should

not be surprising. It is the job of the linguist to describe and account for

the meaning potential of words, phrases, sentences, text and dialogues.

It is not the job of the linguist to say what part of this meaning poten-

tial is being exercised in any given circumstance. Simply put, the better

the linguistics, the greater the number and the subtlety of the ambigu-

ities that will be unearthed and the greater the resulting strain on the

nonlinguistic components of the system whose job it is to resolve them.

Previous systems had little or nothing in the way of non-linguistic com-

ponents and essentially none are proposed for those being built today.

It is for this reason that Systran remains the best MT system available,

and that Verbmobil will, with sickening surety, fail to produce anything

of the slightest interest. (Kay 1997a:36)

Others, such as Gross (1992) view MT as essentially a linguistic problem, but

one that may be intractable, citing familiar arguments that humans simply do

not have the capacity to define a mathematical solution to a problem involving

translation, since any language used to express the solution would itself be a subset

of the language(s) of the larger problem. Gross (1992) also sees cultural differences

reflected in languages as being very prevalent, so much so that claims of linguistic

universals being an aid to translation are unfounded.

4Hutchins (1986) too seems to share this view, that ‘perfective’ linguistics systems have never
been successful, and for the most part never built beyond toy systems.

12

Many of the researchers critical of MT still favor further MT research, but they

want it to be realistic, focusing on areas where it is most likely to be successful,

such as fast, lower-quality translation, machine-aided translation, or translation in

limited domains (sublanguages or controlled languages). Others, such as Melby

(1997), are less pessimistic, and while agreeing with the difficulties posed by MT

research methods of the past, point to a number of MT successes, as well as vast

improvement in engineering and in linguistics, which have the potential to yield

much better systems.

I think that one of the main points a researcher should take from these criticisms

is that MT is not purely a linguistic problem, to be solved by linguistics alone. It

is a translation problem, requiring insights from human translation, linguistics,

computer science, and statistics. Perhaps more importantly, like all seemingly in-

tractable problems, acceptable solutions may be found via methods to approximate;

thus MT makes a most compelling case for a synergy between the symbolic and the

statistical, and between the linguistic and the engineering approaches. Addition-

ally, like any large-scale research project, MT development must be well planned

and designed, and able to accommodate changes in theory and the addition of new

components.5 Regardless of one’s view of how MT research should be done, the

task-specific problems identified in the next section need to be dealt with.

5One of the criticisms of Systran is that it treats every phenomenon as a special case, and that
therefore potential improvements are just as likely to degrade accuracy as to increase it (see
Kay et al. (1994); Wilks (1992)).

13

1.3.2 MT Task-Specific Issues

The difficulties identified in the preceding section might more properly be called

criticisms of the MT process. In this section, we turn to those problems pervasive

in the MT task that make it so difficult. The places where a machine translation

system is likely to encounter the most difficulty might best be divided into two (not

altogether unrelated) groups: 1) ambiguity/indeterminacy and 2) lexical/structural

mismatches.

1.3.2.1 Ambiguity

Language is ambiguous. This should not come as a surprise, because language needs

to be flexible enough to be used in differing circumstances:

A language makes available to its users, words and sentences that are

flexible, or vague enough, so that they can fit a variety of situations.

When placed in those situations, on the other hand, they acquire a

precision that no grammar or lexicon could possibly have provided for

(Kay et al. 1994:20).

I use ambiguity here as a cover term for all the sorts of phenomena which need

to be interpreted with regard to a context, be that context local (within a phrase

or sentence), global (within a text), or even nonlinguistic (within a genre, subject

specific, or cultural); the term thus includes lexical and syntactic ambiguities, as

well as other sorts of indeterminacies and underspecifications.

This notion of interpretation relative to a context is an important one, and

Kay et al. (1994) single it out as the biggest problem for interpretation. They refer

to language being situated , in that the meaning of a word or phrase is determined by

14

the situation in which it occurs, and that the meaning of larger units, such as texts,

is determined by the situations in which they are used. When these situations (or

contexts) are not taken into account, ambiguities arise.

Arnold et al. (1994) identify a number of different types of ambiguities an MT

system will face, beginning with lexical ambiguity. Consider the well-worn example

of the English word bank below:

(2) I have to get some money out. I can meet you by the bank.

To correctly translate (2) into a language which does not have the same lexical am-

biguity for bank (i.e., financial institution or land bordering water), an MT system

will have to refer to the context of the sentence, since the preceding sentence can

be used to disambiguate between the two meanings. And suppose it so happened

that the target language did possess this exact same lexical ambiguity. Then an

MT system could translate the sentence without considering the ambiguity, but how

would it know? That is, to take advantage of the parallel ambiguity, a system would

either have to not be aware of the ambiguity at all, or be aware of the ambiguities

in both source and target languages.

Consider another lexically ambiguous example from Kay et al. (1994), using the

word open. Open means something different if shown on a milk carton, on a store

window, or flashing on a microwave oven. Again, the key here is context, in this

case the world context. Resolving these types of ambiguities may be possible from

textual context, but often it is not, and requires world knowledge for disambigua-

tion, such as Bar-Hillel’s pen example, (1), given earlier. Many MT researchers view

this type of problem as one of the most difficult to solve (see, for example, Rosetta

(1994)).

15

There can also be syntactic ambiguities, such as PP attachment ambiguity in

the example below (Arnold et al. 1994):

(3) Connect the printer to a word processor package with a Postscript interface.

This sentence is syntactically ambiguous in at least two ways. First, it could mean

that the printer should be connected to a word processor package and that word

processor package has a Postscript interface. The second meaning is that the printer

should be connected to a word processor via the word processor’s Postscript inter-

face. What is interesting in this sentence, as Arnold et al. (1994) point out, is

that if one understands something about Postscript interfaces, namely that they

are software and cannot be used to make physical connections, only the first mean-

ing is available. Thus, this seemingly ambiguous sentence is not ambiguous, given

sufficient knowledge (knowledge which is not available from context). Once again,

an MT system which does not have access to this sort of knowledge (which is likely

to be the case), will have difficulty translating such sentences.

There are often, of course, cases of genuine syntactic ambiguity. Those sentences

which people find ambiguous in at least some contexts would be expected to be

difficult for any MT system, such as (4) below:

(4) The girl saw the man in the store.

Such structural ambiguities need not always be resolved in a translation, since the

ambiguities can sometimes be retained in the target language sentence. The ability

to make such translation decisions with confidence, however, requires that the MT

system be aware of the ambiguities in both languages.

16

There are many, many types of phenomena which fall under this broad category

of things indeterminate, all of which pose challenges for MT systems, such as pro-

noun resolution, ellipsis, and the like, which humans process fluently, but which can

cause an MT system to falter. And for MT systems, such difficulties are especially

likely, given that misanalyses on either side of the translation relation can cause

problems down the road. Should we take these sorts of difficulties to mean that

translation should not even be tried? The answer, for my part, is no. What it

does mean is that we need to be realistic in our expectations of what MT systems

can handle, and we need to leave open means for these types of ambiguities to be

resolved, should such technology become available.

1.3.2.2 Mismatches

An equally broad category of potential MT difficulties could be called mismatches,

covering mismatches on the lexical, structural, and cultural levels. This category is

not wholly independent from the ambiguities, but the crucial difference is that the

mismatches are a property of a divergence between two languages, as opposed to

an indeterminacy in one.

We begin with divergences on the lexical level. Consider the English words

door and gate. In Spanish, both these words are translated as puerta. Thus, we

might say that we have a conceptual mismatch at the lexical level. Translating from

English to Spanish, this poses no problem: We always choose puerta. But what is

the correct translation in the other direction? Again, as in the ambiguity cases,

context may provide the necessary clues.

Another type of lexical mismatch is termed a lexical hole (Arnold et al. 1994). A

lexical hole occurs where one language has a concept lexicalized but the other does

17

not, such the French word ignorer , which in English could be translated as to not

know or to be ignorant of , but not with a single word. These types of mismatches

will confound translation systems which only map single words or compounds to

each other.

Moving away from lexical mismatches, we find the very related phenomena of

dealing with collocations and idioms—multiword units which may be noncontigu-

ous. To translate English idioms like to pass away or to kick the bucket to French,

one must know that they idiomatically mean to die, thus a good translation might

be mourir, as opposed to a literal translation of the sequence of words: to kick

the bucket. But, to handle these types of cases, an MT system must be able to

differentiate idioms from syntactically analogous phrases, such as to kick the chair.

In addition, although they might be handled as special cases, some idioms also

vary their form (e.g., kicking the bucket, will kick the bucket, etc.), meaning the

number of special cases will multiply (Arnold et al. 1994). Collocations are similar

to idioms, but are more compositional (i.e., the meaning is more easily determined

from the words). The problem with collocations is that certain word choices are

preferred (Arnold et al. 1994):

(5) He made {*had, *took} an attempt

Collocations may be able to be handled with context, special lexical entries (like

idioms), or sometimes by taking selectional restrictions into account, but they tend

to pose problems for MT systems, especially for generating fluent target language

text.

Other (multi-) word units, such as compounds, must also be handled. As Kay

et al. (1994) state, the mapping from words in one language to another can be

18

anything but direct, since word meanings vary in the circumstances in which they

are used. They cite the example of the English health insurance and the German

Krankenversicherung, which literally means sickness insurance. Although such mis-

matches are fixed and might be stored as such in a lexicon, not all mismatches can

be, especially when we begin to consider what I will call structural mismatches.

Given the Spanish sentence:

(6) Ha salido

has left

‘He/She departed’

How should it be translated into English, with the pronoun he or she? These types

of structural mismatches (which could be also called indeterminacies, hence the

overlap with the previous section) are abundant in translation, and the usual sorts

of tactics might be applied (e.g., looking to context for resolution). Other familiar

examples include the lack of distinction for gender in Finnish pronouns, or the lack

of required determiners in Japanese. Both these instances will cause problems when

translating to a language which requires such information. As is the usual story,

MT systems which have a better sense of the translation situation, of the context

and the meaning of the text, may be able to resolve these types of mismatches.

The most difficult mismatches, like the most difficult ambiguities, are those

which relate to culture. In Spanish, when answering questions posed in the negative

with śı (meaning yes), the English translation should be no, and vice versa (Kay

et al. 1994). These types of differences cannot simply be encoded into a lexicon.

This identification of potential translation difficulties, both of the ambiguous

and the mismatch varieties, is not intended to be exhaustive, but it should give

a sense of why translation, even beyond the large scope of the problem, is such

19

a difficult task. Most translation systems will not be able to account for most of

these problems. This will particularly be true for new systems, such as the linked

automata model presented in this dissertation, which attempt to exploit simple

architectures, and which possess no special components for handling, for example,

idioms or grammatical differences, or for storing world knowledge. The system to

be proposed will, however, show some potential strengths in this area, because it

allows for noncontiguous sequences of words to be related, and was designed with

the notion of folding additional components into the system in mind. Additionally,

its statistical nature may allow it to learn many of the collocational patterns found

in translations. Nevertheless, it would be naive to expect such a system to fare well

with such difficult test cases as the examples of this section.

Thus, even beyond the sheer scope of the undertaking, the challenges of auto-

matic translation should not be underestimated. Should we take these difficulties

as a sign that translation is impossible? I think not, but we should always bear

them in mind, as aspects that will need to be addressed. Systems must be also be

adaptable, since those filled with special cases are destined to be limited. It may

be instructive to look at what were identified as some of the major obstacles for

translation in the past. In 1967, Yngve identified some of the major hurdles MT

researchers needed to overcome (as of 1965). One obstacle was the lack of a proper

programming language. At MIT, Yngve and his team came up with COMIT, a

language designed to make life easier for the linguist as programmer. Viewed to-

day, COMIT code looks a lot like assembly language. The higher level languages

of today make development for MT researchers much easier, which is a significant

20

benefit for dealing with the large scope of the MT problem. Yngve also notes prob-

lems in linguistics with the lack of sufficient morphological and syntactic theories

to analyze source language sentences properly. Linguistic theories have made sig-

nificant strides in these regards (Kay 1997a). Thus, in many regards, MT research

has come a long way. Of course, another problem Yngve identified, which he called

the semantic barrier, remains: The inherent difficulty in determining the meaning

of sentences poses the biggest challenge in their translation.

21

CHAPTER 2

EMPIRICAL MT: A REVIEW OF THE LITERATURE

In 1988, at the Second TMI conference at Carnegie Mellon University,

IBM’s Peter Brown shocked the audience by presenting an approach

to Machine Translation which was quite unlike anything that most of

the audience had ever see or even dreamed of before . . . IBM’s “purely

statistical” approach, inspired by successes in speech processing, and

characterized by the infamous statement “Every time I fire a linguist,

my system’s performance improves” flew in the face of all the received

wisdom about how to do MT at that time, eschewing the rationalist

linguistic approach in favour of an empirical corpus-based one. There

followed something of a flood of “new” approaches to MT, few as overtly

statistical as the IBM approach, but all having in common the use of a

corpus of translation examples rather than linguistic rules as a significant

component (Somers 1999:113).

2.1 Introduction

The automated translation of one natural language to another is known as

machine translation (MT). All MT systems must in some fashion model the gram-

mars of the two languages involved, and must also model the relationship between

the languages. The form of this relationship, the mapping from the source language

to the target language, has historically been used to categorize theories of machine

22

translation. For example (see Figure 2.1), one of the simplest mappings between

languages is word-to-word, where the words of the target language are substituted

for the words of the source language. Such methods will in general also require some

reordering of the target words. MT theories become more linguistically sophisti-

cated as they move up the hierarchy. Mappings between the syntax of languages

allows for structural generalizations and better accounts for word-ordering differ-

ences between languages. While syntactic mapping MT systems may appropriately

match structures between the two languages, it is clearly preservation of meaning

that is most important in translation. Thus, a mapping from meaning to meaning,

a semantics-based transfer, encodes more relevant knowledge than does a syntax-

based mapping. Another meaning-related possibility is to create an intermediary,

an interlingua, to which the semantics of each language are connected, allowing for

further generalizations as well as potentially decreasing the effort required when

the translation of more than one language pair is desired (since the mapping from

a given language to the interlingua or from the interlingua to a given language

need only be constructed once; thus the mapping to interlingua is analogous to a

compiler).

Of course, this characterization of MT theories is greatly simplified. Theories

may also take into account contextual information, and thus be pragmatically based,

and in addition may make use of cultural information. Similarly, on the lower end of

the hierarchy, mappings may range anywhere from between morphemes to between

(unparsed) examples of complete sentences. In general, as theories move up the

hierarchy, their ability to make linguistic generalizations increases, but so do the

knowledge requirements for implementing them.

23

(semantics−based)

(word−for−word)

(syntax−based)

source semantics target semantics

interlingua

target syntaxsource syntax

source text target text

Figure 2.1: Different types of MT models (adapted from Knight (1997))

There are also other dimensions along which one may subdivide theories of

MT. MT theories can be classified according to the method of transfer (direct or

through some level of linguistic processing), or the domain of possible translations

required (e.g., the domain may be restricted to a sublanguage relevant to specific

tasks), or even the ‘amount’ of the language involved (e.g., unambiguous subsets of

the languages, as specified by PACE, the controlled English of the UK engineering

company Perkins Engines; see Arnold et al. (1994)). Nevertheless, the hierarchical

subdivisions between language-to-language mappings shown in Figure 2.1 capture

the essence of what all MT theories must encompass.

The next question for MT theories is how these models of grammar and inter-

language relationships should come about. In an ideal situation, the grammars of

the two languages would be fully specified by a linguistic theory, and the world

knowledge requirements would also be adequately covered. Under such a scenario,

24

successful MT systems would only require implementing the linguistics and AI the-

ories that had been fully explicated. Early MT approaches were based on this ideal.

Grammars for the languages were hand-crafted, along with rules for language trans-

fer. In fact, these approaches have dominated theoretical work in MT until only

recently, and form the basis for most successful commercial MT systems existing

today (e.g., SYSTRAN, see Hutchins & Somers (1992) for a system overview).

These approaches have the dual benefit of taking advantage of the theoretical lin-

guistic work already accomplished, and of not requiring examples of translations.

In addition, such systems will ideally be able to capture generalizations about the

grammars of languages which are not learnable simply from viewing (positive) ex-

amples of language data alone (Gold 1967).

However, hand-crafted systems (used in isolation) have a number of drawbacks.

First, because the modeling of grammar remains an open research area in linguistics,

coverage of such systems will be incomplete. Incomplete grammars lead to a lack of

robustness, since otherwise translatable sentences may be rejected as unprocessable

because of an incomplete or incorrect grammar. Secondly, the purely symbolic

approaches usually associated with hand-crafted systems may be intolerant of the

noise and disfluencies inherent in actual natural language use. Finally, perhaps

the chief difficulty for hand-crafted approaches is the human effort required. In

order to achieve success, grammars must be painstakingly created for each language

(ignoring those parts of grammar which one might take to be universal). One

could argue that given the complexity and changing nature of natural language,

as well as the (non-linguistic) knowledge requirements for translation, hand-crafted

approaches alone may never be sufficient for MT.

25

The recent proliferation of electronic texts of many of the world’s more widely-

spoken languages offers assistance and alternatives to the hand-crafted approach.

Most important for translation are the availability of parallel texts (the same textual

content in more than one language). Recent MT research has focused on exploiting

these texts (see Melamed (2001)), especially using statistical and example-based

methods. Such methods, because of their reliance on data, are known as empirical

or data-driven methods. What such methods offer are increased robustness and

decreased human effort. Typically, empirical methods learn automatically from

a large training set of parallel texts, with each pair of sentences (or some other

subdivision) serving as an example. The decrease in human effort occurs in two

ways: The language and translation models for the language pair are no longer

hand-crafted, and the given data-driven approach may be applied to other language

pairs (in an ideal scenario), without changes.

This is not to say that all data-driven methods are fully automatic. Many data-

driven approaches rely on linguistically annotated data, such as part-of-speech tags,

word alignments, or syntactic annotations. It is often the case that some of these

annotations involve human labor, or that the tools used to make them require

a degree of hand-crafted training data. There also exist fully-automatic means to

obtain such annotated parallel corpora, but typically the quality of output increases

when annotations are inspected and corrected by humans. Often, the availability

of such tools for different language pairs will affect the choice of which empirical

methods can be used, since different models make different assumptions in terms of

the types of annotation required.

26

Empirical methods seek to learn generalizations from the data they encounter,

rather than from a linguistic theory (that is not to say that linguistic theories do not

inform how they learn and what they look at). Because of their general stochastic

nature, these systems are better equipped to make choices when no single, clear

alternative stands out, and thus better handle parts of the translation not covered

by an existing grammar. Additionally, they are generally more easily adapted to

handle new data.

The system presented in this dissertation (as will be described in Chapter 4)

is such a data-driven system, using a combination of probabilistic and finite-state

methods. As such, statistical systems in general and statistical finite-state systems

in particular will be the main focus of the literature review, but another important

empirical area, example-based machine translation (EBMT), will also be briefly cov-

ered. While all of these empirical methods have promise for MT theories, it may

turn out that the best theories incorporate the best parts of empirical and non-

empirical approaches, allowing the automated learning techniques to incorporate

knowledge from linguistic research. Although discussion of the model to be de-

scribed in Chapter 4 will be centered on its data-driven core, extensions identified

in the dissertation research will involve some hybrid approaches between empirical

and non-empirical techniques.

2.2 Statistical Machine Translation

2.2.1 Pure Statistical Methods

It is likely not an exaggeration to say that all of the important work in statistical

machine translation (SMT) grew out of research efforts of one group at IBM during

27

the late 1980s and early 1990s. The work might be viewed as a partial fulfillment

of some of the ideas that Weaver (1955) first proposed, namely using local context

for disambiguation, and viewing translation as an encoded signal (see section 1.2).

This research culminated in a seminal article by Brown et al. (1993). As early as

1988, the research had a profound effect on the MT community, when results from a

purely data-driven method were shown to be comparable to human-coded systems,

and sparked a bit of a revolution toward empirical approaches (see the quotation

at the beginning of this chapter). By 1993, the system described, know as Candide,

performed as well as the best commercial systems in the translation of French text

to English text (Knight 1997).

Thus, because of its importance in the field, and because it remains the best

example of ‘pure’ statistical machine translation, I focus on it here and describe

it in some detail. The IBM approach, like all data-driven MT methods, begins

with parallel texts. These texts are assumed to be broken up into bitexts, pairs

of source and target sentences which are taken to be translations of one another

(thus the parallel texts are sentence aligned; many excellent algorithms exist for

sentence alignment, see for example Gale & Church (1993)). The basic idea for

the IBM approach is to get the best word alignments (the mapping between source

and target words;1 see Figure 2.2 for an example alignment) possible, and to use

these alignments, along with models of the source language, as the basis for the

probabilistically chosen best translation (as such, the IBM model can be viewed as

being at the bottom of the hierarchy shown earlier in Figure 2.1).

1Word alignment is discussed in detail in Chapter 3.

28

the black cat likes fish

le chat noir aime le poisson

Figure 2.2: An example English and French word alignment

Berger et al. (1994) describe their approach in terms of the noisy channel model

(see Figure 2.3; the communication channel idea is based on the pioneering work

of Shannon (1948)), where a given French sentence is to be translated to English.

The noisy channel model assumes that the French sentence, f, was originally given

as its English equivalent, e, and must be decoded back to its best approximation

in English, ê. The use of this model helps to make clear why the conditional

êe
f

Channel

English to French French to English

Decoder

Figure 2.3: The noisy channel model for translation (Berger, et al. 1994)

probabilities (described below) used for estimation make sense. This model also

explains why SMT researchers, in a translation from f to e, conventionally refer to

e as the source and f as the target (see Knight & Al-Onaizan (1998)).2

2To be consistent with that convention, I will adopt the same often confusing practice in this
section, although it is possible I will lapse to the more natural terminology. In any case, the
translation setup should be clear from the context.

29

Given this model, the probability of a French-to-English translation can be

written as: P (e|f). This conditional probability represents the chance that the

English e was the original source of the French f. Thus, given a French sentence f,

the problem of finding the best translation becomes finding the English sentence,

ê, which maximizes P (e|f):

(7) ê = argmaxeP (e|f)

Employing Bayes’ theorem, we get:

(8) ê = argmaxeP (e|f) = argmaxeP (f |e)P (e)

where the rightmost side of the equations gives us more useful terms to work with,

since P (f |e), the translation model, and P (e), the language model, allow us to

independently model the meaning of the translation and its fluency, respectively.

The translation model ensures that the words of e express the ideas of

f, and the language model ensures that e is a grammatical sentence.

Candide selects as its translation the e that maximizes their product

(Berger et al. 1994:157).

This is, in essence, the entire IBM SMT model, and is therefore most central in

understanding the approach. What remains and is rather complicated is how these

two models, the translation model and language model, are arrived at (as well as

how they are used), which will be described next, where we concentrate on the more

complex of the two, the translation model.

30

The IBM approach uses five translation models of increasing complexity, Models

1-5. Not only are these models used to successively better formalize the translation

process, but, additionally, each model is used as a parameter setting tool for the

model which follows it in the training process (this is especially true for Models 1-3,

which will be the main focus of the discussion).3

Model 1, the simplest model, is the word translation model (Berger et al. 1994).

The parameters of this model are all of the form t(fi|ei), which is the probability

that French word fi is the translation of the English word ei. As stated earlier,

the IBM models are alignment models, thus the translation model P (f |e) can be

reformulated in terms of P (f, a|e), where a is the series of values representing the

connections between the words of e and f (i.e., a is the alignment). Since there are

many ways that the same French sentence and English sentence can be aligned, to

get P (f |e) we need to sum over all the possible alignments:

(9) P (f |e) =
∑

a P (f, a|e)

Each P (f, a|e), in turn, is given by the product of the probabilities of the individual

word translations which make it up, i.e.:

(10) P (f, a|e) = c
∏m

j=1 t(fj |eaj
)

where m is the length of the target sentence (French), eaj
is the English word that

French word fj is aligned with under alignment a, and c is a normalization factor

related to the target sentence length.

3In addition to Brown et al. (1993) and Berger et al. (1994), much of the discussion in this
section relies on the very clear explanations given in Knight & Al-Onaizan (1998) and Knight
(1999).

31

The goal therefore is to produce the best alignments in order to maximize P (f |e),
i.e., to maximize (after some simplification):

(11)
∑l

a1=0 · · ·
∑l

am=0 c
∏m

j=1 t(fj |eaj
) = c

∏m
j=1

∑l
i=0 t(fi|ei)

(This is Brown et al. (1993) formula 16.)

This is estimated by using the EM (estimation maximization) algorithm (Baum

1972). The EM algorithm, given reasonable initial parameter values, proceeds it-

eratively until a desired degree of convergence is obtained. Thus, Model 1 yields a

relatively rough estimation of the best word alignments.4

Model 2 is like Model 1 except that it takes into account distortion probabilities,

which are probabilities related to the (possible) preference for words to be connected

based on their relative positions in the source and target sentences (e.g., a target

word at the beginning of the target sentence might be more likely aligned with a

source word near the beginning of the source sentence than with one near the end

of the source sentence). So, P (f, a|e) is now written as:

(12) c
∏m

j=1 t(fj|eaj
)a(i|j,m, l) (Knight & Al-Onaizan 1998)

where l is the length of the source sentence, and a is no longer an alignment but

rather the probability of the alignment in terms of the word positions and sentence

lengths only. The new formula to maximize, replacing (11), is:

(13) P (f |e) = c
∏m

j=1

∑l
i=0 t(fj |ei)a(i|j,m, l)

(This is Brown et al. (1993) formula 26.)

Model 2 is constructed directly from Model 1, using Model 1’s word translation

probabilities, and training proceeds similarly via the EM algorithm.

4I will briefly discuss the use of these models in translation, as opposed to their training, at the
end of this section.

32

Model 3 introduces the concept of fertility—that a single English word may

connect to 0, 1, or more than 1 French words. Fertility thus allows for much more

natural alignments. The fertility φ(ei) is the number of words ei generates in the

translations (Berger et al. 1994), and n(φ|ei) is the probability that ei generates

n words (Brown et al. 1993). In addition to translation probabilities and fertility

probabilities, Model 3 replaces Model 2’s alignment probabilities with distortion

probabilities (which are roughly the same thing, just running in the opposite di-

rection), of the form: d(j|i,m, l). It is at this point that the formula for P (f, a|e)
becomes quite complex, because once fertilities are involved, there are many more

possibilities to consider (including alignment with the NULL word). p1 is introduced

as the NULL word parameter, as well as its opposite, p0 = 1 − p1, and, without

going into too much detail, we finally arrive at the formula for the translation model

of Model 3:

(14) P (f |e) =
∑l

a1=0 · · ·
∑l

am=0[
(
m−φ0

φ0

)
pm−2φ0
0 pφ0

1

∏l
i=1 φi!n(φi|ei)

∏m
j=1 t(fj |eaj

)d(j|aj , m, l)]

(This is Brown et al. (1993) formula 32.5)

Here we can think of the terms as follows:
(

m−φ0

φ0

)
is the number of ways we can

put φ0 spurious words into m− φ0 slots, pm−2φ0
0 is the cost for not adding spurious

words after real words, pφ0
1 is a cost for adding spurious words after real words, and,

as mentioned, n(· · ·) is a fertility probability, t(· · ·) is a translation probability, and

d(· · ·) is a distortion probability. Thus ends the presentation of the formulas for the

various IBM models.

5Knight & Al-Onaizan (1998) add an additional term to this formula, i.e., inside the square
brackets, 1/φi!, apparently as a scaling factor.

33

In terms of training, Model 3 begins with some of the parameter values supplied

by Models 1 and 2, but because of the greater number of possible alignments, its

training process uses a heuristic search guided by the best alignments from Model

2, to reduce the search space. One problem with Model 3 is that it is deficient

(Brown et al. 1993). This means that it leaves some probability in its probability

distribution for impossible strings—strings where more than one word is in the same

position.

Finally, we arrive at the last two models. In Model 4, the distortion parameters

are changed so that alignments can be expressed in terms of word classes. This

adjustment better allows for the alignment of phrases as units. Model 5 makes the

final improvement of eliminating the deficiency of Model 3, by disallowing spurious

alignments (i.e., those that are impossible).

Returning to the larger SMT picture, we now have a trained translation model,

P (f |e). We still need a language model P (e) (see (8)). The IBM team does not dis-

cuss this language model in much detail. However, it can be described as something

close to a trigram model which is smoothed by the technique of deleted interpola-

tion (in reality they use a link grammar, which is better capable of accounting for

long range connections than is a trigram model (Berger et al. 1994)).

Given these translation and language models, the final issue is the translation

process itself, which is known as decoding. Again, the decoding process is only dis-

cussed in passing in the literature, and is of course implementation dependent (for

example, in Knight & Al-Onaizan’s (1998) implementation of the IBM approach,

decoding reduces to transducer composition). In Berger et al. (1994), decoding (also

referred to as transfer) begins with a French string, f, and using a stack decoding

34

algorithm in conjunction with a beam search, keeps the best alternative transla-

tion(s) for each French word as the process proceeds from left to right. Each set of

possibilities is a called a hypothesis, h. In the second decoding stage, these hypothe-

ses are ranked according to the product of P (f |e′)P (e′), where e′ is the decoded

English of the hypothesis, the translation model is Model 5, and the language model

is a smoothed trigram model. In the final stage, they add a perturbation search,

in which deletion, insertion, and replacement of words are allowed (this procedure

is not further specified). This step enlarges the number of hypotheses, which are

reranked, and the highest scoring English sentence is the translation. Recently,

Germann et al. (2001) have also described two new decoders for IBM model 4, in-

cluding a slow but optimal decoder, and a fast greedy decoder which performs only

slightly worse than a stack decoder, but is at least an order of magnitude faster.

In summary, using only parallel texts—and no hand-crafted knowledge—the

IBM approach was able to achieve MT results comparable to the best non-statistical

approaches. The significance of this result should not be understated, since (for

languages where parallel texts exist) it suggests methods for more easily attained

translation systems and quite possibly suggests directions for more accurate transla-

tions. The keys to this approach are the translation model, P (f |e), and the language

model, P (e). While such models can never be perfect, they can offer surprisingly

good results even if both are somewhat flawed, because each serves to disallow some

of the poorer outputs of the other (Knight & Al-Onaizan 1998). There do exist other

purely statistical MT approaches (e.g., the HMM models and others as described

in Vogel et al. (2000)), but the IBM approach remains the prototypical example,

and serves as a useful foundation for discussion of other data-driven approaches.

35

Before beginning a discussion of models which are both statistical and have

a finite-state framework, one other very recent statistical work should be briefly

mentioned. Yamada & Knight (2001) is noteworthy because it takes the IBM work

to what might be viewed as its logical next step: It takes syntactic structure into

account, in a statistical fashion. While the IBM models are based on string-to-string

mappings, the Yamada & Knight (2001) model is based on a parse-tree-to-string

mapping, i.e., an input sentence is first parsed, then operations are performed on

each node of the parse tree, which may include reordering of nodes, inserting of

words at nodes, and translation of the words at the leaves of the tree. This model

clearly outperforms the IBM models, as measured by a human evaluation of the

word alignments produced. The model thus serves as a good example of what

can be achieved as more linguistic information is taken into account, even if such

information is acquired automatically (i.e., in a data-driven framework). We now

move to other approaches which also attempt to represent some degree of syntactic

structure (in some cases just linear order), but do so in a finite-state framework.

The linked automata model to be presented in Chapter 4 is most closely related

to these approaches, and as such their discussion forms the heart of the literature

review.

2.2.2 Finite-State Methods

In contrast with the purely statistical nature of the IBM models described in the

previous section, there exist a number of data-driven approaches which, in addition

to being statistical, have a finite-state framework. In general, the motivation for

these approaches is to use more linguistic information than can be captured from

36

focusing on word frequencies alone. In particular, these probabilistic finite-state

methods attempt to use the syntactic information present in the bitexts. Much of

the syntactic information exploited by these methods, however, is phenogrammati-

cal (i.e., information about linear order) rather than tectogrammatical (hierarchical

information), since finite-state technology is particularly well-suited for represent-

ing linear ordering phenomena. By making use of this syntactic information, the

MT models move one step up the hierarchy shown earlier in Figure 2.1, since the

translation involves a syntax-based transfer (although in all cases, the models are

also heavily word-based).

These finite-state methods thus employ more linguistic knowledge than does

pure SMT, but interestingly, they do so in an automatic way. The finite-state ma-

chines or grammars used are constructed directly from the data. In this manner,

linguistic knowledge is beneficially employed, but at the outset of the process, via

the design of the models. It is the researchers’ knowledge that finite-state devices

can be appropriate in certain contexts to approximate natural language syntax (see

for example Pereira & Wright (1997)) that allows for this informed setup.6 This is

analogous to one of the most important concepts in Machine Learning in general:

the appropriate selection of features. In large, open-ended AI tasks, such as ma-

chine translation, algorithms must be directed to features (such as words and word

orderings) liable to be important, rather than blindly attempting a possibly infinite

6Some take this even a step further, and claim that a finite-state framework may be fully adequate
to represent natural language syntax, because the (memory) bounds of the human processor
constrain those same natural language constructions typically used as evidence for the need for
more powerful grammars (Yngve 2000).

37

set of features and feature combinations. Thus, by employing finite-state technol-

ogy, the MT models make use of additional linguistic knowledge (and as such may

be thought of at least as nominally hybrid), and still avoid relying on the creation of

hand-crafted rules. In this section I will describe several general methodologies, in

varying detail, which will highlight the important aspects of probabilistic finite-state

MT and lead to the discussion of the model to be presented in Chapter 4.

2.2.2.1 Stochastic Inversion Transduction Grammars

We begin with a model (Wu 1997) that is neither truly a translation model, nor

finite-state, but that nevertheless serves as a good starting point, both because it is

an excellent example of methods for modeling syntactic information from bilingual

corpora and because it highlights some of the issues that such methods face. Wu

(1997) introduces the concept of (stochastic) inversion transduction grammars, a

surprisingly flexible technique for representing the grammar of two languages at

once. The idea begins with simple transduction grammars, which are sets of rules

used to generate (or parse) two languages at once, so long as the symbols generated

by the right-hand side (rhs) of a rule are concatenated in the same linear order. For

example, the following simple grammar can generate the bitexts 〈the dog ate / le

chien à mangé〉 and 〈the cat ate / le chat à mangé〉:

(15)

S → NP VP

NP → Det N

VP → V

N → dog/chien | cat/chat

V → ate/à mangé

Det → the/le

Here the symbols on the left side of a “/” indicate the productions for language

L1 (in this case English), symbols to the right of the “/” indicate the productions

38

for language L2 (in this case French), and the lack of a “/” means the L1 and L2

share the same nonterminal or terminal. Of course, such grammars are insufficient

for translation, because they require the two languages to share the same exact

structure.

Inversion transduction grammar (ITG) extends the power of simple transduction

grammar by allowing two possible orientations for rule production: straight and

inverted. A straight orientation, notated in rules by “[]” around the rhs, means

that the symbols for both L1 and L2 are emitted in a left-to-right order, whereas

an inverted orientation, notated in rules by “〈 〉” around the rhs, means that the

symbols of L1 are emitted left-to-right but the symbols of L2 are emitted right-to-

left.7 With these additions to the formalism we can extend the grammar in (15)

to cover 〈the black cat ate / le chat noir à mangé〉 by adding/amending rules as

follows:

(16)

AdjP → black/noir

NP → [Det N’]

N’ → N | 〈AdjP N〉
These rules can apply at any point in derivation (i.e., not just to leaves of a tree),

allowing the orders of large constituents of the two languages to vary. Note that this

formalism is context-free, and not finite-state, but its importance here is its shared

goal with the finite-state methods to be discussed—to account for the different

word ordering facts between (fixed word order) languages. ITGs do not allow for

all possible word orderings, i.e., there is a crossing constraint: Matching between

subtrees is allowed only if the parents are also matched. This constraint serves to

limit the number of possible matches (alignments) in a linguistically plausible way,

7In cases where just one symbol is emitted, brackets are of course unnecessary.

39

which is important in terms of computational complexity. Again, this is a problem

that all the probabilistic finite-state methods will have to deal with. Of course, this

formalism is not adequate for modeling (pairs of) more freely ordered languages

(Wu 1997).

ITGs can form useful grammars for what allowable word alignments should

be (see Wu (1997) Figure 5 for a detailed example of alignments which can be

represented with two four symbol strings). This is important, since many MT

algorithms reduce to models of word alignment. Another relevant step in Wu (1997),

beyond modeling a bilingual grammar, is the conversion of the formalism to a

stochastic one, as well as the presentation of efficient algorithms for processing

(in this case parsing, but steps taken are relevant to translation as well). The

rules are made probabilistic in the usual way (i.e., each rule has an associated

probability). This stochastic step allows for efficient processing (e.g., by the use of n-

best heuristics, since the probabilities allow a means to choose between alternatives).

Wu (1997) also points out that bilingual grammars like ITGs should in general

be more appropriate than parse-parse-match strategies (i.e., those MT training

strategies which parse the source and target strings first separately), since: 1)

monolingual grammars may not be available; 2) grammars may be incompatible

(i.e., different types of constituents); and 3) selection between different structures

may be arbitrary (and thus harder to decide in isolation). This is an important

point. Given parallel texts, there is important information inherent in each bitext

that may be obscured or lost by processing the bitext’s sentences separately.

40

2.2.2.2 Composed Transducers

As mentioned previously, Knight & Al-Onaizan (1998) implement the purely sta-

tistical IBM Model 3 (Brown et al. 1993) via composed transducers. In terms of

translation output, the results are theoretically identical (i.e., this was one of the

goals of the research). As such, (Knight & Al-Onaizan 1998) does not represent an

advance in terms of coverage, but I briefly detail it here to identify the insights it

offers in terms of design, by showing how statistical MT can be implemented using

finite-state devices. The motivation for making a move to finite-state technology

is straightforward: 1) Finite-state devices are arguably more easily understood and

used than purely statistical methods; 2) finite-state models move away from the pure

word alignment model for translation, allowing word-by-word processing which may

be more reflective of syntactic considerations; 3) there are very efficient algorithms

and techniques for using finite-state devices, especially due to work in speech pro-

cessing; and 4) finite-state devices are easily composed, allowing for a more modular

(and therefore more simple) partitioning of the various tasks involved with the IBM

SMT method (i.e., word translation, fertilization, distortion, etc.).

Knight & Al-Onaizan (1998) use weighted finite-state transducers, which are

simply state transition diagrams where labels on transitions take the form a : b/w,

where a is an input token, b is an output token, and w is the numerical weight. To

use the transducer as a translation model, P (f |e), for a given source string, e′, and

target string, f ′, one finds all paths through the transducer which accept e′ and

output f ′, multiplying the weights of the transitions for each path. The highest

scoring path allows selection of the best transduction, which is, for this model,

taken to represent the best translation.

41

Since transducers can be composed, Knight & Al-Onaizan (1998) implement the

different parts of the IBM Model 3 as separate transducers. Namely, for the trans-

lation process they use six composed finite-state devices (actually four composed

transducers, along with two acceptors). Figure 2.4 shows the relevant steps of the

model for the translation of le chat noir aime le poisson (the alignment for this

example was shown in earlier Figure 2.2). At the top of this chain is a finite-state

English acceptor

transducer 1

the black cat likes fish

the black cat likes fish fish

transducer 2

NULL the black cat likes fish fish

transducer 3

le noir chat aime le poisson

transducer 4

le chat noir aime le poisson

French acceptor for f only

Figure 2.4: SMT as a cascade of finite-state devices

acceptor (an automaton) of the source string, e. This acceptor simply accepts or

rejects the string. Next is transducer 1, which determines fertilities. If an English

word x has a fertility n, then the transducer outputs x n times. The next transducer,

42

transducer 2, simply distributes NULL words into the output, with (relatively low)

probabilities (i.e., as in Model 3, with the NULL word probability of p1; for this

translation example no NULL words are actually necessary, although one is shown

but not used). Transducer 3 is the word translation transducer. It substitutes tar-

get words for source words, one-for-one. The last transducer is transducer 4, which

permutes the target (French) words into their proper order, so that they can be

accepted by the permutation acceptor at the end of the cascade.8 This acceptor

must contain all possible orderings for the target string, but avoids growing too

large because it is built only for the particular target sentence (recall that even

though it is called the target sentence, the French sentence is the one given to be

translated, so it takes no magic to build an acceptor for it, nor are any probabilities

necessary). Actual translation (decoding) works its way up from the bottom from

the French acceptor all the way to the English acceptor.

There is also an additional transducer representing the language model P(e)

(the acceptor at the top of the chain simply accepts or rejects strings, but does

not assign a probability). Like Brown et al. (1993), Knight & Al-Onaizan (1998)

use a trigram model smoothed by deleted interpolation, implemented as a weighted

finite-state transducer. Finally, note that just as in the IBM case, since more than

one alignment may correspond to the same translation, the probability of each

path through the composed devices for a given translation must be added, to get a

probability for the translation.

8It is not clear in Knight & Al-Onaizan (1998) if transducer 4 and the permutation acceptor are
actually a single device, so this description and Figure 2.4 may be slightly inaccurate.

43

Knight & Al-Onaizan (1998) also discuss several additions as well. A transducer

for distortion probabilities could be inserted, where source words are followed by

a position indicator, e.g., for fish: source-pos5, which are later converted to target

position indicators, e.g., targ-pos6. They also discuss marking identical source words

that have different translations as separate, so that they can have distinct fertilities,

and grouping words as phrases (e.g., le poisson). These sorts of extensions will

correlate with some ideas for extending the linked automata model (see Chapters 6

and 7).

The most important open question for this finite-state replication of IBM Model

3 is whether it will scale-up reasonably. Knight & Al-Onaizan (1998) leave this as a

topic for future research. The technique most likely to achieve success in this area

is to use known “pruning and lazy composition methods that find approximate best

paths in the face of overwhelming possibilities” (Knight & Al-Onaizan 1998:436).

These steps, in conjunction with n-best heuristic search techniques, could make the

model scale reasonably both in terms of space and time complexity. A final positive

point for the research area is that the composition and decoding algorithms are

used in other applications beyond MT, lending credence to the idea that they will

be efficiently engineered and easily understood.

2.2.2.3 Subsequential Transducers

We next turn to a very interesting data-driven finite-state translation approach

which uses subsequential transducers. In a series of papers extending from the early

1990s to the present (see, for example, Oncina et al. (1993), Castellanos et al. (1994),

Oncina & Varó (1996), Amengual & Vidal (1996), and especially Vilar et al. (1999)

and Amengual et al. (2000)), a number of Spanish researchers have developed quite

44

effective methods for using subsequential transducers for limited domain, restricted-

syntax MT tasks. Subsequential transducers (SSTs) are transducers where for any

given state there is at most one outgoing transition for any input label (Roche &

Schabes 1997). More formally, for a transducer H =< X,Y,Q, q0, E >, where X is

the input alphabet, Y the output alphabet, Q a finite set of states, q0 ∈ Q the start

state, and E ⊆ Q×X×Y ∗×Q is a set of edges (i.e., these are the transitions), then

H is subsequential if and only if for any < p, x, y, q >∈ E and < p, x, y′, q′ >∈ E,

then y = y′ and q = q′. Additionally, final states in subsequential transducers can

emit output symbols (that is what makes them final). This behavior is defined by

a (partial) function σ : Q → Y ∗ called the state emission function. An SST which

can translate the following four French phrases: le chat, le chien, le chat noir, le

chien noir into the following English equivalents: the cat, the dog, the black cat, the

black dog is shown in Figure 2.5.

le/the

chat/ ε

chien/
dog

noir/black dog ε

cat
noir/black cat

 ε

Figure 2.5: An example of a subsequential transducer (SST). The large arrow head
points to the start state, ε represents the empty string, and final states
are enclosed in double circles.

The main motivation for using SSTs is that they are highly accurate translators

in restricted domains which potentially generalize well, and can become smaller

45

by using appropriate generalization algorithms as the number of training examples

increases. How SSTs fare in more realistic natural language translation remains an

open research question.

I present the basic learning, generalization, and transduction ideas as described

in Vilar et al. (1999). Given bitexts, a SST which is a compatible generalization

of the bitexts can be learned via the Onward Subsequential Transducers Inference

algorithm (OSTIA, (Oncina et al. 1993)). Here “compatible generalization” means

that if the training data (i.e., the bitexts) are representative of a total subsequential

function, for a sufficiently large number of training pairs the learning process con-

verges, i.e., all proper translations will be learned, as well as many translations for

unseen (and probably unlikely) input sentences. But this total subsequential func-

tion requirement is clearly not in general true of natural language translation (i.e.,

the same word may be translated differently in contexts where the word(s) preced-

ing it are the same), hence the notion that SSTs are most appropriate for limited

domains and restricted (ideally finite and unambiguous) syntax. That is not to

say that the SST model is completely inadequate for unrestricted natural language

translation, because techniques for approximation do exist. I will not outline the

full algorithm here, but basically OSTIA takes the input sentences and represents

them in a prefix tree, moving common prefixes towards the root by merging states

as much as possible. Merging only takes place if the resulting transducer would

be both subsequential and not in contradiction with the training examples. State

merging allows for generalization, i.e., the transduction of input sentences on which

the system was not trained.

46

OSTIA creates a good translation model, and has the added benefit of greatly

reducing the size of the transducer that would be created absent generalization,

but it over-generalizes. As such, it results in a poor language model for the input

language.9 Oncina & Varó (1996) attempt to rectify this with OSTIA-DR (where D

is for domain, and R for range). OSTIA-DR uses domain and range models (models

of the input and output languages) to restrict the generalization of the learned

SSTs. The general idea is that the domain and range models can reject sentences,

thus providing negative information, in an attempt to sidestep the limitations for

language learning in the presence of only positive examples. The domain and range

models can be learned from the same initial training examples (although better

models may arise from unrelated data). This process is, of course, an approximation

at best, but it can accelerate the learning process (Oncina & Varó 1996), although

once again its utility for unrestricted language is unknown.

The next major issue for the SST model deals with asynchrony between the

input and output languages (i.e., the different word orderings that occur). SSTs by

their nature tend to be long strings of states with input/output labels being domi-

nated to the left by input language constraints and to the right by output language

constraints (or vice versa). This occurs because of the subsequential requirement.

During construction, transitions will often be made with an input symbol, x, with

an empty output symbol, ε, i.e., x/ε, because output must be delayed until enough

input is seen to guarantee subsequentiality. This means there will be an excessive

growth in the number of states and in the need for training data for convergence.

9Note that transducers in general can be viewed as two language models and a translation model
combined.

47

a removed < triangle < large light > is >

a large light triangle is removed

se elimina un triangulo grande y claro

se elimina un triangulo grande y claro

Figure 2.6: The reordering process. The original pair with alignments is shown on
top, and the reordered result on bottom (not all alignments are shown).

Vilar et al. (1999) cleverly attempt to resolve this problem by using the special

symbols < and >. The symbols placed in an (output) sentence mean that the word

preceding < has to be placed after the paired >, when the sentence is rearranged

to its original order. In other words, the special symbols are used to put the out-

put words in an order that is more compatible with the order of the input string,

and therefore allow for a drastic reduction in the size of the resulting transducer,

yet still provide a means to recover the proper output string order. Borrowing an

example from Vilar et al. (1999) with Spanish to English translation, consider the

translation shown in Figure 2.6. We can put the English sentence in a more com-

patible word order (fewer crossing alignment arrows and fewer alignments spanning

long distances), as shown in the bottom alignment pair. Of course, using such a

technique means that the bitexts must first be word-aligned. Vilar et al. (1999)

detail the overall steps for bracketing and later reordering the output sentences.

An important consideration in this methodology is that the language defined by

the “bracketed” sentences is context-free but not regular. Vilar et al. (1999:129)

48

do not see this as a major problem because “the number of levels of bracketing can

be assumed to be finite and not too large.” Another potential problem with this

reordering technique is that it is not clear how well the transducer would function

if used in the opposite direction (i.e., with the output language as the input).

A final important issue discussed by Vilar et al. (1999) is the problem of input

which is noisy (contains errors, repetitions), of unknown vocabulary, or of unex-

pected syntax (constructions not covered by the model). SST performance, as with

finite-state models in general, degrades rapidly in such cases, since the input strings

cannot be processed at all, thus no translation is produced. Error correcting parsing

(ECP, (Amengual & Vidal 1996)) is used to alleviate this problem. The approach

is to create an error model (this can be attempted automatically by systematically

distorting training data for the input language). The error model, E, should ac-

count for vocabulary variation, deletions, insertions, and so on. It can then be

incorporated into the system probabilistically, where the input sentence x ∈ E is

assumed to be a corrupted version of some sentence x̂ ∈ L, where L is the input

language. Parsing a source sentence is a matter of finding the sentence x̂ which

maximizes the probability that x is a corrupted version of x̂ (note the similarity to

the pure SMT approach):

(17) x̂ = argmaxx′∈LPL(x′)PE(x|x′)

Vilar et al. (1999) show that ECP greatly reduces the number of translation errors

for a test set created with what is hoped to be realistic errors for the restricted

language they use.

In summary, the SST methodology offers a finite-state framework for transla-

tion, especially in cases of limited domain, restricted languages. Vilar et al. (1999)

49

provide insights regarding generalization, better input models, size reduction, deal-

ing with asynchrony, and coping with unexpected input during parsing. What is

most interesting is that these are many of the important issues which the system

to be presented in Chapter 4 must also deal with. Thus, the SST model will prove

to be one of the most relevant points of comparison.

2.2.2.4 Weighted Head Transducers

The next data-driven finite-state MT model I consider is one of the most complex.

Alshawi et al. (2000) and Alshawi & Douglas (2000) present an MT method which

uses a collection of weighted head transducers to model the hierarchical structure of

sentences via dependency trees. The motivation for this approach is straightforward:

If, in addition to statistical word correlations, hierarchical syntactic information can

be made available, it should prove to be of great use in the translation process. A

second important motivation is a significant reduction in system size that can be

achieved because the use of hierarchical information allows for recursive transduc-

tion techniques. Thus, the given phrases need only be stored once, rather than

repeated as subparts of sentence paths which otherwise differ. Unlike pure SMT

approaches such as Brown et al. (1993), the head transducer models have “non-

uniform linguistically motivated structure” (Alshawi & Buchsbaum 1997:360). In

order to move toward these more linguistically sophisticated structures, the head

transducer MT model requires significantly more power than do other finite-state

systems, such as SSTs.

A head transducer (HT) is a transducer which, instead of reading input and

writing output from left to right, can read input from any position on the input

50

tape, and write output to any position on the output tape. Thus, head transduc-

ers are quite powerful devices, which are not subject, for example, to limitations

in terms of asynchrony, as are SSTs. Formally, a head transducer (as defined in

Alshawi et al. (2000)), is a 5-tuple H =< W,V,Q, F, T >, where W is the input

alphabet, V the output alphabet, Q a finite set of states, F ⊆ Q a set of final states,

and T a set of transitions. A transition from state q1 to state q2 takes the form

〈q1, q2, w, v, α, β, c〉 where w ∈ W , v ∈ V , the integer α is the input position, the

integer β is the output position, and c is the weight (the weight is the probabilistic

part of the transition). Valid derivations occur after each input symbol has been

read once, and a final state has been reached. The output string at the end of

a derivation is the sequence of symbols on the output tape, ignoring any empty

spaces on the tape. Head transducers so defined are much more expressive than

traditional transducers. For example, they can reverse a string of arbitrary length,

which traditional transducers cannot. A head transducer which can do this with

the input and output alphabet {a, b} is shown in Figure 2.7 (this example is from

Alshawi et al. (2000)), where above each transition is the input label:output label

and below is the input position:output position.10 In principle, there are no word

ordering differences in translation for which a head transducer cannot account.

Head transducers are so called because of their potential for middle-out trans-

duction, as if starting with a syntactic head (akin to head-first parsing). Used

as models of dependency trees, a syntactic formalism where the dependents from

a head are connected to it via arrows, head transducers can read and write to

10−1 can be taken to mean the next unread or unwritten position to the left and +1 the next
unread or unwritten position to the right.

51

b:b

a:a
0:0

0:0

b:b
−1:+1

a:a
−1:+1

Figure 2.7: A head transducer which can reverse a string of arbitrary length in the
alphabet {a,b}. 0 is taken to be the rightmost position of the input
string and the leftmost position on the output tape.

the right or left, processing the daughters (i.e., the dependents). As a translation

model, input to a head transducer is a string corresponding to a flattened source

dependency tree, and the output is a string corresponding to a flattened target de-

pendency tree. Head transducers are applied recursively to accomplish translation:

For a given source input tree, each subtree is processed yielding a corresponding

target subtree, until the entire original tree has been processed. The words of the

flattened target tree are the translation.

Like all the data-driven methods discussed, the HT method begins with bitexts.

And, like many of the other methods, the bitexts need to be aligned.11 Because

of the desired higher level of linguistic information (i.e., hierarchical syntactic in-

formation as modeled by dependency trees), word alignment is not sufficient. The

dependency alignments must also be learned, and the heads must be identified. As

earlier, I will not describe the alignment methods,12 but the basic idea is to use a

11In some methods alignment is the model, but in most finite-state approaches alignment is a
means to an end and not the full MT model in itself.

12Alignment is a subfield in its own right, but is not the subject of this research.

52

statistical measure of correlation among words. Unfortunately, the strategies for

selecting heads and dependents are rather crude (Alshawi et al. 2000), and appear

to be based on correlation strength alone; that is to say, source and target heads are

identified as those words with the strongest correlation measure, and identification

of dependents proceeds similarly. Such a strategy can sometimes lead to hierar-

chical structures that do not appear to be linguistically desirable (see for example

Alshawi et al.’s (2000) Figure 4, and also Figure 2.8 in the next section), raising

the question of how much more information has been gained as compared to word

alignments alone. In any case, better alternatives to the head and dependent iden-

tification method are not readily apparent, and certainly the strategy of using more

linguistic information seems well motivated.

The probabilistic weights of the transitions allow a means to select between al-

ternative derivations (translations), of which there will be many since the model

contains many small separate transducers (i.e., there are separate transducers for a

head and its daughters, and transducers for the daughters themselves). Like other

finite-state MT models, the head transducer model needs a way to generalize to un-

seen inputs. This is accomplished through the merging of states among the smaller

transducers. This merging occurs often. In Alshawi et al. (2000), for any given word

and translation pair, w : v, there is only one initial state and one final state (i.e.,

the same instance of a word translation is not repeated). Additionally, intermediate

states (those not start or final states) are merged whenever their incoming transi-

tions differ only in terms of the target position. In essence, this strategy creates a

single, larger transducer capable of a large degree of generalization.

53

As with the SST model, the HT model must cope with situations where the

source string cannot be parsed, i.e., there is no derivation. Alshawi et al. (2000)

take the pragmatic approach and concatenate the shortest length sequence of partial

derivations that has the highest probability.13

Performance for the HT translation model appears promising, as they achieve

relatively good accuracy for translation for short natural language sentences (in

a limited domain) from Spanish to English and from Japanese to English.14 By

using many small transducers which do not overlap (but may later be connected),

Alshawi et al. (2000) avoid the explosion in the number of states that can occur in

(ungeneralized) single transducer models. Additionally, the use of available syntac-

tic information may provide knowledge which is beneficial for translation. Finally,

Alshawi et al. (2000) also identify possible extensions to the HT model, such as

techniques for identifying and using compounds, by treating groups of words as

single entities, which can lead to more robust translations.

2.2.2.5 Two Models in One: Lexical Selection and Reordering

The final purely empirical finite-state MT approach which I will examine bears some

relation to the head-transducer approach of Alshawi et al. (2000) (section 2.2.2.4),

and grew out of the same research lab at AT&T. Unlike the head transducer ap-

proach, however, the Bangalore & Riccardi (2001) method breaks the translation

problem into two parts, lexical selection and lexical reordering (LSLR), and uses

13It not clear to me whether these two criteria can conflict, but one would typically expect shorter
derivation sequences to have higher probabilities, so the issue might never arise.

14Japanese to English is considered one of the more challenging MT language pairs and directions.

54

traditional transducers to map source language strings to target language strings.

Bangalore & Riccardi (2001) shares with the head transducer approach its method

of beginning with a hierarchical alignment of dependency trees, and thus begins

its attempt to capture hierarchical structure. But rather than aligning these trees

in a translation model, Bangalore & Riccardi’s (2001) approach maps sequences

of source words which represent phrases to sequences of target words which rep-

resent phrases.15 The chief contribution of their method (in addition to modeling

the syntactic structure) is to separate the target language model from the trans-

lation model, in a way which can be later combined, due to the composability of

transducers.

The first step in the Bangalore & Riccardi (2001) method is to create the lexical

selection model. This begins the same way as in the head-transducer approach,

following (Alshawi et al. 1998), with the automatic alignment of bitexts, resulting

in hierarchically aligned dependency trees. As mentioned in section 2.2.2.4, this

can result in representations which appear to be linguistically unmotivated. For

example, Figure 2.8 shows on the left an example of an induced dependency rep-

resentation, from Bangalore & Riccardi (2001), and on the right, what might be

taken to be the most plausible representation.16 As can be seen in the figure, the

automatically induced structure on the left deviates quite a bit from the structure

on the right, with many implausible dependency relations, such as I being the head

15Their string transducer approximates a tree transducer (Bangalore & Riccardi 2001).

16Unlike traditional dependency trees, the arcs are shown pointing from dependent to head,
following the formats of (Bangalore & Riccardi 2001; Alshawi et al. 2000). Also, in the tree on
the right, to is taken to be the head of the verb phrase headed by make, rather than a dependent
of make, following Mel’čuk (1988), and what is likely the most the traditional syntactic analysis.

55

of the entire sentence, and make being a dependent of call, which appear to be more

a product high co-occurrence than of likely syntactic relations. This again raises

the question of whether the hierarchical information will add more knowledge to

the translation system than could be gained from employing word alignments alone.

I need to make a collect callI need to make a collect call

Figure 2.8: A dependency tree representation induced in Bangalore & Riccardi
(2001) (left) and a more linguistically motivated representation (right),
with dependents pointing to heads in both cases.

After the alignment stage of the training of the lexical selection model (which

allows for 2:1, 1:2, 1:0, and 0:1 alignments of source to target word sequences), a

bilanguage corpus is created, consisting of source to target sequences. From this cor-

pus, Bangalore & Riccardi (2001) train a stochastic finite-state transducer (SFST).

They then take a very interesting step to move from alignment of word sequences

to alignment of phrases. This is accomplished by taking substrings (continuous

sequences) from the bilingual corpus and finding those which have high mutual in-

formation. These strongly correlated substrings (where the correlation must hold

on both the source and target sides, this being a bilingual corpus) are taken to

be phrases. In the final step in the lexical selection model creation, the words in

the aligned target phrases are reordered if necessary, to correspond to proper target

56

language word order (this stage is called local reordering and should not confused

with the lexical reordering stage to be discussed shortly). This leaves a set of source

phrase to target phrase alignments from which a transducer can be constructed.

The lexical selection model outputs a sequence of target language phrases, each

of which may be in the correct target language order, but with the entire target

sentence (collection of phrases) not in the proper order. Thus, the need for the lexi-

cal reordering model arises. The lexical reordering model is created by constructing

another stochastic finite-state transducer. This SFST is created from a corpus of

source-ordered target language sentences and target-ordered target language sen-

tences.

The entire translation model is then made by composing the two SFSTs: the

lexical selection transducer and the lexical reordering transducer. A third trans-

ducer is also composed with this model, to ensure that the resulting target strings

are well formed in terms of the brackets they contain. Bangalore & Riccardi (2001)

use brackets to indicate the proper ordering of phrases, in a manner similar to Vilar

et al. (1999), and view this step as a finite-state approximation of a “parenthesis

context-free grammar upto a bounded depth.” Decoding (i.e., translation) then

is simply a matter of transducing a source language string into a target language

string. This straightforward decoding, along with composability, is one of the main

motivations for using transducers in translation systems.

Bangalore & Riccardi (2001) report promising results on a English to Japanese

translation task (their accuracy numbers appear slightly lower than those of Al-

shawi et al. (2000), but the data seem to have been different, so it is not a valid

57

comparison). Lexical reordering appears to significantly improve translation accu-

racy. Interestingly, however, the use of phrases (see Bangalore & Riccardi’s (2001)

Table 1) does not necessarily seem to improve accuracy, suggesting that the mu-

tual information measure of substrings may not be the best measure for identifying

phrases.

On the whole, this is a very interesting translation model which takes advantage

of finite-state techniques to separate different parts of the translation process. The

separation of translation model from language model is somewhat analogous to

that which motivates the linked automata model, presented in Chapter 4. Like the

head transducer translation model approaches, Bangalore & Riccardi (2001) take a

number of steps to incorporate hierarchical syntactic information into the model,

creating one of the more complex finite-state translation models which is purely

data-driven.

2.2.2.6 A Hybrid Finite-State Model

The last finite-state model to be discussed is one which is not purely data-driven,

but serves as a good example of how finite-state techniques can be combined with

hand-coded knowledge to yield a hybrid system. I describe it briefly here, but some

of the ideas and means for incorporating them may offer useful extensions to the

linked automata model (extensions are discussed in Chapters 6 and 7).

Vogel & Ney (2000) employ cascaded transducers to perform translation for

VERBMOBIL, a system whose goal is translate speech between English, German,

and Japanese, where utterances mainly deal with scheduling meetings. In this

domain, proper handling of names, dates, and times is imperative. Such a problem

domain lends itself to hand-crafting, especially since entities such as dates and

58

times have their own specialized syntax. Vogel & Ney (2000) use seven transducers

(arranged in a hierarchy): 1) proper names, 2) spelling sequences (i.e., a person

attempting to spell something out loud, such as “S P E double L”), 3) numbers, 4)

simple time and date expressions, 5) compound time and date expressions, 6) part-

of-speech (POS) tagging, and 7) a grammar transducer. Again, since transducers

can be easily combined via composition, these specialized transducers taken together

can be viewed as a translation system, but keeping them separate allows researchers

the opportunity to focus on and improve individual aspects of the application.

Most of the transducers are completely hand-crafted (an exception is the POS

transducer, which is mostly automatically constructed), including the grammar

transducer, which is based on POS tags, and is the means by which word order

differences between languages are captured. The system achieves generalization

through the use of the POS tags, by allowing both tags and the translation of

source words to filter down the cascade towards the translation. In this manner,

the tags can be employed along with the translated source words to help guide

the proper ordering of words in the output target sentence. One non-finite-state

aspect of the system is the use of a separate target language model (a word-based

trigram model) to help choose between different translations produced. Vogel &

Ney (2000) experiment with a number of different weightings for this language

model, relative to the translation model, and achieve their best results with an

equal weighting between the two.17 Vogel & Ney (2000) use an novel approach for

17The results of Vogel & Ney (2000) seem roughly on a par with other published results (such as
those reported for Alshawi et al. (2000)), but again, cannot be truly compared since the testing
and training data are different, as is the means of evaluation; this is a long-standing problem
for machine translation evaluation, as will be discussed in Chapter 5.

59

approximate matching of input source sequences to training sequences. They use a

weighted edit-distance, where the idea is: It is better to match an input string to

a training sentence that is only slightly different (for example, just a few function

word differences) from a training sentence, than to reject it completely. Both this

technique of partial matching and the hand-constructing of small, special purpose

devices may be useful for other finite-state translation systems.

2.3 Example-Based Machine Translation

The final empirical MT approach to be explored is example-based machine transla-

tion (EBMT). Because EBMT is so different from the statistical, finite-state meth-

ods of the model presented in Chapter 4, here only an overview of its main ideas is

given. As a distant cousin of its other (mainly statistical) data-driven counterparts,

EBMT’s major similarity is its reliance on large amounts of parallel texts in order

to learn. Thus, all of the data-driven methodologies can be seen as example-based,

but EBMT is distinguished by its focus on matching inputs with suitable stored ex-

amples, as well as the process of recombination of the translations of these examples

to form the final translation output. A secondary reason for this review of EBMT

is that some of the techniques used to find partial matches of inputs, as well as the

techniques to recombine translated subparts, may prove to be helpful for increasing

the coverage of the linked automata system. Additionally, the insights from EBMT

matching may be useful in the evaluation of MT results (see Chapter 5).18

18This section benefited from the excellent and thorough survey of EBMT research through the
late 1990s provided by Somers (1999).

60

EXACT MATCH
direct translation

ALIGNMENT
transfer

RECOMBINATION
generationMATCHING

analysis

Figure 2.9: The “Vaquois pyramid” for machine translation, adapted for EBMT.
Traditional rule-based labels shown in italics, EBMT labels are capital-
ized (from Somers (1999)).

EBMT’s three main steps, matching, analysis, and recombination, can be com-

pared with the more traditional rule-based MT approach of analysis, transfer, and

generation (see Figure 2.9). An input text is first compared to the database of stored

examples (matching). Once the best match is found, the corresponding target text

for the matched text is found (analysis). In the last stage, the target texts may need

to be recombined if only fragments were matched in the matching stage (recom-

bination). EBMT bears a strong relationship to the nearest neighbor/exemplar-

based approaches used in machine learning, although these connections are rarely

made in the literature (Somers 1999).19 There are several motivations for such

an example-based approach, which has also been called analogy-based, case-based,

19One recent EBMT approach which explicitly uses machine learning techniques for matching is
McTait (2001).

61

and experience-based. The first is an appeal to human translation and cognitive

processing—that people do not use rules to translate but rather look for analogous

translations:

Man does not translate a simple sentence by doing deep linguistic anal-

ysis. Man does the translation, first, by properly decomposing an input

sentence into certain fragmental phrases . . . then, by translating these

fragmental phrases into other language phrases, and finally by prop-

erly composing these fragmental translations into one long sentence.

The translation of each fragmental phrase will be done by the analogy

translation principle with proper examples as its reference . . . (Nagao

1984:178–179).

Veale & Way (1997) see this as an appeal to modeling linguistic performance,

rather than competence. Another motivation for EBMT is like that of all data-

driven approaches: It is arguably more robust and requires little to no hand-coding,

as compared with the traditional rule-based systems. An additional motivating

factor is its potential to handle new data, where increasing the coverage is sometimes

viewed as a matter of nothing more than adding new examples to the database.

Historically, EBMT can most directly be traced back to Nagao (1984). In a

translation task between English and Japanese, Nagao (1984) sees no use for de-

tailed linguistic analysis, because the structures of the two languages are so different.

The goal is to see as wide a scope of context as possible in a sentence, and to make

the translation between blocks of words. The general EBMT approach can be illus-

trated by the following example from Sato & Nagao (1990), translating (18) from

English to Japanese:

62

(18) He buys a book on international politics.

(19) He buys a notebook.
Kare ha nouto wo kau.

He topic notebook obj buy.

(20) I read a book on international politics.
Watashi ha kokusai seiji nitsuite kakareta hon wo yomu.

I topic international politics about concerned book obj read.

(21) Kare ha kokusai seiji nitsuite kakareta hon wo kau.

Here he buys from (18) is matched with the same English phrase in (19), and a book

on international politics is matched with the English phrase in (20). The analysis

phase retrieves the corresponding Japanese translations (underlined), which are

recombined to produce the translation in (21).

The first question that arises from such an example is: How are the appropriate

matches between the source sentence fragment and example sentence fragments to

be made?20 With the assumption that an EBMT system is created from bitexts, as

with the other data-driven systems, the matching process revolves around the issue

of how long of a sentence fragment to use as a match (absent the case of a perfect

match, in which case translation is trivial, see Figure 2.9). The longer the passage

that is matched, the lower the probability that the match will be complete. The

shorter the passage that is matched, the greater the possibility that the match will

be ambiguous and that the resulting translation will be of low quality—since short

matches lead to word-for-word-like translations (Nirenburg et al. 1993).

EBMT researchers generally look for the longest match possible, then continue

the process recursively for the remaining parts of the sentence. Determining the

20Note that here I revert back to the more usual terminology of using source to refer to the
language being translated from.

63

quality of a match means that an appropriate similarity metric is needed. The

choice of such a metric is one of the key differentiating points between EBMT sys-

tems, and is related to the form in which the examples are stored (i.e., the example

representation). In cases where examples are stored simply as strings of text, sim-

ilarity metrics can be as simple as measuring the number of keystrokes necessary

to convert the source string to an example (a process quite similar to calculating

the edit-distance, the minimum number of insertions, deletions, or substitutions

required to convert one sequence to another, see Kruskal (1999)), relative to the

character length of the source string. This keystroke distance can be calculated as:

(22) Distance = the number of keystrokes
number of source sentence characters (Nirenburg et al. 1993)

A similar method would be to measure difference in terms of words rather than

characters. More elaborate metrics can also be used, such as comparing the sim-

ilarity in terms of morphemes, POS tags, word senses, and the like, but these all

require the ability to do this processing and do it reliably.

If examples are stored not simply as text, matching may be more sophisticated,

and there may be potential for greater generalization, more accurate recombination,

and a reduction in storage requirements. For example, suppose that examples are

stored as trees, which of course necessitates additional linguistic processing, even

if automatic (here, like in the SMT cases, the MT models benefit from hybrid

techniques). Matching using trees allows for comparison of structure as well as

words. Such structured storage also makes recombination smoother; it reduces

what is called boundary friction, where translation fluency is worst where translated

fragments are recombined, since structural considerations can be taken into account.

This sort of approach was used in many early EBMT approaches (Somers 1999).

64

If examples are further processed, and stored as templates or specially tagged

entries (Brown 1999) or as case frames (Jones 1996), the matching process yields

more matches, but sometimes at the expense of quality. For example, to match:

(23) the dog barks

one could use a template such as:

(24) [S [NP+animate][V Pintrans]]

which will yield any number of useless matches such as:

(25) a child slept

Thus, matching procedures often involve a combination of such generalization stra-

tegies, along with bilingual dictionaries (often obtained from pre-existing outside

sources, but sometimes induced automatically from corpora, see Brown (1997)).

Moving to even more sophisticated representation of examples, the model of Jones

(1996) involves the use of predicate frame structures, using detailed semantic infor-

mation. For example, for the following sentence:

(26) The goods were sent to you last Wednesday.

Jones (1996:40) gives the following representation:

(27) SEND(X1 : human : 0 : (X1)Agent

(X2 : non-human : “the goods” : (X2))Goal

(X2 : human : “you” : (X3))Recipient

[S1 : “last Wednesday”]T ime

The obvious issue here is that this sort of representation may require exactly the

sort of hand-coded rules that data-driven systems seek to avoid, unless the rules

too can be induced automatically.

65

As mentioned, example representation is a key issue not only for matching, but

also in terms of storage, generalization, and recombination. Certainly the techniques

such as templates and predicate frames reduce storage requirements (an oft-cited

problem for EBMT approaches),21 and not necessarily at the expense of accuracy.

Using word-clustering techniques, Brown (2000) was able to reduce the number of

examples needed by a factor of four to five, as well as decrease training time to

reach a level of accuracy better than that achieved prior to clustering. Thus, as

in the SST case (section 2.2.2), the issues of storage and generalization go hand in

hand.

With regard to recombination, example representation again plays a central

role. As mentioned earlier, representations which capture hierarchical information,

such as trees, make recombination easier. Without such representation, it could be

impossible to handle word order differences (i.e., the order of the input sentence

would always be imposed on the translated fragment). In addition to example rep-

resentation, the partitioning during the matching of inputs to examples may affect

recombination. Partitioning (deciding where the fragment to match should begin

and end) at phrasal boundaries may be most effective, but is hard to accomplish

without syntactic processing. Veale & Way (1997) propose an interesting technique

which involves using a closed-class of function words, called markers, to delin-

eate phrasal boundaries for selecting fragments, and justify their approach based

on psycholinguistic studies of human sentence processing. Most important is that

better partitioning results in less boundary friction during recombination. Another

21Grefenstette (1999) explores the idea of using the internet as a source for EBMT examples.

66

potential method to decrease boundary friction is borrowed from SMT. Translated

fragments could be combined, then smoothed via a target language model (Somers

1999).

In summary, EBMT, like other data-driven approaches, is motivated by its ro-

bustness, ability to generalize, and lack of a need for elaborate linguistic analysis.

It is also highly adaptable to different domains and language pairs, since coverage

can be increased or varied by adding or changing examples. One problem apparent

in some of the EBMT literature is the lack of a probabilistic model for some of

the decisions that need to be made during the matching, analysis, or recombina-

tion stages. For example, when gathering statistics for correlations between source

language and target language words, Veale & Way’s (1997) parameters do not sum

to one (i.e., it is not a well-founded probability distribution). While these sorts of

flaws may suggest areas where accuracy could be improved, they should not distract

from the clear relationship between EBMT and statistical MT.

Although the strengths and the focuses of the two data-driven MT frameworks

are different, both learn from parallel texts of examples, and both seek means to

align the data so that it can be used to generalize to unseen inputs. In fact, it may

turn out to be that combined EBMT and SMT approaches are the best empirical

solution, since EBMT systems appear to be better suited for special handling of

idioms and contextual, long-distance dependencies, while SMT systems better gen-

eralize to unseen sentences. In a provocative recent paper, Marcu (2001) presents

a hybrid EBMT/SMT system which outperforms two (unnamed) commercial sys-

tems. These sorts of results, along with the potential benefits of incorporating

hand-coded data (as suggested in Vogel & Ney (2000)), further suggest that MT

67

architectures should be flexible. This is consistent with the overall plan for the

linked automata MT architecture presented in this dissertation, in that it is viewed

as an automatically-induced base around which more specialized MT systems can

be built.

68

CHAPTER 3

PRELIMINARIES TO THE MODEL: CORPORA AND

ALIGNMENT

[B]uilding an MT system is an arduous and time consuming job, in-

volving the construction of grammars and very large monolingual and

bilingual dictionaries. There is no ‘magic solution’ to this. (Arnold et al.

1994:11).

As mentioned in Chapter 2, data-driven (or empirical) MT methods begin from

parallel texts, i.e., texts in different languages representing the same content. The

motivation for beginning with parallel texts is to use the translation knowledge im-

plicit within them as a substitute for the hand-coding of grammars and dictionaries.

For the linked automata model presented in Chapter 4, these texts must be

word-aligned,1 where sequences of words representing the same content in source

and target language sentences are linked. In this chapter, I detail the preparation

process, beginning with the choice of parallel texts, then focusing on word align-

ment. I first introduce word alignment in general (section 3.2.1), then present a

crude word alignment algorithm (section 3.2.2), which in turn motivates the use of

1Some empirical MT methods do more complex alignments, e.g., hierarchical syntactic align-
ments, see for example sections 2.2.2.4 and 2.2.2.5.

69

a better aligner (section 3.2.3) and a hand-aligned corpus (section 3.2.4). Last, I

present a method for word alignment evaluation so that the different word align-

ment algorithms can be compared. This will then set the stage for presenting the

linked automata MT model in Chapter 4.

3.1 The Parallel Texts and Their Preparation

Creating a translation system requires a large number of aligned bitexts. An aligned

bitext consists of a source string (often, but not always, a sentence—smaller and

larger units also occur), its target language equivalent (i.e., its translation), as well

as a means of identifying which (possibly empty) sequences of words in the source

string are aligned (i.e., correspond) with which (possibly empty) sequences of words

in the target. For example, we might represent an English and French word-aligned

bitext as in Figure 3.1 (shown earlier as Figure 2.2).

the black cat likes fish

le chat noir aime le poisson

Figure 3.1: An English and French word-aligned bitext

Word alignments are also sometimes presented in the following parenthesized

form, using word numbers to avoid ambiguity, with source word number sequences

appearing to the left of the colon and target word number sequences appearing to

the right for each alignment pair:

70

(28) the black cat likes fish

le chat noir aime le poisson

(1:1)(2:3)(3:2)(4:4)(5:5,6)

Thus, source (English) word 1 aligns with target (French) word 1, source 2 aligns

with target 3, source 3 aligns with target 2, source 4 aligns with target 4, and source

5 aligns with both target 5 and 6.

Before creating a word-aligned bitext data set, a bilingual corpus must be se-

lected. I chose to use parallel translations of the Judeo-Christian Bible.2 I selected

the Bible for several reasons. First, it was freely available. Second, religious works

tend to be meticulously translated, which can ease the task, since successful train-

ing requires a high degree of correspondence between the source and target texts.

Additionally, another benefit to using the Bible is that it allows for perfect sentence

alignment, something which is unrealistic for most bilingual corpora, since we can

match the texts verse for verse.3

Another choice which needs to be made is that of source and target languages.

Since I wanted to give the linked automata system its best chance to succeed, at this

early developmental stage, I chose two languages which should be relatively easy: I

selected English as the source language and Spanish as the target language. These

languages exhibit a degree of word-order variation (but not as much as we might

2These have been graciously made available by the University of Maryland Parallel Corpus
Project, at http://benjamin.umd.edu/parallel/. My thanks to Philip Resnik and his collabo-
rators for their generosity.

3The use of such religious works is obviously not without controversy. In this project not only
do I manipulate sentences, but I also rearrange words in orders not seen before, creating new
sentences. In doing so, it is certainly not my intent to offend anyone, and I apologize if I have
done so. My decision to use these works was simply a practical one, and further research will
likely make use of additional corpora.

71

see, for example, with English and German), and sentences are roughly the same

length (Spanish tends to be slightly shorter, both in terms of words and characters),

providing what should be a more straightforward translation task than we would

get with two languages less closely related in terms of type, such as Finnish and

Cantonese.4

On the English side, the King James Version was used. For the Spanish, the

Bible version was the 1909 edition of the Reina-Valera. After downloading the

two texts, they were prepared by eliminating any inconsistencies (e.g., missing or

transposed verses, etc.) and removing the html tags as well as most (non-word-

internal) punctuation, using various Perl scripts created for the process, to ready

them for the alignment stage.

3.2 Alignment

When I embarked on the word and sentence alignment part of the project, there

were two often conflicting goals: 1) to keep the effort spent on alignment to a mini-

mum and 2) to have the best alignments possible. The reason for trying to minimize

the resources spent on alignment was simply that word and sentence alignment are

entire research domains in their own right, and were not the focus of this research.

But, an important assumption to the entire translation model proposed was that the

process begins with accurately aligned texts. Thus, I opted for a strategy that was

4It was also of no small benefit that English and Spanish are the author’s two best languages.

72

as straightforward to implement as possible, but that also allowed for a reasonable

degree of accuracy. Needless to say, changes in alignment strategy will continue to

have ramifications for this work, and it is a possible area for further exploration.

While it is perhaps likely that alignment may be most efficient and most accurate

when sentence and word alignment take place concurrently (or at least when a

model for word correspondences is generated concurrently with sentence alignment,

see Chen (1993)), I chose to first sentence-align then word-align the two texts. I

began with an implementation of Gale & Church (1993), a very efficient sentence

alignment algorithm based on the number of characters in sentences.5 While the

results were fairly good, it was clear that the overall translation system performance

could be only as good as the overall word alignments, which in turn would be only as

good as the overall sentence alignments. Thus, as already mentioned, I decided to

use the verses in the Bible for sentences, yielding perfect sentence alignment, which

I hoped would make it easier to evaluate the overall translation model (i.e., the

interest of this research was not so much in perfecting sentence alignment; rather,

I assumed an accurate alignment, and wanted to see how far I could go with it in

the translation model). To this end, I simply first checked the texts to make sure

their verses agreed, eliminated any passages where there were discrepancies, and

produced the verse-aligned bitexts.

5My thanks to Chris Brew for providing me with his Lisp code implementing the Gale and Church
sentence alignment algorithm. For the results reported in this dissertation, the algorithm was
not used, however, since Biblical verses formed readily alignable units.

73

3.2.1 Word Alignment

After sentence alignment comes the obviously more challenging task of word align-

ment. One possible approach to word alignment, given already aligned sentences,

would be to again use a Gale and Church-like approach, i.e., given an appropriate

metric and an appropriate dynamic programming algorithm, we could attempt to

align words just as we do sentences. Word alignment, however, has complexities not

seen in sentence alignment. Certainly, suitable metrics do exist, but word alignment

based on the number of characters or phonemes in words is not appropriate, simply

because these metrics do not sufficiently distinguish one word from another with

enough accuracy for the task.

Before moving to the step of creating a word-aligner, let us first examine some of

the types of alignments that can occur. As is also the case for sentence alignment, in

word alignment we can see one-to-one, one-to-none and none-to-one (I will refer to

these last two collectively as null alignments), many-to-one, one-to-many, and many-

to-many alignments. A template, showing some typical alignment configurations,

is shown below in Figure 3.2.

Ø

1:0 0:1 1:1 2:1 1:2 2:2

x Ø x x x x x x

 y y y y y y y

Figure 3.2: Some typical alignments between source (x) and target (y) words

74

A word alignment has typically been defined as a mapping between the words

of a source language string and the words of a target language string (Brown et al.

1993).6 However, because the subparts of word alignments (e.g., the correspondence

between fish and le poisson in Figure 3.1) can also be viewed as mappings between

words of source and target strings, there sometimes exists confusion in terminology,

specifically, if such ‘subparts’ should also be referred to as word alignments (or

links, connections, correspondences, etc.). In this and later chapters, I will attempt

to stick with what appears to be the most standard practice in the literature, even

though it may be slightly confusing, and refer to these subparts as alignments,

and reserve the term word alignment for the set of all such correspondences in a

bitext.7 For example, in Figure 3.1 and example (28), there are five alignments,

which together comprise the word alignment of the bitext (notice that four of the

alignments are 1:1 and one is 1:2).

Some other researchers (such as Ahrenberg et al. (2000)), use both alignment

and link interchangeably to refer to these subparts (i.e., what I have defined as

alignments). I will reserve the term link to refer to the individual correspondences

within an alignment, following the practice of Melamed (1998). A link is a 1:1

correspondence between words, i.e., a pair (u, v), where u is a source word and v

is a target word (one might think of links graphically as the individual lines of an

6Brown et al. (1993:266) actually describe an alignment “between a pair of strings as an object
indicating for each word in the French string that word in the English string from which it
arose,” thus our notion is somewhat more general.

7In many cases, a distinction between the two will not be necessary; but having the two terms
should help in the event the meaning cannot be determined from the context alone. Alignment
and word alignment, of course, may also refer to the process of computing a word alignment—in
these instances no distinction is needed.

75

alignment). So, a 1:1 alignment consists of one link, a 2:1 alignment consists of two

links, and a 3:2 alignment consists of six links (thus the number of links is equal

to the number of relationships between words—this leads directly to the idea of

using the cartesian product to get the links for non 1:1 alignments, in section 3.3).

Finally, I will sometimes refer to the words of an individual alignment as anchors,

using source anchor for source words and target anchor for target words. Having

the word alignment terminology squared away, we now return to the discussion.

In a word-aligned bitext, each word in the bitext must be accounted for exactly

once. In addition to the different types of alignments shown in Figure 3.2, there

are also different types of word alignments, such as a swapping word alignment.

A swapping word alignment occurs when the links (sometimes these will also be

called branches) of different alignments cross each other (see Figure 3.3; swapping

typically refers to the crossing of two different 1:1 alignments, and often only when

the anchors are all adjacent, but I use it to refer to any sort of word alignment where

some of the branches cross). Referring again to Figure 3.1, we see a swapping word

alignment, where black is aligned with noir and cat is aligned with chat, creating

the crossing branches.

 x x

 y y

Figure 3.3: A swapping word alignment

76

While in sentence alignment we might expect to see some of these same sorts of

alignments (e.g., many-to-one, one-to-many, as well as one-to-one, two-to-two, and

null alignments),8 the dynamic programming techniques typically used in sentence

alignment do not lend themselves to swapping. For example, we might choose to

align the first source language sentence with the fourth target language sentence,

and also to align the third source language sentence with the second target lan-

guage sentence. For most applications, disallowing this sort of swapping sentence

alignment will not produce poor results. But for word alignment, as we have al-

ready seen, allowing such swapping is a must for any pair of languages where the

word order is not always the same. In the next section, a very simple word-aligner,

which allows for a number of different alignments, including swapping, is developed.

One type of alignment which this algorithm will not account for, however, is a dis-

continuous alignment (see Figure 3.4). A discontinuous alignment is one in which

either the source anchors or target anchors in one alignment are not contiguous

(i.e., all the words are not adjacent to each other). I will discuss why the algorithm

does not allow for such alignments in the next section, and return to the subject of

discontinuity in depth in Chapter 7.

 x x x

 y

Figure 3.4: A discontinuous alignment

8Of course, the possibilities here are endless, but these alignments are some of the most common.

77

3.2.2 A Simple Word-Aligner

I previously noted that the number of characters or phonemes was not a suitable

metric for word alignment. Toward finding a suitable metric, I again looked for

a straightforward approach, and chose to base our measures upon word frequency.

The basic idea here is that if words co-occur more often than we would expect based

on their frequencies in the data, given some threshold, we hypothesize that they are

good candidates for alignment. The first step is to gather frequency data as follows:

For source word A and target word B , calculate the information in the following

table, where k1 is the number of times A and B co-occur in the bitexts; k2 is the

number of times B occurs in bitexts where A does not occur; k3 is the number of

times A occurs in bitexts without B ; and finally k4 is the number of source and

target word co-occurrences in all bitexts, where the source word is not A and the

target word is not B :

(29)
k1 : (AB) k2 : (¬AB)

k3 : (A¬B) k4 : (¬A¬B)

We also use the following counts and probabilities:

(30)
counts: n1 = k1 + k3 n2 = k2 + k4

probabilities: p1 = k1/n1 p2 = k2/n2 p = (k1 + k2)/(n1 + n2)

Next, knowing that for a task such as word alignment data-sparseness is a predomi-

nant problem, we choose as the most appropriate measure Dunning’s (1993) g-score

(also known as log-likelihood ratio, likelihood ratio, or more accurately log of the

likelihood ratio), which is defined as follows:

78

(31) 2 ∗ [logL(p1, k1, n1) + logL(p2, k2, n2) − logL(p, k1, n1) − logL(p, k2, n2)]

logL(p, k, n) is defined as:

(32) k ∗ log(p) + (n − k)log(1 − p)

Returning to the numbers needed for the g-score calculation, there are a number

of possibilities. Again, for a bitext of n source words and m target words, for each

word of the source si and each word of the target tj we could count the number

of times they co-occur in the given bitext. Doing this for all the bitexts, we could

construct a table, giving us not only a number for si and tj co-occurrence, but our

other numbers needed as well. But what does co-occurrence mean? Do we count

all words equally? Do we care if the words are in the same relative place in the

respective sentence with regard to the length of the sentence? Are we interested

in the co-occurrence of word sequences with word sequences, and the like? And

perhaps the most practical question, for any corpus, won’t such tables become too

large to use without the aid of heuristics for shortening them?

As elsewhere, I try to be as practical as possible. First, we count all co-

occurrences equally (I save the question of relative distance of one word from another

in their respective sentences as a separate measure). The question of word-sequences

is answered by considering what sort of alignments we want to allow. Since the most

typical alignments (as ascertained by hand-aligning a small portion of the texts)

are 1:1 (i.e., 1 source word to 1 target word), 2:1, 2:2, 1:2, 1:0, and 0:1 (see Fig-

ure 3.2), we can concentrate our frequency gathering on the 1:1, 1:2, 2:1, and 2:2

cases (leaving the 1:0 and 0:1 cases, known as deletion and insertion, respectively,

to be determined by appropriate penalties during the actual alignment process).

79

Given these alignments, the counts needed are clear. For example, for the 2:1

case, we count how many times a pair of adjacent source words occurs in the same

bitext as a given target word. Note that while we will allow for swapping word

alignments, as mentioned, we do not allow for discontinuous alignments (so we

would not allow source words 1 and 3 to be aligned with a target word, since

they are not adjacent; see Figure 3.4). We did this mainly because we thought

that such alignments were rare (this turns out to be an incorrect assumption, see

Chapter 7). Additionally, allowing discontinuous alignments would cause the com-

putational complexity of the alignment algorithm, not to mention the size of the

frequency tables, to balloon.

As for the heuristic for reducing the size of the tables, we choose to only count

co-occurrences that occur within a certain distance window. This coincides with

the idea that in a long sentence, even for languages where word order varies, the

words that are somehow related will tend to occur in similar relative positions in

their respective sentences. For example, even though an English subject might be

towards the beginning of the clause in which it occurs (which itself may be embedded

in some larger sentence), and a corresponding German subject may occur toward

the middle of the relevant clause (inside some larger sentence), the two words still

will generally occur within a window of a size much smaller than the length of

the respective sentences. For the data that we had, we inspected our results with

various window sizes (and checked the sizes of our tables) and chose to use a window

size of five.9 Having made these design decisions, we implemented the frequency

9Clearly, this window size is something I could vary to improve the alignment results. However,
in the future work on this project, given the dependence on accurate alignment, I will likely
end up using different and more effective algorithms altogether, such as the aligner discussed

80

calculation algorithms in Lisp, and got data for the various alignments from the

Old-Testament books Genesis–Numbers, with the idea that we would use these

frequencies for aligning sentences from Genesis (i.e., the first book of the Bible).10

3.2.2.1 Overview of Word Alignment Algorithm

Our raw materials now in place, there remained the question of the appropriate

alignment algorithm to allow for swapping. Again, note that typically dynamic

programming algorithms do not allow for swapping, and in any case the increase of

possibilities in the search space can be quite expensive. One can think of allowing

swapping as the equivalent of allowing crossing alignment branches (see again Fig-

ure 3.1), or as the idea that the word sequences of one string float freely over the

other, which remains fixed. Alignment consists of finding a means to account for

each source and target word, but crucially using each word only once. Our solution

was to create a version of the CYK algorithm (the Cocke-Younger-Kasami algo-

rithm, see (Aho & Ullman 1972) for a good explanation) which is pre-seeded with

the various alignments that make swapping possible. We borrow an idea from John-

ston (1998) (note that I use an analogous approach during the actual translation

process, described later in section 4.5.3). Johnston’s idea is given in a chart-parsing

in section 3.2.3, and as such did not want to spend too much of my time focusing on the
best possible alignment approaches. Also, the proper window size might best be viewed as a
parameter to be adjusted depending on the pair of languages involved.

10Note that this is not an instance of the well-known machine-learning error of training on the
test set, since one might expect when aligning an unseen corpus of bitexts to first go through
the corpus and get the frequency data, and use the data to help in the alignment, by either
adding it to existing tables or using it to create new ones. It simply means two passes through
the corpus instead of one.

81

context, where the aim is to combine constituents in a way that allows overlap-

ping. He uses what he calls a multichart, where edges which can be combined are

identified by sets which record the atomic edges from which they were generated.

Edges may only be combined when the intersection of these sets is empty. Our

adaptation of this technique in the word alignment context works as follows: Sup-

pose we use the target sentence as the base (think of this as if we are trying to

parse the target sentence) in our m word CYK dynamic-programming matrix, thus

the matrix will have m ∗ m cells. Parsing the target sentence amounts to putting

its constituents together in all ways possible, keeping the linear order fixed (note

that here we let the source sentence float, and keep the target sentenced fixed; we

could do the opposite or let both float and would still get the same results). To

each array cell, we add a number of what we term sas-triples, where sas stands for

source-alignment-set. Each triple represents the source words that the target words

spanning the given array indices could be aligned with. As the target is parsed, a

new edge can only be put into a cell if the sas-triples of its daughters have a null

intersection. The new edge has an sas-triple value of the union of the sas-triples of

its daughters. In actuality, we also record the score at each cell, as our alignment

algorithm is probabilistic, and record a link back to our alignments (these three

entities, the store of source words, the score, and the alignment link, comprise the

triple).

For brevity, we will not give our seeding algorithm here, but the basic idea is

to seed each array cell with sas-triples, consistent with the alignment possibilities

we allow (e.g., since we allow 2:2 alignments, we need to seed all the array cells

representing constituents of length 2, but we need not seed any cells which represent

82

constituents of length greater than 2, since we do not allow alignments or more than

2 pairs of words). We do this seeding for all possible source word sequences within

the allowable alignment window. This last point is important. If, for example, we

only allow source and target words within 10 words of each other to be aligned

(where relative distance might be measured from the beginning of the sentence),

there is no point in seeding the array with sas-triples for source words that are more

than 10 words away from the given target constituent. The number of possible

alignments increases dramatically with no constraint on the window size, since

anything in the source can align with anything in the target, which even if we only

allowed 1:1 alignments would mean n ∗ m possible alignments for every bitext. To

allow for the 0:1 cases, we also seed the appropriate cells with sas-triples with empty

source word stores.11 The beauty of this seeding approach is that once completed,

we can simply parse the target sentence as if it exists on its own. The sas-triples

can be viewed as non-terminals, and the intersection test can be viewed as the only

constraint on their being put together.

We can best illustrate the seeding process with an example, using the following

bitext:

(33) the cat sleeps

el gato duerme

In this example, we assume an alignment window of 1, which means that target

word sequences can be aligned with source word sequences if the difference in their

11I handle the 1:0 cases only in the last cell, i.e., the cell containing complete parses, by simply
adding any new edges which could be created from existing edges with the addition of aligning
a source word with nothing in the target, so long as that source word has not been already
used. This is an invisible operation in terms of the parse, since it is independent of the target
words.

83

j→ el gato duerme

i↓ 1 2 3

el 1 〈〉,〈the〉,〈cat〉 〈the〉,〈cat〉
〈the cat〉,〈cat sleeps〉 〈the cat〉,〈cat sleeps〉

gato 2 〈〉,〈the〉,〈cat〉,〈sleeps〉 〈the〉,〈cat〉,〈sleeps〉
〈the cat〉,〈cat sleeps〉 〈the cat〉,〈cat sleeps〉

duerme 3 〈〉,〈cat〉,〈sleeps〉,〈cat sleeps〉

Table 3.1: Seeded CYK array for bitext 〈the cat sleeps; el gato duerme〉, with align-
ment window of length 1 (showing only source word stores of each sas-
triple)

starting points is less than or equal to 1. Given this constraint, and assuming the

alignment possibilities shown in figure 3.2, as well as allowing swapping, we seed the

CYK array as shown in table 3.1. Array cell < i, j > stores alignments for target

word sequences beginning at i that are j words long. For instance, cell < 1, 2 >

is initialized with all the permitted alignments for the 2 target word sequence el

gato. These alignments include the 1:2 alignments: < the > and < cat >, but not

< sleeps >, because < sleeps > is outside of the alignment window; and the 2:2

alignments: < the cat > and < cat sleeps >.12

Having properly initialized the CYK array, we parse in the normal way, attempt-

ing to combine the sas-triples for adjacent target edges, until we have spanned the

12Note that in the figure I only show the source word stores, and not the actual alignments, simply
to save space. But during parsing, there are of course other ways to get these same stores, since
one can cover the same two source words in the same array cell by using different alignments.
For example, a pair of 1:1 alignments, once combined into a single sas-triple, may have the
same source word store as a single 2:2 alignment sas-triple. Note also that the implementation
uses bit vectors to represent the source word stores, i.e., a bit in the nth position is used the
track the presence of the nth source word.

84

entire target sentence, getting complete parses from the m∗mth cell. There are two

additional considerations, however. We mentioned that the word alignment process

is probabilistic, i.e., each sas-triple has a score. How we calculate that score is the

first consideration. The second consideration is the very large number of alignment

possibilities, notwithstanding the use of a window of allowable alignment distances.

We need to use heuristics to keep the computation manageable.

3.2.2.2 Calculating the Word Alignment Scores

In terms of the score calculation, there are a number of factors. First and foremost

(and notice that all initial scores are set during seeding; during parsing, scores of

the daughter constituents are simply added) is the aforementioned g-score for the

alignments as stored in the sas-triple. Probably the next most important factor

is the distance of an alignment, where again distance is defined as the difference

between the relative starting points of the source word sequence and target word

sequence under consideration. Keeping with the intuition that alignments where

the distance is great should be less favored, we experimented with a number of

different measures and penalties, some which measured distance from the beginning

of the relevant sentence and some from the middle. For the results reported later

in this dissertation, we simply measured the distance as the difference between the

relative starting points when compared to the start of the sentence, then multiplied

this distance by a weight. The g-score, as we have defined it, gives us a positive

number. If two items (two word sequences, in our application) A and B have a

high g-score, they are good candidates for alignment. So, we seek to get alignments

which have the highest score. Bearing this in mind, we then subtract the distance

score (we call it a distance penalty) to get a score for the alignment.

85

We also adjusted the scores (lowered them) in cases of deletion (i.e., where

a source word sequence aligns with nothing in the target; thus, it is as if a source

word gets deleted during translation), in cases of insertion (i.e., where a target word

sequence aligns with nothing in the source), and, for alignments which we considered

to be less desirable than 1:1, namely 2:1, 1:2, and 2:2, we also gave penalties. Thus,

from an initial g-score (0 in the case of insertions and deletions), we subtracted

the various penalties, each of which were multiplied by weights. We hand-tuned

the weights to a point where alignment appeared stable, and within a range of

acceptability. Even before we had created a hand-aligned set for comparison (see

section 3.2.4), however, we could see that the alignments produced were unlikely to

be good enough for translation model testing (this intuition is borne out with word

alignment evaluation, see section 3.3). Clearly, if we were to continue to develop

this word alignment algorithm, it could benefit from more principled parameter

tuning.

There are also a number of other relatively simple techniques which would likely

greatly improve the performance. For example, issues of data-sparseness can be

alleviated by using lemmatization—thus we might align lemmas rather than words.

Of course, such a step would require the existence of an appropriate lemmatizer.

Similarly, one might have special treatment for function words, assuming such high-

frequency words could be easily identified. Additionally, similar metrics to the

g-score measure could be employed to identify word collocations, which left uniden-

tified could lead to translation errors later on. Again, as mentioned in Chapter 2,

the degree to which such techniques are employed may affect how automatic the

alignment methods, and consequently the MT methods, are.

86

3.2.2.3 Reducing the Word Alignment Search Space

The remaining problem we faced was the still very large number of alignment pos-

sibilities that the CYK algorithm faced, even after the constraints on allowable

alignments we had imposed. Given that the verses were often over 20 words long,

the dynamic programming array cells would quite quickly fill with alternative word

alignments, since we allowed alignments of differing ratios, swapping, and inser-

tions and deletions. The solution was simply to decrease the search space, using a

hill-climbing strategy. At each array cell, we limited the number of sas-triples, by

keeping only the n-best scoring triples. We determined a good value for n empiri-

cally, one which was large enough so that it seemed to have no adverse effect on the

alignment, and small enough so that the alignments could proceed in a reasonable

amount of time.13 We arrived at an n calculated as the lesser of twice the number

of words in the source sentence plus five, or 40, since numbers over 40 tended to

bog down the system.

Having created a rather informally designed word alignment system, but one

with all the alignment possibilities we initially thought required, including swapping,

we went ahead and aligned the first four books of the Bible (i.e., Genesis, Exodus,

Leviticus, and Numbers), yielding nearly 5,000 word-aligned bitext triples, each

with an average of 50 combined source and target words.

3.2.3 Using a Better Word-Aligner

Although the creation of the word aligner described in section 3.2.2 (we will refer to

this as the CYK aligner) allowed for a word-aligned corpus to be quickly constructed,

13I do not report alignment times here since it was an off-line task for the project.

87

manual inspection of the word alignments produced showed that they were less than

ideal (a more quantitative evaluation will be presented in section 3.3). Thus, once

the earliest development stages for the linked automata model were completed, I

began to look for good word alignment implementations which were freely available,

so that I could quickly make other data sets for experimentation with the model.14

It turns out that a good word-aligner was very close at hand. Section 2.2.1 intro-

duced the IBM statistical MT model (Brown et al. 1993), which is a word alignment

model. The IBM model was well-known for its (relatively) good performance, but

although an overview of the mathematics behind the model were provided in Brown

et al. (1993), the presentation was rather difficult, and researchers had difficulty im-

plementing the complicated model. Partially because of this difficulty, a number

of leading statistical MT researchers got together for a workshop in the summer

of 1999, at Johns Hopkins University (Al-Onaizan et al. 1999). These researchers

implemented most of the IBM model (up to Model 3), with the exception of produc-

ing a decoder (thus the implementation could produce word alignments, but still

lacked the decoder needed for translation). They called this system Giza, and made

it freely available to other MT researchers. One of the researchers, Franz Josef Och,

continued to develop the system, including adding the code necessary to implement

IBM Models 4 and 5, as well as the use of word-classes. This, system, called Giza++

(Och & Ney 2000), would be expected to yield better word alignments than Giza,

and was also made freely available for research.

14Dan Melamed was instrumental in pointing me to word alignment resources, and Franz Josef
Och kindly answered a number of my questions regarding the use of his word aligner, Giza++

(Och & Ney 2000).

88

The implemented IBM models, used as a word aligners, are not without limi-

tations. For example, alignments show a high degree of directionality, in that only

certain types of alignments are permitted: All of the alignments are of the form

1 source word to any number of target words. This means that certain types of

alignments are ruled out, such as 2:1, 2:2, etc. (i.e., any alignment with more

than one source word), but other types of interesting alignments are permitted, in-

cluding 1-to-many alignments, where the target words could be discontinuous (i.e.,

non-adjacent, see Figure 3.4). Most important, because the parameters of the IBM

model are tuned using maximum likelihood estimation, as opposed to hand-tuned

as in the case of the CYK word-aligner, the Giza++ implementation of the IBM

model should produce better word alignments. This intuition was supported by the

testing against a gold-standard data set (see sections 3.2.4 and 3.3), and allowed

for a second data set to be created. In the results in this dissertation, this set will

be referred to as the Giza (or Giza++) data set. It should be emphasized that

these word alignment results were still less than ideal, and showed a number of

systematic errors, but the addition of a second data set proved beneficial for the

overall research program.

3.2.4 Hand Aligning

As mentioned in the previous two sections, I wanted to have a gold standard set of

word alignments, so that I could assess how well different automatic aligners were

performing. Knowledge of the word alignment accuracy was important in terms

of determining if the MT model would produce more accurate translations with

more accurate word alignments, as would be expected. Assuming that this was the

89

case, accuracy could then be used to determine which word alignment algorithms

should be utilized for training. A gold standard of hand-aligned data allows for

the automatic evaluation of any number of word alignment algorithms. A second

benefit of a gold standard is that, once created, it can be be used as a resource for

a number of tasks in linguistics, such as word-sense disambiguation, translation, or

searching for cross linguistic lexicalization patterns (Melamed 1998). But, of course,

the creation of such a gold standard is an extremely tedious and time-consuming

process.

The problems associated with creating a gold standard word-aligned data set

are many. In addition to the effort required, tools must be created for the process,

bitexts must be selected and prepared, and most important, clear standards for the

annotation must be set and adhered to. Although it is true that there is not always

one correct word alignment for a bitext, the situation is not nearly as difficult as

in machine translation (where there can be many correct translations). There is

much less ambiguity in word alignment because the words in the bitext are fixed;

only the mapping between them can vary. Once certain conventions for aligning

are agreed upon (for example, whether to allow discontinuous alignments, how to

treat the alignment of pronouns and verbs in one language with pro-dropped verbs

in another, i.e., should the pronoun be aligned with the verb or not with anything,

etc.), annotators will typically agree to a strong degree what the correct alignment is

(for example, in Melamed (1998), inter-annotator agreement in the word alignment

of content words was typically over 90%).

Probably the best-known and most ambitious word alignment gold standard

project is the Blinker (bilingual linker) project of Dan Melamed (Melamed 1998).

90

Melamed paid seven annotators to word align various parts of 250 verses of English

and French versions of the Bible (he selected the Bible for the same reasons it was

chosen here, availability and ease of using verses as pre-aligned units). To make

the process easier for the annotators, and thus increase his chances of having useful

results, Melamed created a graphical alignment tool, as shown in Melamed (1998).15

For my research, I did not have funding to pay annotators, and I wanted to have

a relatively large data set (over 1,000 bitexts). So, I wanted to make the process

as smooth as possible, knowing that I would have to do the aligning myself. Dan

Melamed graciously made the his graphical alignment tool available to me, but

he suggested that its implementation was bug-prone, and hard to adapt, so that I

might be better off creating my own. I took his advice, and with the help of Chris

Brew (who made the graphical module of the tool), made what is essentially a copy

of Melamed’s Blinker tool, using Lisp instead of Java. A screen shot of the tool is

shown in Figure 3.5.

The tool presents each bitext from a previously made file, where the file consists

of parenthesized bitext triples, i.e., a list containing a source sentence, a target

sentence, and a possibly empty list of numbers indicating the word alignment. The

tool prints the two sentences in full at the top, and the words of the source on the

left and the target on the right (see Figure 3.5). Words are aligned by selecting

unaligned words from either column, then a user may either click “L,” “Link,” or

type “l” on the keyboard, to draw the lines indicating the alignment. Clicking on

the “0” on the left will draw lines from selected source words to the 0 bar, indicating

15Attempting to hand-align without a graphical tool, i.e., using a text-based tool where word
numbers are selected, is a process too tedious to attempt, as evidenced by my own inability to
continue in such a task after just a few bitexts.

91

Figure 3.5: The word alignment tool

a source word null alignment, and clicking on the right “0” proceeds analogously for

target word null alignments. Only unaligned words may be selected, and selecting

a word changes the color of the word’s box. Users may also click on the lines which

indicate alignments, which will remove all the lines associated with the alignment

(and make the words selectable again). Alignments which are not 1:1 are indicated

by the cartesian product of lines, (e.g., a 3:2 alignment would show six lines; clicking

on any of these removes all six).

The alignment tool was designed as a forced-choice task. This means that

users must account for each word before they can go to the next bitext (or return

92

to an earlier one). This helps to avoid errors (i.e., neglecting to align words) and

mimics the behavior that one would expect from a word alignment algorithm. More

importantly, it avoids having to distinguish between the failure to make a link,

versus no link (a null alignment), which can be a problem for word alignment

systems (Ahrenberg et al. 2000). Most of the remaining buttons shown in Figure 3.5

should be self-explanatory, with the exception of the “Magic” button. The “Magic”

button was added to allow a programmer to add a useful operation which the tool

does not provide. In this instance, it was implemented as a semi-automatic aligner:

Clicking on “Magic” causes the tool to make all the possible 1:1 alignments using

only unselected words, which can be a tremendous time-saver. An alternative idea

would have been to have “Magic” call an automatic word-aligner, if one was found

of sufficient quality, so that such an automatic alignment would prove to be a time

saver.

Although in retrospect it may have been more useful to have selected verses at

random, and thus get a better sampling of the different types of texts in the Bible,

I chose to do the word-aligning sequentially, from the beginning. I hand-aligned

English and Spanish versions of the entire book of Genesis, which consisted of 1531

verses. My goal was to do the alignment as fast as possible, but in a consistent

manner. I am a native speaker of English, and, although my Spanish is not fluent,

typically the word alignments to make were clear; when in doubt I consulted with

native speakers. The project took close to a month to complete, and I suspect that

there are a number of errors in alignments (mainly places where the alignment style

varied), given my hurried pace. The most important guideline that I followed was

that no discontinuous alignments were allowed. To force this to be the case, I made

93

such alignments impossible for the tool to accept (this requirement can, of course, be

easily relaxed, for future projects). As was the case for the CYK automatic aligner

(section 3.2.2), at the onset of the hand-aligning task, I thought that this was a

reasonable thing to do. Such alignments seemed quite rare for English and Spanish,

and I wanted the capabilities of the tool to be similar to automatic aligners, which

I supposed did not make discontinuous alignments. I was wrong on both counts.

Aligners such as Giza++ (section 3.2.3) allow for such alignments, and discontinuous

alignments do indeed occur occasionally in the alignment of English and Spanish,

as shown in a fragment from the task in Figure 3.6. Nevertheless, having begun

the task with this style in mind, I stuck with it. To align in instances where

discontinuity was clearly the best choice, I simply made a larger alignment, as in

Figure 3.7, which gets the information correct, but is less specific.16

and set it up for a pillar

y la erigió como memorial

Figure 3.6: A discontinuous English to Spanish alignment from Genesis

In addition to this no-discontinuities alignment style, a number of other align-

ment style decisions were made, such as choosing to align an English pronoun and

16Such a strategy could be taken to the ridiculous extreme of selecting all the words in both
sentences and linking them in one giant alignment. Such extremes never occurred in the hand-
aligned corpus, and were generally limited to just a few words on either side.

94

and set it up for a pillar

y la erigió como memorial

Figure 3.7: Coping with discontinuity when it is not permitted

verb with a Spanish pro-dropped verb, e.g., I would make a 2:1 alignment of he

talks and habla, usually trying to let semantics be my guide (i.e., align those seg-

ments which carry the same meaning). As pointed out by others (Melamed 1998),

translations in the Bible are sometimes rather far apart from each other, perhaps

because they are translations from a third (or even fourth) original language, so at

times passages were difficult to align. In the worst (very rare) cases, these would

necessitate several null alignments. All in all, however, the alignments should be

fairly consistent, and were much better than what one could expect from a auto-

matic aligner, notwithstanding the discontinuity issue, and therefore could fulfill

their purpose as a very low-cost gold-standard.

3.3 Word Alignment Evaluation

Word alignment evaluation is a surprisingly fuzzy area in the literature. With the

notable exception of Melamed (1998), most word alignment evaluation (WAE) is

either done by people (i.e., human judges, as in Och & Ney (2000)), or by automatic

measures which appear to be somewhat ad hoc (see for example the techniques

of Ahrenberg et al. (2000), to be described below). Human judging seems a very

reasonable thing to do, but is typically limited in scope (e.g., Macklovitch & Hannan

95

(1998) limit themselves to 50 sentence pairs), hard to replicate without the funding

for judges, and must be redone for each new test. Automatic methods usually

involve comparing the results to a hand-annotated gold standard, such as that

described in section 3.2.4, but many of the methods seem unclear.

Some of the confusion in WAE probably stems from the fact that word alignment

is typically associated with machine translation, where evaluation is a notoriously

difficult task (see the discussion in Chapter 5). The crucial difference between WAE

and MT evaluation is that, given a fixed alignment style, there is typically something

which is (at least arguably) the best alignment, while in MT there is generally no one

translation which can be identified as best. The sources of problems in automatic

WAE center on three main issues: 1) how to deal with missing alignments (i.e., when

an aligner has not indicated how a given word should be aligned, sometimes also

referred to as missing links), 2) how to appropriately weight and measure alignments

which are not 1:1, i.e., which may be many-to-many, and 3) what overall measures

to use (e.g., precision, recall, perplexity, etc.). In this section, I hope to put an end

to this confusion, by establishing a principled WAE metric for automatic evaluation

against a gold standard, after first describing how each of the three issues should

be dealt with.

To deal with these issues, we will first review the terminology and notation. In

this section, I will show word alignments as lists of pairs of integer sequences sepa-

rated by colons, such as as shown in (28) earlier, and (34) below, where the left side

of the pairs indicates source words and the right indicates target words, and where

∅ indicates a null alignment, i.e., that side of the alignment is empty. The integers

96

unambiguously represent words at the indicated positions in the source and target

sentences, respectively, and for the discussion in this section, no reference to the

actual words is necessary.

(34) ((1:∅) (2,3:1,3) (4:2) (∅:4) (5:5) (6:∅) (7:6))

Continuing with the terminology laid out earlier, I will try to refer to the all

the alignments (e.g., the entire list in (34)) as a word alignment, and the individual

lists separated by colons as alignments. Also, I will again refer to the individual

mappings between pairs of source and target word numbers as links. So, in the

word alignment of (34), source words 2 and 3 are aligned with target words 1 and

3, and there is a link between source word 2 and target word 3 (and also between

source 2 and target 1, source 3 and target 1, and source 3 and target 3, and so on

for the other alignments; in the discussion, source word numbers are always given

first).

When making word alignments, whether by hand or automatically, it only makes

sense to align a given word once, i.e., no word can participate in more than one

alignment. This should make intuitive sense: For a word to participate in more than

one alignment, it would have to behave as if there was more than one instance of the

word. A word alignment in which all of the words are used exactly once is said to be

conservative. For example, using a hypothetical three word source sentence and two

word target sentence, the following are examples of some possible conservative word

alignments:

97

(35) ((1:1)(2,3:2))

((1,3:1,2)(2:∅))
((1:∅)(2:∅)(3:1,2))

and the following word alignments are not conservative (non-conservative):17

(36) ((1:1)(1,2,3:2))

((1,3:1,2)(2:2))

((∅:1)(1:∅)(2:∅)(3:1,2))

((1:1)(3:2))

((1:1)(2,2,3:2))

Armed with this notion of conservativity, we can deal with the first issue raised:

How to deal with missing alignments (i.e., missing links). My answer is rather

simple. I am only interested in conservative alignments. That is to say, any word

aligner that is useful must account for every word once and only once. While it is

true that some researchers might get use out of word aligners which produce non-

conservative alignments (for example, perhaps only content words could be aligned;

this could still prove useful for construction of a bilingual lexicon), and also true

that humans when doing aligning are not always sure what choice to make (and

may therefore not make a choice, or make more than one choice, if permitted),

any practical word aligner, especially one meant to be central in an MT system,

must be conservative. Certainly, I think most researchers would agree that no word

17Once might call non-conservative word alignments deficient, but that could create confusion
with the use of the term by Brown et al. (1993), where deficiency refers to the generation of
impossible strings in alignments (e.g., more than word in the same place), so I will stick with
non-conservative.

98

token should be allowed to be used more than once in any word alignment.18 The

question of whether to allow missing alignments raises more questions. We might

call word alignments which use each word no more than once but do not use all of

the words, incomplete. To allow for a distinction between null alignments (a word

is aligned with nothing) and missing alignments (the aligner did not make a choice)

is a failure to complete the original task.

The goal of word alignment is to indicate which portions of bitexts are trans-

lations of each other, i.e., which subparts represent the same content. Something

either is a translation of something else or it is not. While translations may be un-

clear, imprecise, or (fully or partially) inaccurate, allowing for missing alignments is

tantamount to conflating the notion not being sure of the answer to a question with

not being sure if a question was asked. In word alignment, the question is always

asked, and therefore a choice must always be made, even when the correct answer is

not clear. For this reason, most automatic aligners and most of the gold standards

(e.g., Melamed (1998)) use a forced-choice task: Aligners must indicate if something

was translated or not. One automatic aligner which does not always make such a

choice is the PLUG aligner, and, as expected, this makes evaluation of the align-

ments rather difficult, at best (Ahrenberg et al. 2000). Thus, the WAE measures I

will present shortly are intended for conservative word alignments. Notwithstand-

ing my strong feelings on the subject, I will, however, also provide a measure which

may be used for incomplete alignments.

18Note that this crucially different from the notion of fertility (Brown et al. 1993), which is related
to generation of words, rather than their alignment. Word alignments produced by systems
such as those in (Brown et al. 1993; Och & Ney 2000) still use each word exactly once.

99

Another related issue is how to treat alignments given with certain confidence

levels. For example, one might create an automatic aligner which is conservative,

but provides with each alignment a confidence level, say between 0 and 1. While I

am unaware of automatic aligners which do this, certainly some human alignment

projects have used similar set-ups. For example, in Och & Ney (2000), annotators

had to specify either S (sure) or P (possible) for the alignments they gave. Such

confidence levels can be viewed as added information available to WAE systems, if

desired. The measures which I will give below can make use of confidence levels,

simply by adjusting the weights for each alignment, to behave as if more or less

words existed in the given bitext. This step should be clear once the WAE method

is presented, and I will not pursue it further here since such confidence levels are

not used in any of the alignment methods employed in this project.

Once we have made the decision to consider only conservative alignments, the

second issue, how to weight and measure alignments which are not 1:1, becomes

much easier. Let us begin by looking at how others have handled such alignments.

An alignment may be partially correct. For example, suppose a correct alignment

in a sentence is (1,2:1,2), and that an aligner returns as one of its alignments (1:1)

(the question of how many words are in the source and target sentences is not im-

portant for this example). There is an intuitive sense that such an alignment is at

least partially correct, in that (1,2:1,2) encodes the idea that source word 1 and

target word 1 somehow correspond, but not as directly as does the alignment (1:1).

A first approximation to a solution might be to count such alignments less than

fully correct alignments. This is done in Ahrenberg et al. (1999), by multiplying

100

the count of such partially correct alignments by .5 in a precision measure. Such

a solution, while having the benefit of simplicity, takes into account neither how

much of the alignment is correct, nor how many words the alignment accounts for.

Ahrenberg et al. (2000) attempt to remedy these problems with the following

measures:

(37) Q =
Csrc + Ctrg

max(Ssrc, Gsrc) + max(Strg, Gtrg)

recall =

∑
Q

n(I) + n(P) + n(C) + n(M)

precision =

∑
Q

n(I) + n(P) + n(C)

Where Csrc/trg is the number of overlapping source (target) tokens in (partially) cor-
rect alignment proposals, Ssrc/trg is the number of source (target) tokens proposed,
Gsrc/trg is the number source (target) tokens in the gold standard, and n(I/C/P/M)
is the number of incorrect, correct, partially correct, and missing alignments, re-
spectively.19

First of all, notice that the only difference between precision and recall is n(M),

the count of missing alignments. This will have a part to play in the discussion of

the appropriate measure which will come shortly. Second, note that the number of

missing alignments n(M) and the number of incorrect alignments n(I) (apparently)

may overlap, i.e., if the correct alignment is (1:2), and (3:2) is proposed by the

system, the target word numbered 2 is counted twice, once as part of a missing

alignment and a second time as an incorrect alignment. So the recall measure is

deficient (i.e., the probability mass is not correctly spread over the data which make

it up). More importantly, the Q measure does not “distinguish between direct and

19Recall that for Ahrenberg et al. (2000) the word link means the same as our alignment; I have
substituted alignment for link here, where necessary, to avoid confusion.

101

indirect links” (Ahrenberg et al. 2000:1259). This is a serious error, because it

means that, given a two-word source sentence and a three-word target sentence,

where the correct word alignment is:

(38) ((12:123))

Ahrenberg et al.’s (2000) precision and recall measure will give perfect scores to

any of the following word alignments (plus others):

(39) ((1:1,2)(2:3)) ((1:3)(2:1,2)) ((1:2)(2:1,3))

In fact, Ahrenberg et al. (2000) give the following example of a reference English

to Swedish 2:2 word alignment:

(40) ((dangerous goods: farligt gods))

where farligt means dangerous, and gods means goods, and point out that if a system

proposed the following word alignment, it would be treated as perfect:

(41) ((dangerous:gods)(goods:farligt))

This is a fundamental error. Given the correct (40), an automatic WAE system

has no way to distinguish, however, between the incorrect (41) and the much better

(42) below. This is because an automatic system has no means to determine which

partial matches make sense and which do not. It only has the means to determine

which partial matches are possible. The WAE metric to be proposed will therefore

count both (41) and (42) equally (each would get a score of .5), as neither perfect

nor completely wrong alignments, as will be explained shortly.

(42) ((dangerous:farligt)(goods:gods))

102

What then is a correct way to weight many-to-many alignments, and to measure

partial matches? Let us begin with the most basic case, a 1:1 alignment. A 1:1

alignment connects one source word to one target word. It therefore accounts for

two words of the bitext. We can assign a weight to this link (remember that a

link is equivalent to a 1:1 alignment) of 1, which seems straightforward enough; one

basic link has a count of 1 (nothing hinges on this number being 1, it could be any

number, so long as we weight other alignment types appropriately, relative to this

basic type). If the link has a value (a weight) of 1, how much weight does each word

contribute to it? The answer is .5 . This sort of weighting is appealing, because

it is based wholly on the number of words and therefore the number of potential

links. The important point to remember is that we want every conservative word

alignment of a given bitext to have the same total weight. This means there can

be no under or over-counting of the correctness of a given bitext, and also that a

bitext will only contribute its appropriate share to a larger evaluation.

Suppose we have the following word alignment, for four word source and target

sentences:

(43) ((1:1) (2:2) (3:3) (4:4))

There are 4 alignments (and 4 links, since all the alignments are 1:1), and 8 total

words (4 source words and 4 target words). Each alignment contributes 1 unit of

weight; therefore, the entire word alignment has a weight of: 1 + 1 + 1 + 1 = 4,

i.e., the total weight of the alignments is equal to the number of 1:1 links (in this

case), and in all cases (as will be shown), equal to the number of source words (m)

plus the number of target words (n) divided by 2, i.e., the total weight for a word

alignment is:

103

(44) total weight =
m + n

2

Each word contributes exactly .5 weight (e.g., 8 words × .5 = 4). With these

two notions, 1) that each word contributes .5 weight and 2) that the total weight

for a word alignment (or for an individual alignment) is equal to the sum of the

number of word tokens divided by two, we have all we need to handle all of the

alignment types, as well as partial matches.

What does this mean for 1:0, 0:1, many-to-one, one-to-many, and many-to-

many alignments? The thing to remember is that it is always the number of words

that matters. Thus a 1:0 (or 0:1) alignment should contribute .5 weight only.

The total weight in the word alignment below, with all null alignments, is still:

.5 + .5 + .5 + .5 + .5 + .5 + .5 + .5 = 4, the same as in (43).

(45) ((∅:1) (∅:2) (∅:3) (∅:4) (1:∅) (2:∅) (3:∅) (4:∅))

To illustrate how things work with the larger alignment types, let’s consider two

different alignment cases of five total words, the first with 1 source word aligned

with 4 target words, in (46) below, and the second with 2 source words aligned with

3 target words, in (47):20 Since both alignments have a total of 5 words, they must

each contribute 2.5 units of weight.

(46) (1:1,2,3,4)

(47) (1,2:2,3,4)

20Remember that these might be part of larger word alignments. The distinction is not so
important though, since the properties regarding the distribution of weight are consistent at
whatever level we look, alignment level, word-aligned bitext level, or entire parallel corpus level:
Each word contributes .5 weight.

104

Now, let’s look at the relationships in each alignment. In (46), the single source

word is related to (i.e., linked with) four different target words, that is, in a graphic

representation, we would see four lines drawn from the source word, one to each of

the four target words. So, we might say there is the following set of links:

(48) {(1:1)(1:2)(1:3)(1:4)}

If we viewed (48) as a word alignment, however, it would be non-conservative, be-

cause the source word is participating in more than one alignment. If we could

make this alignment behave like a conservative alignment somehow, we would have

the partial matching problem solved, since it would amount to comparing 1:1 align-

ments, which is easy to do. Here is the trick: Assign to each link a portion of the

total weight that the original alignment had (i.e., pretend that we are breaking the

words up into pieces, giving each piece a little bit of the word’s weight to give).

How much weight each link should get is simply the total weight divided by the

number of links, where the number of links is just the number of source words times

the number of target words. So, if we again use m for the number of source words,

and n for the number of target words, each link gets:

(49) weight for each link =
total weight

number of links
=

m+n
2

m × n
=

m + n

2mn

The formula in (49) will hold for all alignments, except for null alignments (where

the denominator will be 0). For null alignments there is nothing to compute, since

we have already stated that null alignments have a weight of .5 (i.e., they contribute

just the weight of the one word they account for). Computing the links that exist is

105

simply a matter of taking the cartesian product of the alignments. Thus, returning

to the 2:3 alignment case of (47) earlier, we get the following six links, each with

m+n
2mn

= 2+3
2×2×3

= 5
12

weight (which again adds up to 2.5 weight, as in the 1:4 case):

(50) {(1:2)(1:3)(1:4)(2:2)(2:3)(2:4)}

I call this operation of computing the cartesian product of an alignment to get

the links and the weight for each link flattening. Flattening so as to distribute the

weights evenly to 1:1 alignments (so that comparison is easy) is very similar to

the technique used by Melamed (1998), although he goes through several steps of

weighting and re-weighting links, and averaging agreement rates. The method given

here is much simpler to compute. To my knowledge, (Melamed 1998) is the only

other WAE effort which appropriately weights the individual links of alignments.

With flattening so defined, comparing any two conservative word alignments of

the same bitext is trivial. We simply take each alignment, flatten it, so that all

the remaining links are either null (i.e., 1:0 or 0:1) or 1:1, and see how much of

the weight agrees. We can define a symmetric comparison measure, called Word

Alignment Agreement (WAA), as follows:

(51) WAA =
total agreeing weight of word alignment

total weight of word alignment

Computing WAA is easy for any pair of conservative word alignments from the

same bitext: First, if necessary, flatten the alignments (thus re-weighting them; I

will show weights under each link for convenience below), optionally sort the flat-

tened alignments in some canonical order (this is not necessary, but makes viewing

106

the differences easier),21 and count the weight that agrees (e.g., if one link of weight

.25 matches another link with weight .67, then .25 of the weight agrees). From

this total agreeing weight number, one can calculate a WAA score for the bitext by

dividing by the bitext’s weight. For the entire corpus, the sum of the agreement

weights for each bitext divided by the total weight of the corpus gives a global WAA

score for two sets of word-aligned bitexts.

To make things clear, here are some examples, beginning with five different word

alignments for the same bitext of three source words and three target words:

(52) A:((1:1)(2:2)(3:3))

B:((1:2)(2:1)(3:3))

C:((1,2:1,2)(3:3))

D:((1,2:2,3)(3:1))

E:((1:∅)(2,3:1,2,3))

Next are the same five word alignments in the same order, but flattened, with the

weights for each underneath (which each sum to three):

(53) A:
{(1:1) (2:2) (3:3)}

1 1 1

B:
{(1:2) (2:1) (3:3)}

1 1 1

C:
{((1:1) (1:2) (2:1) (2:2) (3:3))}

1/2 1/2 1/2 1/2 1

D:
{((1:2) (1:3) (2:2) (2:3) (3:1))}

1/2 1/2 1/2 1/2 1

E:
{((1:∅) (2:1) (2:2) (2:3) (3:1) (3:2) (3:3)}

1/2 5/12 5/12 5/12 5/12 5/12 5/12

21I have already been presenting alignments in a canonical order, ordered first by source number
then by target number, where ∅ precedes any number. Ordering will prove useful for the metric
I will mention for incomplete word alignments.

107

A B C D E

A 1 1/3 2/3 1/6 5/18

B 1/3 1 2/3 1/6 5/18

C 2/3 2/3 1 1/3 5/12

D 1/6 1/6 1/3 1 5/12

E 5/18 5/18 5/12 5/12 1

Table 3.2: Word Alignment Agreement (WAA) scores for the five word alignments,
A-E. 1 is perfect agreement, 0 is no agreement.

The WAA scores (i.e., the agreement rates) for each of the five word alignments are

shown in Table 3.2.

In presenting WAA, we have now also covered the last WAE issue of what overall

measure to use. WAA gives a number between 0 and 1 for comparing any two sets of

word alignments, with 0 being least correct (i.e., assuming we are comparing against

a gold standard) and 1 being perfect. The measure is symmetric (for conservative

alignments), and easy to compute. While many other researchers doing automatic

evaluation use precision and recall (e.g., Melamed (1998); Ahrenberg et al. (2000);

Ahrenberg et al. (1999)), which are popular measures in information retrieval, word

alignment evaluation with conservative word alignments only requires one measure,

because precision and recall amount to the same thing (because all conservative

alignments of the same bitext have the same total weight; thus the denominator in

precision and recall measures, which is the only part where they differ, is identical).

108

I also mentioned that I would provide a measure for incomplete word alignments

(more specifically, those where any missing alignments and null alignments have

been removed from the calculation), even though I do not think they should be

used. For conservative alignments, another, more elaborate way of calculating the

WAA (i.e., rather than iterating through one list of links while checking the other

for matches) would be to calculate, after flattening and sorting the alignments, the

weighted edit-distance between them. In this case, insertions and deletions cost the

weight of the given link, matches cost the difference in weights, and substitutions

cost the total of the two weights, i.e., an insertion plus a deletion. Edit-distance is

overkill here, because the two things being compared are not sequences, but rather

aligned sequences where the order no longer matters. Since, however, they can be

put in a canonical order, and no two items can repeat, edit-distance happens to

yield the same numbers as WAA (which again can be calculated more easily), when

we convert to an accuracy score as follows, called wa-edit-agreement:

(54) wa-edit-agreement= 1 − (edit-distance/worst-possible-edit-distance)

The worst possible edit distance for a word alignment of m source words and n

target words is m + n (i.e., if the total weight is wrong, then the total weight must

be substituted; m + n is twice the total weight).

If we remove all the null alignments from two word alignments of the same

bitext (thus avoiding having to distinguish between missing and null alignments,

for those who have such word alignments), we can no longer use the WAA measure,

because the two word alignments are no longer guaranteed to have the same total

109

weight.22 We can however, use the wa-edit-agreement measure, for each aligned

bitext, and for an entire corpus (using the same measure in (54), with the total of

the edit-distances and worst-possible-edit-distances). This measure gives a reliable

indication of how much word alignments agree, even when one has not aligned all

the words (because it will still cost the price of an insertion or a deletion to match a

given link with a missing one). Again, I do not find this to be a necessary measure,

but others may.

I would like to make one final comment on WAE. As will be shown to be true for

machine translation evaluation as well (in Chapter 5), automatic WAE is just one

type of word alignment evaluation. There are other aspects of a word alignment

which one might want to evaluate, either automatically or by hand, and Ahrenberg

et al. (2000) do a good job of identifying these aspects. For example, one might

want to measure how well individual words are handled (i.e., how consistent their

alignment is), or one might want to weight certain types of words higher or lower

in alignments (for example, to decrease the impact of function words on scores).

Another aspect which could be evaluated is how well the word alignment serves to

create a bilingual lexicon (e.g., measuring both its accuracy and its size). These

aspects, as well as aspects related to the efficiency of word aligners, would be inter-

esting to evaluate, but are beyond the scope of this foray into automatic WAE.

22With different total weights, the WAA measure is no longer symmetric. Symmetry is a property
desirable for agreement measures which edit-distance possesses.

110

3.3.1 Evaluating the Word Alignments Produced

So, having made it to a reasonable WAE metric, called Word Alignment Agreement

(WAA), it is time to use it. As described in section 3.2.2, I used an automatic

word-aligner (the CYK aligner) to align English and Spanish versions of Genesis,

hypothesizing that the word alignments were not very good. I then used the better

aligner described in section 3.2.3, Giza++ (Och & Ney 2000), on the same data.

Last, (section 3.2.4) I hand-aligned all of Genesis. As mentioned in those sections,

some of the alignment particulars varied, for example, neither the CYK aligner nor

the hand-aligner (the “gold standard”) allowed discontinuous alignments, and the

types of alignments allowed in all three also varied. CYK allowed 1:0, 0:1, 1:1, 2:1,

1:2, and 2:2 alignments, with swapping over a limited distance; Giza++ allowed 1:0,

0:1, 1:1, and 1-to-many alignments, with swapping; and the gold standard allowed

any alignment, so long as it was not discontinuous.

Additionally, as mentioned, the gold standard was not created with nearly the

same care as in other gold standard data sets (e.g., as in (Melamed 1998) or (Och

& Ney 2000)). Since there was only one annotator, annotation was not always

consistent; the data was very uniform (i.e., it would have been better to use ran-

dom verses from the Bible than verses in sequence); annotation was done as fast as

possible; and, one might argue, there may have been bias since I did the annota-

tion and knew in advance what I intended to measure it against. One could argue

further that Giza++ would be at more of a disadvantage, since it permits a type

of alignment which the gold standard does not (i.e., discontinuous). Nevertheless,

111

I still hypothesized that the Giza++ data set would show a higher agreement rate

(higher WAA score) with the gold standard than would the CYK set, and this

indeed was the case.

CYK Giza++ Gold

CYK 1.00 .50 .53

Giza++ .50 1.00 .60

Gold .53 .60 1.00

Table 3.3: Word Alignment Agreement (WAA) scores for the CYK and Giza++

word alignment sets with the hand-aligned gold standard.

In Table 3.3, I report the WAA scores for the two automatically word-aligned

data sets on 1529 verses against the gold standard, and, for completeness, against

each other. As can be seen in the table, Giza++ is significantly closer to the gold

standard, showing an agreement rate of .60 with the gold standard, while the CYK

data set has a .50 agreement with the gold standard. Of course, one might remark

that both WAA scores are rather low. These scores will help inform the discussion

of the evaluation of the translation system in Chapters 5 through 7.

Finally, in Table 3.4, I show the wa-edit-agreement results for the same data

sets, with all of the null alignments removed, which shows an even more pronounced

112

difference in the quality of the Giza++ and CYK alignments, suggesting that null

alignments are more problematic for all the systems (this seems typical of word

alignment systems in general).23

CYK Giza++ Gold

CYK 1.00 .64 .57

Giza++ .64 1.00 .78

Gold .57 .78 1.00

Table 3.4: WA-Edit-Agreement scores for the CYK and Giza++ word alignment sets
with the hand-aligned gold standard, after removing all null alignments.

23The results of the wa-edit-agreement on the conservative word alignments are not shown, since,
as mentioned, these scores yield the same results as WAA scores for conservative word align-
ments, and thus are the same as those in Table 3.3.

113

CHAPTER 4

THE LINKED AUTOMATA MODEL

A Manhattan project could produce an atomic bomb, and the heroic

efforts of the sixties could put a man on the moon, but even an all-out

effort on the scale of these would probably not solve the translation

problem. (Kay 1982:74)

In Chapter 2, I presented an overview of some of the most important models of

empirical machine translation in order to highlight the motivation for the models

as well as their design. Chapter 2 also briefly covered some of the benefits and

shortcomings of the translation models, in terms of both their training and use. It

described statistical machine translation (SMT) approaches in general, focusing on

the IBM approach (Brown et al. 1993), and placed particular emphasis on finite-

state probabilistic MT models, such as Alshawi et al. (2000), Vilar et al. (1999),

Knight & Al-Onaizan (1998), and Bangalore & Riccardi (2001). Lastly, Chapter 2

gave an overview of example-based machine translation (EBMT).

Having laid the groundwork in terms of previous approaches, in this chapter I

present a new finite-state probabilistic MT model and explain the motivation for

the approach. In section 4.2, I detail the architecture of the model, describing both

the automata and the alignment table. Section 4.3 then gives a detailed description

of the various probabilities in the model, their interaction, and the motivation for

114

them. Sections 4.4 and 4.5 illustrate the training and translation processes for the

model. Finally, in section 4.6 I situate the new model by comparing it to some of

the other data-driven MT approaches presented in Chapter 2.

4.1 The Model and Its Motivation

As discussed in Chapter 2, data-driven translation models, those that learn auto-

matically from bitexts, are favored for their robustness, ability to generalize, and

lack of reliance on sophisticated human linguistic input. Certainly they are not the

only reasonable approach to machine translation, and indeed it may in the end be

that hybrid approaches which leave open the possibility for human input will per-

form the best. Within the empirical domain, however, there are particular features

that make certain MT models more appealing than others, in terms of performance,

simplicity (both in terms of understandability and ease of implementation), and

plausibility as appropriate linguistic models for translation. Other important issues

for all MT systems, in addition to their coverage, are their adaptability to new

domains and language pairs and their ability to generalize to unseen inputs. Data-

driven MT methods are an exciting and active area of research precisely because

of the paucity of human resources they require. The goal of creating an automatic

translation system with little to no human input has now passed from the realms of

science fiction to the frontier of computational linguistics research. The ability to

use linguistic knowledge to guide learning algorithms (without the need for hand-

coded input), as well as the availability of electronic texts and increased computing

power, have made such translation ventures possible.

115

Pure SMT approaches, such as the IBM Candide system (Berger et al. 1994),

have performed surprisingly well, relying mainly on lexical information and using

word alignment as the focus of the overall translation model. In conjunction with

a language model, this translation model is the core of the SMT approach (see

section 2.2.1). Finite-state systems (section 2.2.2) can be used to replicate SMT

systems (e.g., Knight & Al-Onaizan (1998)), but they are better exploited by using

the order capturing nature of finite-state devices. In this manner, finite-state devices

can be used to make better language models, since probabilistic distributions are

formed only over the orderings that are possible. In terms of their complexity and

applicability, finite-state models vary from the most simple: large transducers used

in isolation; to slightly more complex: subsequential transducers (SSTs) used with

special generalization and error correcting techniques; to quite complex: devices

applied recursively to account for hierarchical structure, such as head transducers

(HTs). What all of these models have in common is their use of transducers, in one

form or another.

The questions which the proposed model attempts to answer are: Exactly how

complex need a probabilistic finite-state MT model be, what is the most appropriate

finite-state translation model, and is there a more direct finite-state encoding of the

translation relation than can be found in transducers? The aim of the research

is to see exactly how far rather ‘simple’ finite-state devices can be pushed in the

translation task, and to demonstrate that these simple approaches may perform as

well as more powerful designs. More importantly, while such simple technology may

prove easier to understand, easier to implement, potentially more efficient, and more

widely applicable, the design of the proposed model also allows for a straightforward

116

picture of the translation and language models, and the translation process. It does

so by not conflating recursive use of the MT model with the model itself. In some

senses the model’s chief benefit is this compartmentalization of the data from its

use. This design allows for more complex algorithms and computational techniques

to be applied to the data to take advantage of its well laid-out design.

In contrast to the other finite-state models, this model moves away from trans-

ducers to linked automata, pairs of automata where the transitions are linked to

one another by a weighted function (called an alignment table), for determining the

best links. The first intuition here is that since in translation we are dealing with

two languages, there must be two language models: the two automata. The second

intuition is that while transducers can be used to represent a relationship between

two languages, they impose the ordering constraints of one language on the other.

In this sense, transducers are an inappropriate translation model, because they

misrepresent the crucial relationships between words in the two languages, even

when they get the larger relationship picture correct for entire strings. While the

relationship between source and target strings is often viewed as one of alignment

between words (see for example Figure 4.1 below, repeated from the earlier Figures

2.2 and 3.1), transducers must be elaborately coaxed to represent these alignments

(see, for example, the SST treatment of asynchrony, in section 2.2.2).

the black cat likes fish

le chat noir aime le poisson

Figure 4.1: A word-aligned English and French bitext

117

Why not simply represent the alignments between the words of bitexts literally,

while still representing the relative ordering of the source and target sentences?

This is exactly what the linked automata approach does. It moves the word-aligned

sentences directly into the model, with connections between source language au-

tomaton and target language automaton transitions representing the alignments

between words. For example, the alignment of Figure 4.1 can be directly repre-

sented in the model as shown in Figure 4.2, where the source language automaton

(English) is on top, the target language automaton (French) is on the bottom, and

the alignments between transitions are shown graphically as dotted arrows. Thus,

the linked automata model consists of two automata, one for each language, and a

function (the alignment table) to connect them.

1 2 40

black cat likesthe fish

1 3 50
poissonle chat noir aime le

2

3

4

5

6

Figure 4.2: A bitext as represented in the linked automata MT model

This model design arguably better captures the relationship between the bitexts

than do traditional transducers, and does so in an extremely economical way (i.e.,

there is no need for extra states in the model to handle ordering asynchrony). The

relationship between the transitions is implemented as function from (sequences of)

source automaton transitions to sets of (sequences of) target automaton transitions,

118

known as the alignment table. The model is constructed directly from word-aligned

bitexts, and translation is simply of matter of parsing the source sentence with the

source automaton, and then using the linked (or activated, both terms will be used

here interchangeably) transitions in the target to form a target language string.

These transitions are forced to conform to the ordering constraints of the target

language model.

This linked automata model is quite simple, and as such might be viewed as not

fully capable of representing the translation process, since, for example, automata

can only represent regular languages and not context-free languages, while natural

languages are standardly assumed to be at least context-free. But, as mentioned

in section 2.2.2, there exist methods for approximating natural language syntax in

finite-state devices (such as described in Pereira & Wright (1997)). Additionally,

it is important to bear in mind that the sorts of data typically used to illustrate

the context-free nature of natural language (for example from Swiss German) are

always bounded, i.e., they are always necessarily of a finite length. In fact, it is

unusual to see these context-free effects (of center-embeddings, for instance) occur in

units of greater than four (rarely would we see more than four embeddings). Thus,

the memory constraints of the human processor may constrain natural language

constructions such that the power offered by finite-state devices may be sufficient

(Yngve 2000).

Still, it might seem from its modest finite-state set up, as well as a lack of cyclicity

(see section 4.2.1), and the lack of an accounting for hierarchical syntactic structure,

much less semantics in a traditional sense, that the linked automata would have no

hope of coping with real word natural language tasks. In isolation, and in its purest

119

form, this may be true. By using techniques for approximation and generalization,

and heuristics for working with partial results, however, the model may indeed

prove to be adequate for translation tasks, especially in limited domains. More

importantly, I hope to show that the architecture of the model provides a suitable

base from which more ambitious translation systems can be developed, and to begin

the process of demonstrating how far this augmented finite-state architecture can

be extended in the field of MT.

This is the reason why I sometimes refer to the use of the model as Stone Soup

Translation. In the folktale, a man arrives in a village and claims that he can make

soup out of nothing more than a stone and some water. One by one, however, he

convinces the villagers to supply him with additional ingredients to make the soup.

He adds carrots and potatoes and meat and so on. He tells the villagers that while

the stone alone is sufficient, the addition of each next ingredient will make the soup

taste just a little better. Much to the villagers’ surprise, the finished soup turns out

to be delicious—even though it was made out of ‘only’ a stone. So too functions the

translation model. In its purest from, it may make not so savory a translation soup.

But it serves as a sensible foundation from which more able translation systems can

be constructed. We next begin to view the model in detail.

4.2 A Look Inside the Linked Automata Model

4.2.1 The Automata

The linked automata model contains two automata, the source automaton, a model

of the source language, and the target automaton, a model of the target language.

Both of the automata are standard. They consist of a finite set of states, Q, a

120

start state q0 (usually numbered 0 in the figures and shown with a wide arrowhead

pointing to it, as in Figure 4.2), a set of final states, F ⊆ Q (shown as double

circles), and a set of transitions, T . Each of the states is uniquely numbered so that

we have a means to identify them.

Transitions between states take the following form < qb, qe, w, p >, where qb is

the begin state, qe is the end state, w is the label (w is for word), which may be empty

(i.e., an epsilon-transition), and p is a probability associated with the transition. A

string is recognized in the usual manner (i.e., we can recognize a string of words if

there exists a path of transitions labeled with those words in the same order from

the start-state to a final state). The probabilities on the transitions are available to

select a single option (if desired) during recognition, in cases where there is more

than one path by which the same sentence can be recognized, by choosing the most

likely path.1

We require that the automata be acyclic.2 Constructed purely from natural

language sentences, acyclicity is guaranteed, since the sentences must always have

a finite length, and cycles in an automaton allow for sentences of infinite length. So,

an automaton created to fit all and only the sentences of a training set should be

able to recognize all and only those sentences. But, if, for example, in an attempt to

minimize space (decrease the number of states and transitions) or increase coverage,

1The automata in the model do not have to be deterministic, but only deterministic automata
are used for the project described in the dissertation (at least prior to generalization). The
probabilities are typically most useful for selecting between fragments of complete paths, when
working with partial results. The transition probabilities (of the target automaton) also play a
role after recognition. See sections 4.3 and 4.5.

2This is a rather strong constraint, and might be relaxed to allow some loops, such as those which
go only from a state to itself, and through no others. At this stage of the project however, no
cycles are permitted.

121

we were tempted to do something like have just one transition per word, we would

create cycles. Continuing with this scenario, suppose that when constructing a

system from the following training bitexts the construction algorithm allowed only

one transition per word:

(55) 〈john loves mary/jean aime marie〉
〈mary loves john/marie aime jean〉

We can see the immediate problem that would develop in Figure 4.3. Cyclicity does

not preserve the intended translation word ordering.

mary

john

loves

jean

marie
aime

1

1

0

0

Figure 4.3: Linked automata model of one transition per word, illustrating the prob-
lem of cyclicity

For example, recognition of the sentence john loves mary in the source automaton

would activate the transitions labeled marie, jean, and aime in the target. However,

it would not be clear if the translation of the sentence should be jean aime marie

or the incorrect marie aime jean, or, for that matter, any of an infinite number

122

of other translations. Note that in and of itself, this increased coverage (e.g., the

source automaton now recognizes john loves john; and longer sentences, such as

john loves mary loves john could also be recognized and potentially translated) is

something which should be desired, so long as the translations are accurate. This

idea will be discussed more in Chapter 6.

I also plan to experiment with allowing cycles to a great degree (e.g., one might

only preclude cycles from including the start state), knowing that this could make

determining the order of target words more difficult. This may be sensible since

fully-connected cycles are unlikely to arise; thus the proper ordering may still be

determinable. The benefits of removing the acyclicity requirement will be increased

generalization (see Chapter 6); much smaller system size (a side-effect of the main

generalization strategy, merging); and the generalization process will be much faster,

since expensive cycle-checks will be avoided. Thus the question of cyclicity is closely

tied to the question of scalability for the model.

4.2.2 The (Simple) Transition Alignment Table

The alignment table may be implemented in a number of different ways. In this

section, I describe what will be called a simple table. In Chapter 7, a new table

architecture will be introduced which extends the coverage of the model.

The simple table is nothing more than a (partial) function from the power set of

source transitions to a set of sets of pairs of target transitions and probabilities.3 For

example, using the simple linked automata translation system shown in Figure 4.2,

3We could equivalently view the table as a relation between the power set of source transitions
and the power set of target transitions paired with probabilities.

123

the source transition < 2, 3, cat >4 would be aligned in the table with the target

transition < 1, 2, chat >. Suppose that this alignment comprised 17 percent of the

overall alignments, and further that < 2, 3, cat > was never aligned with anything

else during the training process. Then we would expect to see the following table

entry for this alignment:

(56) (< 2, 3, cat >) → {((< 1, 2, chat >) .17)}

The probabilities in these table alignments sum to one (I discuss how I arrive at

the probabilities and the rationale for doing so in section 4.3), and take the general

form (where sti is a source transition, ttj a target transition, and ax,y an alignment

probability):

(57) < st1, st2, ..., stn > → {(< tt1, ..., ttn > a1,n)...(< tt1, ..., ttm > a1,m)}

If we ignore the probabilities in the alignments, the translation model simply

nondeterministically provides a set of translations for any input string which can be

recognized. It is the alignments that need to be trained as the model is constructed

(thus, the model requires word-aligned bitexts from which to train).5

4.3 Making the Model Probabilistic

There are three major considerations regarding probabilities in the model: (1) the

probabilities of the language models (the two automata); (2) the probabilities in

4Where not necessary, probabilities in transitions are not shown.

5Note that as presented in the table description and figures, the alignments from source tran-
sitions to target transitions may give a misleading impression. The alignments are, in fact,
bidirectional, in the sense that the table is easily inverted, allowing for translation in either
direction. I represent them as unidirectional for simplicity.

124

the table (the alignment probabilities); and (3) the interaction between the two.

In this section, I first cover each of these topics in detail (in sections 4.3.1, 4.3.2,

and 4.3.3), and then turn to the handling of some of the subtler probabilistic issues

for the linked automata model, the probabilities of fragments (section 4.3.4) and

probabilities for what will be called empty transitions, those that arise from 1:0

alignments (section 4.3.5).

4.3.1 Automata Probabilities

In 4.2.1 transitions were depicted as having one slot for transition probabilities. This

is a slight simplification. In the implementation of the prototype linked automata

system, a transition minimally has the following form < qb, qe, w, c, p >,6 where c,

the new item, is a count of the number of times the given transition was used during

training (i.e., how often the transition has been traversed during the construction

of the automaton). Keeping both a slot for the raw counts as well as one for

probability gives us some flexibility in terms of how the probabilities are calculated

(this flexibility will be taken advantage of in section 4.3.4).

Now, if we focus only on the counts of transitions, each count (once normalized

by the total of all the transitions’ counts) gives an indication of how likely the

word which labels the transition is in the training data, within the context of the

words which precede and follow it. This probabilistic model is not, however, the

most reasonable one to select for a language model. A better probabilistic model

would focus on paths, i.e., sequences of words, rather than words themselves. This is

6Additional slots may also be used during translation to store the source-word-store and the
distance, but they are not relevant to the probability discussion; see section 4.5.

125

because we want the language model to give an idea of how likely a sequence of words

is, rather than how likely the words that make up the sequence are. The approach

described above comes close to this ideal, but it does not take into account the

likelihood of a sequence beginning or ending, and the normalization step is wrong,

because it is normalized by the number of word tokens without fully taking into

account the different paths in which they occur.

One common way to implement the more accurate notion is to have two types

of probabilities. Following Vilar et al. (1999), first, for any given state, q, we need

to know the probability that it is final: Pis final(q). The second probability (the

transition probability, i.e., the p in transitions) is like the (normalized) count we

already have in transitions, but it is defined so that for every state q, the sum of

the probabilities of the transitions departing from q and the probability that q is

final is equal to one. So, for a transition departing from state q with count c, where

the total count on all transitions departing from q is tc, the transition probability

would be:

(58) (1 − Pis final(q)) × (c/tc)

Using these two probabilities together, the probability of a string being recognized

by the path of transitions (where qi is a state number and pi,j is the transition

probability):

(59) < q0, q1, w, c0,1, p0,1 >, < q1, q2, w, c1,2, p1,2 >, ..., < qn−1, qn, w, cn−1,n, pn−1,n >

is defined as:

(60) Pis final(qn)
∏n

i=1 pi−1,i

126

Both the state probabilities (i.e., the probability that a state is final) and the

transition probabilities are easily estimated by using the frequencies of transitions

(i.e., the counts) and of final states during training. The probabilities could be

calculated on the fly, from frequency data, during translation, but in practice are

typically calculated after training, so that the results can be stored and therefore

not recomputed unless the automata are modified. Having both count and proba-

bility slots in the transitions (rather than, for example, replacing the counts with

probabilities) allows for recalculation as information changes, as well as for different

probabilistic models to be used without changing the data from which they were

created (see section 4.3.4). Both of the automata probabilities are implemented in

the logarithm domain, to avoid the problem of underflow.

4.3.2 Table Probabilities

We next turn to probabilities in the alignment table. Now, every (possibly empty)

transition sequence in the source automaton is aligned with a set of (possibly empty)

transition sequences in the target automaton. These alignments are based fully on

the alignments of bitexts from a training corpus. An alignment between source tran-

sition sequences and target transition sequences thus represents a straightforward

alignment between sequences of words in two sentences. One important simplifying

assumption then is that the alignments of the sequences of words in sentences is

strongly correlated with the alignment (i.e., best translation) of sentences them-

selves. The goal in the table is to best represent this connection with probabilities,

since sequences of transitions can be aligned in more than way. To do this, we count.

That is, during the automata and table construction process, every time a sequence

127

in the source automaton is aligned with a sequence in the target, we increment the

number stored in the table for this alignment by 1. For example, with table entries

having the form where a source transition sequence (STS) aligned with any number

of target-transition-sequence (TTS) and probability pairs (see earlier examples (56)

and (57)), a hit between STSi and TTSk would result in changing the pair (where

c is a count) < TTSk, c > to < TTSk, c + 1 > (provided this pair is already in the

set of alignments for STSi). So after the new hit the table entry for STSi might

look as follows:

(61) (STSi) → {< somepair >< somepair >< TTSk, c + 1 >< somepair > ...}

These hits then give us unnormalized probabilities for the alignments. One op-

tion for normalizing the probabilities could be to assume a uniform distribution

for the alignments, where any alignment of words is equally likely. But this does

not seem very intelligent, since we know some alignments are much more likely

than others.7 Note that with the simple table, this discussion assumes we are

only interested in the alignment of substrings (i.e., contiguous sequences). This

assumption will be removed when we move to all sequences, including discon-

tinuous ones, in Chapter 7, so the number of possible alignments could be quite

large. In any case, a more appropriate normalization strategy is to take the total

7For example, a 2 to 1 alignment is much more likely than a 17 to 1 alignment, and discon-
tinuous alignments will typically only span limited distances and have a limited number of
discontinuities.

128

number of hits (for the whole table, call this number N) and normalize by it,

yielding a well-founded probability distribution.8 In this manner we normalize by

the number of alignments that actually occur.9

4.3.3 Combining Probabilities

The next aspect to consider is the interaction of alignment probabilities and tran-

sition probabilities. As will be described fully in section 4.5, translation consists in

part of the transitions of the source automaton “activating” the transitions of the

target automaton, via the links in the table. Looking more closely at this process,

a source language sentence is recognized, yielding a single, most probable source

transition sequence (STS). Once the STS has been chosen, the part of the source

transition probabilities in the translation process is finished. The STS is then used

to select sequences of target automaton transitions, by using all of the links from

subsequences of the STS to target transition sequences which are found in the table

(I will describe two methods for making this selection, first in section 4.5 and then

in Chapter 7). The final stage of translation is to choose the best target transition

sequence from the activated target transitions.

If all of the alignments in the table were equally likely, we could rely on the target

automaton’s transition probabilities alone to choose among competing sequences of

8In practice, I once again take the logarithms of the normalized probabilities to avoid underflow
in later calculations.

9In truth, the normalization strategy is largely irrelevant, and could be removed, if the alignment
probabilities were used in isolation, because (as in any normalization scenario) the counts could
be used as unnormalized probabilities. Normalization, however, has the benefit of making the
probabilities between 0 and 1 (prior to logarithm operations), which makes sensible weighting
of the various probabilities as they interact much more straightforward.

129

transitions when looking for the most probable translation. Since, however, align-

ment probabilities vary, we rely on them to tell us how much to weight each target

transition probability, i.e., for any given activated target transition, we multiply

its probability by the probability of the alignment which generated it.10 In this

manner, each transition sequence in the target may be evaluated both in terms of

its likelihood in the target language model and as having been generated via the

alignment model. For example, a target transition sequence:

< q0, q1, w1, c0,1, p0,1 >,< q1, q2, w2, c1,2, p1,2 >, . . . , < qn−1, qn, wn, cn−1,n, pn−1,n >

with alignment probabilities a1, a2, . . . , an, for each transition, respectively, will have

the overall translation probability:

(62) Pis final(qn)
∏n

i=1 aipi−1,i

This ends the discussion of the three most important issues regarding probabili-

ties in the linked automata model: transition probabilities, alignment probabilities,

and the interaction between the two during translation. We next turn to some of

the finer points regarding probabilities in the model.

4.3.4 Fragments

The automata probabilities as defined in section 4.3.1 can be viewed as a best-case

scenario: We get the probability of a sequence of transitions from the automaton’s

10Multiplication is not the only option here, but has the merit of simplicity. An additional option
would be to add a parameter so that the effect of the alignment probability could be adjusted.
Such a parameter could be tuned experimentally, although appropriate values would likely vary
for different data sets.

130

start-state to a final state. For any string not recognized by the automaton, a zero

probability is assigned.11 In this idealized scenario, it makes perfect sense to use

state probabilities along with transition probabilities.

When dealing with fragments (sequences of transitions in an automaton which

do not begin at the start-state and end at a final state), however, using state prob-

abilities is problematic. This is because the probabilities as defined in section 4.3.1

place importance on whether the last state used in a transition sequence is final,

but for fragments, the “finality” of a last state is irrelevant. Also, the transition

probabilities for fragments will be skewed, because they are calculated relative to

the final-state status of the state from which they begin.

To illustrate this situation more clearly, let’s look at a situation when fragments

might come into play. When attempting to recognize a string of words in an au-

tomaton, we always try to recognize the string from the start-state to a final state.

If a sequence of transitions is found matching this criteria, then recognition is suc-

cessful, and clearly, state probabilities should be used, because they tell us how

likely this sequence of words is, and not just how likely the words themselves are

(see section 4.3.1). Suppose, however, that recognition fails, e.g., for some string of

words, “A B C,” there is not a path in the automaton beginning at the start-state

that is labeled with A then B and then C , where the transition labeled with C ends

at a final state. The automaton will do exactly what it was designed to do, and

assign a zero probability to ABC .

11This is a separate issue from whether it assigns a nonzero probability to strings on which it
was not trained; post-generalization, it leaves some probability mass for any string which it can
recognize, including many on which it was not trained, see Chapter 6.

131

Part of the motivation for using the automata as language models, however,

is that they can also be used for extracting partial results (as will be described

in Chapter 6). That is to say, just because we cannot recognize ABC , we are

not prepared to give up, since it may be the case that the string exists in the

automaton, just not between the start-state and a final state, and could therefore

yield a perfectly reasonable translation. Moving to a slightly worse case, it might

be that the sequence ABC cannot be recognized in the automaton, but that AB

or BC could be recognized, as well as C and A in isolation, so that these parts

could be used in a translation. In any of these cases, we are not concerned with

the probability that the last state in a sequence is final, since we are looking at

subsequences of valid sequences.

Now, suppose then that we are indeed trying to recognize ABC , as a fragment,

and we find AB and then look for C . Next, suppose that we find two different

transitions labeled with C , which we will call C1 and C2, which we must choose

between. Let us suppose further that C1 has a count of 5000, and C2 has a count

of 3. So, ideally, without the aid of any contextual information, we would want to

select C1, because, being so frequent, it is likely to give us more reliable translation

information. Now, assume that the state which begins C2 is never final, and that

C2 is the only transition which leaves this state, and assume also that the state

beginning C1 is sometimes final, with a probability of .1, and that there are a

number of other transitions beginning at the same state with high counts, totaling

20,000. Then, using the probabilities defined in section 4.3.1, we will always select

C2, because it will have a transition probability of 1 (i.e., (1−0)× (3/3)), while the

transition probability for C1 will be much lower, at .18 (i.e., (1−.1)×(5000/25000)).

132

Thus C2 is being selected over C1 not because it is the most likely transition with

the label C, but because the state that begins the transition happens to never be

final and not be part of a very frequently crossed path. C2 is exactly the sort of

transition we do not want to choose when working with fragments.12

There is an obvious solution to this problem. The question we are asking is what

is the most probable subsequence of transitions that has a given label. The answer is

to rely on counts exclusively, but again, only in the case of working with fragments.

Thus, given the same C1 and C2, and a total count for the entire automaton of

N , then the probability of each transition is the count divided by the total, i.e.,

|C1|/N and |C2|/N , respectively, which would be 5000/N and 3/N in the example,

meaning that we would make the correct choice. We can make this probabilistic

choice because we are optimistic that the start-state and final state information is

no longer relevant when looking at fragments; we believe this a reasonable thing to

assume.

The flexibility mentioned earlier in section 4.3.1 makes this technique easy to

implement, because the count information is still available in the transitions. Thus

these “pure transition probabilities” (i.e., those where no state information is used)

can be employed when needed for fragments, and the more traditional probabilities

of section 4.3.1 can be used for normal recognition.

For larger sequences, the process is identical, and we just multiply the probabil-

ities. Thus the probability of a sequence AB comprised of the connected transitions

12In the discussion of this hypothetical example, I ignore the question of the probability that the
end states of the given transitions are final; this would come into play using the methods of
section 4.3.1 and looking at the probability of this very short path (as defined in (60)), but the
point made in the example would be the same if we just assumed that both transitions’ end
states had the same (nonzero) final-state probability.

133

A1 and B1 is (|A1|/N) × (|B1|/N).13 This brings us to two of the most important

points of the approach: We only use this strategy when traditional recognition has

failed, and we always work from larger sequences to smaller ones. The reason for

this latter point is that if we viewed small and large sequences as equals, a larger

sequence could never beat a smaller sequence made up of the most probable smaller

parts. This is because, using an example of AB, we might find a very probable con-

nected sequence labeled AB, but there might be individual transitions labeled with

A and B, respectively, which did not connect, but nevertheless had higher prob-

abilities. Thus an algorithm which did not work from larger to smaller sequences

would choose these unconnected A and B labeled transitions over what we would

assume to be a better choice, the connected AB labeled transition sequence.

In summary, the fragment probability approach allows us to find the most fre-

quently occurring transition sequences with the given labels, so that we can try

to make the best choices (for finding alignments and other tasks) when traditional

recognition from a start-state to a final state has failed.

4.3.5 Probabilities for Empty Transitions

The last point to cover concerning probabilities is how to deal with what I call

empty transitions, those which arise from 1:0 word alignments. Recall that during

translation, there is an interaction between alignment probabilities and transition

probabilities: The alignment probabilities are used to weight the transition prob-

abilities of activated target transitions (as explained in section 4.3.3). However,

13Again, as elsewhere, the normalization step could be omitted for sequences of the same length,
but proves useful in terms of the interaction of probabilities.

134

when 1:0 word alignments occur during training, this means that a source word was

aligned with null, i.e., no target word is associated with the source word, so while a

source transition is created in the source automaton for the source word, no normal

transition is created in the target automaton, since it would not be clear where the

transition should be located (training is detailed in section 4.4).14

During translation, however, if there is a 1:0 alignment selected from the align-

ment table, a temporary empty target transition will be created, so that the source

word’s use in generating a translation can be tracked (i.e., we want to make sure

each source word is used exactly once and only once in a translation; see sec-

tion 4.5). Thus an empty transition is an odd transition, in that it has no state

information and no label, only an indication of the source word which generated it

and a probability. But what of this probability, what should it be?

If we wanted the empty transition probabilities to have no effect on translation,

we might think to give them a zero probability, but that would have the unintended

effect of zeroing out the alignment probability as well, when the two interact (i.e.,

when they are multiplied). A way to define the empty transition probability to have

no effect would be to set it to one, rather than zero. That way, only the alignment

probabilities would have an effect when the two interacted during translation. The

problem with this approach, however, is that it would tend to bias translation

towards the use of these null alignments, which is undesirable without an additional

linguistic motivation.

What we want to find then is a realistic probability for empty transitions. One

solution for assigning a probability to transitions with an unknown probability is to

140:1 alignments pose no problem in this respect, since there is a target transition created.

135

look at other transitions. For example, we could take the average of the transition

probabilities of the non-empty transitions in the target automaton, and use this as

a transition probability for empty transitions. While this is not an unreasonable

thing to do, it is not as principled as we would like, because it does not take into

account the likelihood of empty transitions. The solution chosen for this project is

to count how many times an empty transition is used in the target versus how many

times it could have been used. This gives us a good estimate of how likely such

transitions are. The calculation is shown in (63), where E is the sum of the number

of times a 1:0 alignment is used in the alignment table, and C is the number of

word tokens (i.e., the total of all the transition counts) in the target automaton.

(63) empty-transition-probability=
E

E + C

Thus we have the same transition probability for all empty transitions which is

based on how prevalent they are. One final point to consider is that these empty

transition probabilities make the most sense when working with fragments, because

they are based on the likelihood of empty transitions relative to all other transi-

tions, i.e., their calculation is much the same as that used for the pure transition

probabilities in fragments, in section 4.3.4. They do not take state information into

account (i.e., final state probabilities) just as is done in non-fragment situations

(see section 4.3.1).15

15Thus, perhaps a better solution would be to also calculate a default (average) final state prob-
ability, which could be used to weight the empty transition probability in the case of non-
fragment target automaton processing situations (since otherwise the lack of state information
could have a slight bias towards empty transitions, although the different normalization strat-
egy in non-fragment cases would likely have the opposite effect, since the denominator in (63)
is quite large compared to the total count on transitions leaving a given state); or again in these
non-fragment situations, we could return to the idea of the average transition probabilities. In
any case, for the current project, only the formula in (63) was used.

136

4.4 Constructing the Model: The Algorithms for Training

Before beginning the discussion of training (this section) and translation (the fol-

lowing section), I should briefly discuss what level of detail I will go into regarding

the implementation of the linked automata model. In the next two sections, as well

as in the remainder of this dissertation, I give the top-level algorithms for creating

and using the translation system, but typically not the specific implementation de-

tails, since the focus of the dissertation is on the model, its motivation, properties,

use, and evaluation, and not on the engineering aspects, of, for example, how to ef-

ficiently implement automata. I have attempted, in general, to provide algorithms

and an overview of data structures which are efficient for the model, and which

identify and bypass what otherwise could be the major bottlenecks of the main

programming tasks: training, translation, and generalization.

That said, I will in certain sections give some implementation details where oth-

erwise an explanation of certain efficient techniques would be unclear. For example,

I will give some details on how automata can be implemented so as to very effi-

ciently work with partial results, i.e., how fragments can be quickly recognized, in

section 6.3.1.1; detail some of the means for working with empty transitions during

translation (which without special treatment could cause a combinatoric explosion)

in section 4.5.3.1; give some of the important steps to make state merging relatively

efficient (section 6.2); and discuss a specific implementation of the alignment table

so that discontinuous alignments can be efficiently processed in Chapter 7.

Returning to the topic at hand, I next discuss how the linked automata system

is built. Training (also called construction) of the model is a very simple process.

137

As stated in Chapter 3, the linked automata model is created from a file of word-

aligned bitexts. Each word-aligned bitext consists of a source language sentence,

a target language sentence, and a numerical representation of the word alignments

between them.

build-translation-system (input bitexts file)
{ let < source fsa, target fsa, table > = initialize-translation-system()

for each bitext triple < source string, target string, aligned pairs >

of input bitexts file

{ source wordnum to transition hash = add-to-fsa(source fsa, source string)

target wordnum to transition hash = add-to-fsa(target fsa, target string)

for each aligned pair < source wordnums, target wordnums >

{ add-to-alignment-table(table,

(get-trans-seq(source wordnums, source wordnum to transition hash))

(get-trans-seq(target wordnums, target wordnum to transition hash)))

}}}

Figure 4.4: Linked automata model construction algorithm from aligned bitexts

The basic algorithm for translation system construction, absent refinements such

as merging (see Chapter 6), is as follows: Given a source automaton, a target au-

tomaton, and a table, simply read each bitext triple, add the appropriate states and

transitions to the source automaton so that the source sentence can be recognized,

perform the analogous additions to the target automaton with respect to the target

sentence, and for each alignment pair of the form:

(64) < (source trani...source tranj),(target trank...target tranl) >

138

add an entry to the table with a count of 1, if one does not already exist. If such

a table entry already exists, increment its count by 1. The top-level system con-

struction algorithms are given more formally in Figures 4.4 and 4.5, and a graphical

representation of the process for the aligned bitext previously shown in Figure 4.1

is shown in Figure 4.6.

add-to-fsa (fsa, sentence)
{ m = number of words in sentence

prev state = get-start-state(fsa)

for(i=1; i > m; i++) {
;;; if transition already exists in right place, just adjust

;;; the value for next previous state (?Q2 is a variable

;;; over states, and wi is the ith word of sentence)

if exist < prev state, ?Q2, wi >

{ prev state = ?Q2
push (i, < prev state, ?Q2, wi >) onto word num trans hash }

;;; otherwise, make new transition and connect prev state to it

else{ < prev state, Qnew, wi > = make-new-transition(fsa)

prev state = Qnew

push (i, < prev state, Qnew, wi >) onto word num trans hash }
}
;;; make adjustments at sentence end

pushnew prev state onto final-states(fsa)

return word num trans hash }

Figure 4.5: Automaton construction function for building from aligned bitexts

As can be seen in Figure 4.5, the automata construction is traditional, in that we

do no minimization on the fly (save for not constructing new transition sequences

when the path from the start-state to the present state already exists). The version

139

1)the 2)black 3)cat 4)likes 5)fish

(1:1) (2:3) (3:2) (4:4) (5:5,6)

1)le 2)chat 3)noir 4)aime 5)le 6)poisson

optionally merging states, when possible
source sentence can be recognized by source fsa

optionally merging states, when possible
target sentence can be recognized by target fsa

Add necessary states and transitions so that

Add necessary states and transitions so that

Given a bitext triple consisting
of a source sentence, a target

Add each word alignment to the table

sentence, and word alignments:

0

the
black cat likes fish

1 2 3 4

6 7 8 109

11 1512 13 14

0

1 2 3 4 5

12 13 14 15 16

76 8 9 1110

poissonleaimenoirchatle

5

Figure 4.6: The construction process

of the process shown in Figure 4.5 is somewhat simplified. In addition to adding

the states and transitions necessary for each new sentence, the counts used for

probabilities are also incremented on both transitions and final states. Transitions

also store a measure for the distance they are from the start-state, which is most

easily calculated during construction, since all paths constructed begin at the start-

state.

As is shown in Figure 4.4, translation system construction requires one pass

through the aligned bitext corpus. This task, like sentence and word alignment,

is a one-time, off-line task. The probability calculations for the translation system

are typically carried out at the end of the construction process (see section 4.3). In

its most basic form (i.e., when no generalization is attempted during construction),

construction is quite fast: Using a 500MHz Sun Blade-100, a Lisp implementation

of the model took less than one minute to construct a translation system from 1529

bitexts consisting of verses from English and Spanish versions of the Bible.16

16Constructing while generalizing at the same time takes significantly longer, but is a more
sensible ordering than doing all the construction, then attempting to generalize. See Chapter 6
for a detailed description.

140

4.5 Using the Model: The Algorithms for Translation

The translation process for the linked automata model (also known as decoding, in

some of the statistical MT literature) consists of three major stages, each which will

be dealt with in turn: (I) processing the source sentence (section 4.5.1); (II) retriev-

ing the target transition sequences to be activated from the table (section 4.5.2);

and (III) using these target transitions to find all allowable paths through the target

automaton (i.e., all the translations) (section 4.5.3).

Records Which Source Transition(s) Generated it

6. The Collected Target Transition Sequences
Define An Automaton. Each Target Transition

7. Generate Each Complete Transition Sequence
Which Uses Each Member of STS Exactly Once

"the black cat likes fish"
T(x)

for each member x of substring closure,

to it, and collect the results1. Source Language Input

2. Parse Using Source Automaton

. . .

<0,1,le,{S1}>
<2,3,noir,{S2}>
<1,2,chat,{S3}>
<3,4,aime,{S4}>
<4,6,le poisson,{S5}>

5. Get Target Language Alignments via Table

 S2, S2 S3,..., S2 S3 S4 S5,..., S5 }
{S1, S1 S2,..., S1 S2 S3 S4 S5,

4. Compute Substring Closure for STS

<0,1,the> <1,2,black> <2,3,cat> <3,4,likes> <4,5,fish>

 S1 S2 S3 S4 S5
"le chat noir aime le poisson"

Transition Sequence are the Translation
8. The Labels of the Highest Probability

3. Use Most Probable Source Transition Sequence (STS)

apply the alignment table function T

Stage IIIStage I Stage II

some

0

the

a brown dog loves bones

black cat likes fish
1 2 3 4 5

6 7 8 109

11

small rabbits carrotslove

12 13 14 1 3 40 2

le,{S1} chat,{S3} noir,{S2} aime,{S4} le poisson,{S5}

615

Figure 4.7: The linked automata translation algorithm (simple table)

Continuing with the the black cat likes fish translation example (shown earlier

as a portion of a linked automata translation model in figure 4.2), I give a graphical

overview of the translation algorithm in Figure 4.7 (repeating the relevant portions

141

in each subsection), and describe the process in much finer detail in the sections

for each stage which follow. In the description, for the most part we will not

discuss probabilities, except for those aspects relevant to translation which were

not already presented in section 4.3 (where a detailed description of the interaction

of probabilities during translation is given).

4.5.1 Translation Stage I: Parsing The Source Sentence

Translation begins with a string of source words, S, that (ideally) represents a

sentence in the source language (i.e., S is a sequence of words, sw1, sw2, ..., swn

separated by spaces; this is step 1 in Figure 4.7 and Figure 4.8). The sequence of

words is first checked to see if all of the words have been previously seen during

training. If not, there is no point in continuing to attempt to translate the sentence,

since it will not be able to be parsed, i.e., it will not be able to be recognized by the

source language automaton. A heuristic for dealing with unknown words is given

in section 6.3.2, which enables the system to process the parts of a sentence that

are known, and leaves unknown words untranslated.

Next, if all the words are known, we attempt to recognize S in the source

automaton (i.e., find a path from the start-state to a final state where the transitions

are labeled with the words of S in the proper order; this is step 2 in Figure 4.8). If

there is no successful recognition, we fail (steps for handling this situation are given

in section 6.3.3, where the sentence is broken up into smaller parts, to see if these

parts can be recognized and then used for translation). If recognition is successful,

however, we choose the most probable recognition, i.e., the most probable source

transition sequence (STS); this is step 3 in Figure 4.8.

142

"the black cat likes fish"

1. Source Language Input

2. Parse Using Source Automaton

<0,1,the> <1,2,black> <2,3,cat> <3,4,likes> <4,5,fish>

 S1 S2 S3 S4 S5

3. Use Most Probable Source Transition Sequence (STS)

some

0

the

a brown dog loves bones

black cat likes fish
1 2 3 4

9

11

small rabbits carrotslove

1512 13 14

5

10876

Figure 4.8: Translation Stage I: Parse the source sentence

The choice of the best STS at this point is completely dependent on the source

language automaton, i.e., it has nothing to do with the table alignments. This is

an essential component of the architecture: We want language models (in this case

the source language model) to handle the language-specific parts of the process,

(e.g., recognizing source language sentences), and we want alignment models (i.e.,

the table) to handle the translation-specific parts of the process (i.e., associating

words in the source language with words in the target language). One might ask at

this point, why, if a source automaton could potentially yield more than one STS

(i.e., more than one successful recognition of the sentence), do we use only the best

one? Choosing a single best recognition is opted for because we want to decrease

the search space as much as possible while retaining a good chance of getting the

proper translation. Using all source recognition sequences would necessarily activate

at least as many and probably more target transition sequences, and therefore yield

143

more potential translations. Thus, our heuristic might cause us to miss certain

possible translations. Nevertheless, we are willing to make this trade-off since the

reduction in search space is potentially dramatic (this sort of n-best or beam search

approach is used throughout the translation process).

4.5.2 Translation Stage II: Activating Linked Target Transition

Sequences

The second stage of the translation process is to use the source transition sequence

(again, the STS) from the first stage to select target transition sequences from the

table. The discussion in this section assumes the use of a simple table, such as

that described in section 4.2.2. The simple table was designed with the use of con-

tinuous alignments in mind (see section 3.2.1 for a discussion of different types of

word alignments), and thus lends itself to specific processing techniques for such

alignments. Although the simple table can be coerced to handle discontinuous align-

ments, in Chapter 7 we extend the table architecture to work with discontinuous

alignments very efficiently, and thus the algorithms for this step in the translation

process are adapted to accommodate the changes. We present a simplified graphical

representation of the simple table in Figure 4.9, to remind the reader of its basic

setup. Alignments are shown in the figure from sequences of source transitions

(e.g. < s1, s2 >) to what are abbreviated as TargVals, which are the sets of target

transition sequences and probability pairs which were described in section 4.2.2.

To use the STS is not simply a matter of getting the value for each source

transition from the table, since alignments are between sequences of transitions. In

principle, any continuous alignment type is allowed, e.g., 2 transitions to 1, 5 to

144

<s1>
<s4,s5>

TargVals1
TargVals2
TargVals3
TargVals4
TargVals5

<s1,s2,s3>

<s2,s3>
<s3>

Figure 4.9: The basic idea of the simple table

6, etc. So, we first compute the substring closure for the STS (this is step 4 in

Figure 4.10), which is simply the set of all substrings of a sequence, including the

empty string. For a transition sequence of n transitions (typically from a sentence

of n words), the substring closure has n(n+ 1)/2 substrings, plus the empty string.

T(x)
for each member x of substring closure,

to it, and collect the results
apply the alignment table function T

5. Get Target Language Alignments via Table

 S2, S2 S3,..., S2 S3 S4 S5,..., S5 }
{S1, S1 S2,..., S1 S2 S3 S4 S5,

4. Compute Substring Closure for STS

Figure 4.10: Translation Stage II: Get links from table

Then, for each member of the substring closure, we get the value from the table

(this is step 5 in Figure 4.10). If we think of the table as a function, T, we simply

145

apply T to each member of the substring closure, and collect the results. The

time needed to retrieve target transition sequences is quadratic with respect to the

length of the source sentence. Given sentences of a typical length (< 50 words in

our translation domain), which can be broken up into parts if necessary, and the

fast operation of the target transition retrieving table function, the time needed

comprises a negligible portion of the overall translation time. The collected results

from applying the table function to the substring closure contain all the target

transitions which will be activated, and lead us to the final translation stage.17

There are several points to note here. First, because T is applied to source

transition sequences which may be aligned with more than one target transition

sequence, and because it is possible that there is overlap in the source sequences

used (e.g., see Figure 4.9, s1 participates in two different alignments), there may

be more than one target transition that is activated by the same source word. This

might appear problematic, in that it would suggest a given source word would

seem to be occurring more than it actually is (i.e., one might expect to see two

translations of the same word in the result). No problems are posed by this step,

however, because in the final translation stage, we ensure that each source word

is used exactly once in the resulting translation (see the discussion of the source-

word-store (SWS) in section 4.5.3).

A second and related point is that here we do not use any heuristics to reduce

the number of transitions activated, such as keeping only the most highly proba-

ble target transition sequence and probability pair, TargV alk, for a given source

17The values of the function in Figure 4.7 (step 6) match those produced by following the dotted
alignment arrows shown in Figure 4.2.

146

transition sequence, STSi. The rationale is that it is quite possible that individual

alignment probabilities in the best overall alignment scenario will not all be max-

imal in the sets in which they occur in the table, so we would like to keep all of

the alignment possibilities open. If the number of activated target transitions does

grow too large, however, we could limit their number to use the n-best alignments

as a heuristic (a beam search), for some empirically determined n, but we would no

longer be guaranteed to find the most probable translation.

Another point to note concerns 0:1 alignments (those which are known as in-

sertions in the sequence alignment literature), where during training a target word

was aligned with nothing in the source. These alignments are implemented in the

table with a single null source transition. This means there is just one entry in the

table for all of the 0:1 alignments, with potentially a large set of target transition

sequences and probability pairs associated with it. It is to capture these 0:1 align-

ments that we use the empty string in the substring closure, but its use means we

will produce many target transitions which will have little relevance to the potential

translation (i.e., many will come from target transition sequences which are unre-

lated to the sequences which end up being used in the translation, because they

originally arose from completely unrelated training sentences). The presence of

this (potentially) large number of alignments is typically not problematic, however,

precisely because they are unrelated (i.e., literally not connected to other relevant

147

transitions).18 In the last translation stage (section 4.5.3) transitions which do

not connect with other transitions are, in essence, ignored, except in a worst-case

scenario of word-for-word translation.

Nevertheless, one could apply again a beam search solution to these 0:1 align-

ments if necessary. A more principled solution, however, would be to actually put

these null source transitions into the source automaton. If they existed in source

transition sequences, then only those relevant to the actual translation would be ac-

tivated in the first place. This solution raises the same questions as those identified

in section 4.3.5 for so-called empty transitions (those that arise from 1:0) align-

ments, namely, where should the transitions go? One solution might be to, when

necessary, add to the end of each sequence of transitions a single epsilon transition

which then leads to a final state, which in the table would be aligned with only

the products of 0:1 alignments for that specific translation pair. The negatives of

this solution are that there would be many more entries in the table, and many

more transitions in the source automaton (see section 6.4 for more discussion on

this topic).

4.5.2.1 A Digression on Alignment Probabilities

At this point, we should go into a little more detail about the interaction of align-

ment and (target) transition probabilities. Recall that alignment probabilities are

multiplied with target transition probabilities when target transitions are activated

(section 4.3.3). This is very straightforward for 1:1 alignments. But what about for

other types of alignments, for example 2:2 alignments?

18A large number of irrelevant 0:1 transitions can, however, be problematic when processing
fragments; see section 6.4.

148

We can illustrate what happens with a simple example. Suppose that in the

source automaton we have two transitions, a and b, and that in the target automaton

we have two transitions, c and d, which have transition probabilities of .3 and .4,

respectively. Next, suppose that in the table a is aligned with c, with an alignment

probability of .2, b is aligned with d, with an alignment probability of .2, and the

sequence a, b is aligned with c, d, with an alignment probability of .2, as shown in

(65) below:

(65)

< a > → {<< c >, .2 >}
< b > → {<< d >, .2 >}
< a, b > → {<< c, d >, .2 >}

Now, suppose that a source sentence recognition uses a and b; then all of the

alignments in (65) will be used. When possible, in the current implementation

we combine transitions during activation when there is more than one (e.g., as in

the {<< c, d >, .2 >} case, and in step 6 of Figure 4.7 where le and poisson are

combined, as specified in their word alignment). This has two benefits: It reduces

the number of transitions which result for the next stage, and it solidifies the notion

that the alignment in the alignment model was between a sequence of words, and

not just the individual words (i.e., the information conveyed by two 1:1 alignments

is different from the information conveyed by one 2:2 alignment of the same parts;

see section 3.3).

If we follow the practice defined in section 4.3.3, this process will yield the

following three transitions (where transition a has the label a, and so on, and only

the label and combined transition and alignment probabilities are shown):

(66) < c, .2 × .3 = .06 >

< d, .2 × .4 = .08 >

< cd, .2 × (.3 × .4) = .024 >

149

We get the third transition, < cd, .024 >, with a probability of .024 because

the probability of a sequence of two transitions is the product of their probabilities,

which we then multiply with the alignment probability for the sequence (rather

than first multiplying each transition by the alignment probability). It is probably

clear now where this example is heading: If we go on to put the transitions together,

as is done in the last translation stage, we arrive at two different probabilities for a

transition labeled cd, since we can put the first two transitions in (66) together to

get: < cd, .0048 >.

Now the point here is not how we put these two cd labeled transitions together,

or if we should (the answer is that we should, since they represent different ways of

arriving at the same result, thus the probabilities would be added; we discuss this

in section 4.5.3), but rather, is it a good thing that one combination of cd has a

different probability from the other? This is a theoretical question.

By using the alignment probabilities in this manner, we bias the translation

system toward using larger alignments (i.e., the more target transitions in an align-

ment, the more it is favored) since the whole sequence is multiplied once by the

alignment probability rather than each transition at a time, before they are com-

bined. This is the current practice in the model. It is done because we want to favor

alignments which have more translation information in them, and a 2:2 alignment

tells us more translation information than do the two 1:1 alignments which com-

prise it (note that this is the inverse of the case for evaluating word alignments, in

section 3.3, where 1:1 alignments are more specific, and therefore more informative;

here, in the translation task, a 2:2 alignment not only gives the transitions but

enforces how they are combined, thus it yields more translation information).

150

Of course, there are many simple ways to make it so that the resulting prob-

abilities would be equal, should that result be desired. This can be handled by

normalizing differently, at the table level. Recall that we normalize by the total

count of all alignments; this could be changed to factor in the number of transitions

in each alignment, or more elegantly, to use the number of words in the alignment,

following a sort of weighting scheme similar to that discussed with regard to word

alignment evaluation in section 3.3, where each word token contributes the same

amount of weight. A different approach might be to make probability adjustments

during the second translation stage, by using alignment probability to the nth

power, for n target transitions used, i.e., rather than < cd, .2 × (.3 × .4) = .024 >

we would get < cd, (.22 × (.3 × .4)) = .0048 >.

4.5.3 Translation Stage III: Assembling Activated Target Transitions

to Find the Best Translation

The final stage of translation involves taking the target automaton transition se-

quences that were activated in translation stage II and putting them together in all

ways that the target language model allows. I will sometimes refer to this process

as target parsing. As with the discussion of the earlier translation stages, I first

describe the general process, leaving the discussion of special cases for later. Thus,

in this section I assume that there is always a target parse that can be found. In

cases where there is not, I describe a method called partial target parsing in sec-

tion 6.3.4, which is used to extract partial results. Empty transitions (those which

arise from 1:0 alignments) also require some special handling, and are dealt with in

section 4.5.3.1.

151

As mentioned previously in section 4.3.1, several different transition slots are

used, depending on the needs of the system. Thus, for transitions to be used in

target parsing, there is a new transition slot called the source-word-store (SWS).

The use of the SWS, inspired by Johnston (1998), is analogous to the strategy used

for word alignment in section 3.2.2: The SWS stores a numerical representation of

the source language transitions from the STS which were responsible for generating

the given target transition. For example, in step 6 of Figures 4.7 and 4.11, the

target transitions contain as their last member a set, showing the source transition

with which they were linked (e.g., < 1, 2, chat, {S3} > indicates that this target

transition was linked with the third transition, S3, of the STS used). The purpose of

the SWS is to make sure that each source word is used exactly once in a translation.

The SWS can be implemented as a set of natural numbers; for example, a

transition that had been aligned with the first two source transitions would have the

SWS: {1, 2} and one which had been aligned with just the fourth source transition

of the STS would have the SWS: {4}. As will be seen shortly, part of the target

parsing process can be viewed as putting target transitions together to form longer

transitions. When this happens, the SWSs get combined. Thus the SWS of {1, 2}
and {4} can be combined (i.e., unioned) to form {4, 1, 2}. We use unique numbers

for the SWS instead of words so that in cases where a source word is repeated in

a source sentence, there is no confusion. Because we want to ensure that no source

word is used twice, we can only combine transitions when the intersection of their

SWSs is empty.

Because we perform many set operations, such as union and intersection, on

SWSs, it makes sense to implement them in a manner in which such operations are

152

fast. One such technique is to use bit vectors, where the vector is as long as the

number of transitions in the STS (i.e., as long as the number of source words), where

a bit is marked 1 if the source word is present. For example, using natural numbers,

an SWS containing words 2 and 5 from a five word source sentence would like {2, 5},
while the bit vector would be [10010]. Another implementation technique is to go

a step further, and represent sets as integers, since a bit vector can be viewed as

the binary representation of an integer (and some programming languages, such

as Lisp, allow for fast logical operations on integers used to represent sets). Thus

[10010] could alternatively be represented as 18.19

With this understanding of the SWS, we can now trace the third and final

translation stage (shown again in Figure 4.11). We begin with a set of activated

target transitions, like those shown in step 6 of Figure 4.11. We want to put these

transitions together in all ways that the target model will allow, subject to the

aforementioned constraint of using each source word only once. This target parsing

process essentially means finding a connected path in the target automaton from

the start-state to a final state, that both uses only activated transitions and has

a full SWS (i.e., one that uses all the source words—all the bits in a bit vector

representation are 1s).

19In the implementation, I used this integer representation technique, since it makes the pro-
gramming tasks rather simple and elegant (e.g., one need not be concerned with what the size
of the bit vector should be, and certain logical operations are predefined for integers which are
not for bit vectors), but there are limitations, because one can only represent a source sentence
of limited size, specifically, the number of words can be no greater than n, where 2n must be
<= the largest integer that the programming language can represent. Practically, this means
that in the Lisp system one might have to break up sentences longer than 28 words into smaller
parts; so the much better and more general solution is to stick with bit vectors, since they will
only be limited by the memory available.

153

"le chat noir aime le poisson"

Records Which Source Transition(s) Generated it

6. The Collected Target Transition Sequences
Define An Automaton. Each Target Transition

7. Generate Each Complete Transition Sequence
Which Uses Each Member of STS Exactly Once

Transition Sequence are the Translation
8. The Labels of the Highest Probability

1 4

le,{S1} chat,{S3} noir,{S2} aime,{S4} le poisson,{S5}

6320

. . .

<0,1,le,{S1}>
<2,3,noir,{S2}>
<1,2,chat,{S3}>
<3,4,aime,{S4}>
<4,6,le poisson,{S5}>

Figure 4.11: Translation Stage III: Put the target transitions together

In the first stage of the research, I used a modified chart parser to put the

activated transitions together. Parsing was a matter of checking that begin and

end states of transitions to be connected were the same, and making sure that

SWSs had a null intersection. But this move to a chart parser lacks a crucial

insight: The activated transitions, taken as a unit, are already connected. In fact,

these transitions, along with the original start-state and final state information,

define an automaton, one which is simply a much smaller part of the original target

automaton. Imagine an automaton with thousands of transitions, where a small

number of the transitions are chosen. These transitions, along with the original

start-state and final state information, also form an automaton.

This insight means that the transitions need not be put back together at all.

All we have to do is generate all the allowable (again, those whose SWSs can be

154

combined) sequences of transitions from this newly defined very small automaton

which begin at the start-state and end at a final state (this is step 7 of Figure 4.11).

These sequences can be easily and quickly generated because of the automaton’s

small size. We begin at the start state, and store each transition sequence we come

to (where a sequence of transitions is equal to the entire path seen so far) in a data

structure (which ideally should be some sort of hash-table, indexed either by SWS

or begin-state, or both, so that transitions can be quickly recovered as needed). We

store the sequences so that they can be quickly accessed should we need them again

for working with partial results (i.e., should target parsing fail). We stop going

down a given path if the SWS of a transition we come to cannot be combined with

the accumulated SWS so far (i.e., if they have a non-null intersection), or when we

reach a state that is always final.

Once generation is finished, we choose the most probable complete target parse,

i.e., one from the start-state to a final state and that has a full SWS (this is step 8

of Figure 4.11). As with the other translation stages, we now note a few of the finer

points of this stage. First of all, the generation process is very fast. This is due to

the automaton’s very small size, and the fact that we can use fast bit operations

when comparing SWSs. Nevertheless, in the event that these smaller automata

grew to such a size that the generation began to be too slow, we could decrease the

number of transitions we start with: As mentioned in section 4.5.2, we can limit

the number of transitions that are activated in the second translation stage, to the

n-best for each source transition subsequence, for some suitable n.

We also have held off discussion of the null alignments, those that derive from

1:0 and 0:1 word alignments. 1:0 alignments (empty transitions) require special

155

care in the target automaton, because they do not exist, i.e., they have no state or

label information, only an SWS. We will deal with them in section 4.5.3.1 next. 0:1

alignments (the insertion cases) are no problem at all. A 0:1 transition is just like

any other, except that its SWS is null. This means that it can be combined with

any other transition it is already connected to in the small automaton.

Another issue touched on briefly in section 4.5.2.1 is how to deal with identical

transition sequences (i.e., transition sequences which result from “putting together”

smaller activated sequences, where the begin state, end state, label, and SWS are

identical). How can such identical transitions arise? Such transitions come about

because of differences in the word alignments in training sentences, where a given

word may be aligned in many ways, and sometimes as part of a larger sequence.

We need look no further than the example given earlier in (65), repeated here as

(67):

(67)

< a > → {<< c >, .2 >}
< b > → {<< d >, .2 >}
< a, b > → {<< c, d >, .2 >}

Given the alignments shown, when an STS contains source transitions a and b,

identical transitions will exist after generation; only their probabilities will differ

(I refer to these as transitions and not transition sequences because the generation

process in essence “smushes” individual transitions together into single transitions,

their intermediate state information no longer being relevant). For example, as-

suming that the labels of these transitions are the same as their names (i.e., that

the label of a is a), and that the source sentence to be parsed was ab, the following

three transitions would be activated (where i, j, and k are state numbers) after the

second translation stage:

156

(68) < i, j, c, .06, [01] >

< j, k, d, .08, [10] >

< i, k, cd, .024, [11] >

The first two transitions in (68) can be combined to form < i, k, cd, .0048, [11] >.

As is standard in working with probabilities, since this transition and the last from

(68), < i, k, cd, .024, [11] >, represent different ways of arriving at the same result

(i.e., they are disjoint events), their probabilities should be added (because we want

to represent the probability that either would occur), to yield a single transition

which we then store: < i, k, cd, .0288, [11] >.20

4.5.3.1 Handling Empty Transitions in Translation

Empty transitions (those which arise from 1:0 alignments; also known as deletions

in the sequence alignment literature) require special treatment because they are

unlike other transitions: They have no begin state, no end state, and no label. All

they have are an SWS, and a probability (i.e. an alignment probability multiplied

with a special empty transition probability, see section 4.3.5).

While the number of empty transitions which can exist during any target parsing

session is limited to the number of words in the source sentence to be translated,21 it

20Although I show all of the examples with a standard probability distribution (0–1), in the
implementation I use logarithms. In the log domain adding is used for joint probability, so
special steps must be taken to account for such disjoint probabilities. I follow the method
outlined in (Manning & Schütze 1999:337).

21Each source word can only generate one empty transition, since the only thing that differentiates
one empty transition from another is the source word which generates it (and the alignment
probability, but in the table there can only be one pair between a source transition and a given
target transition, in this case an empty one), and the translation algorithm uses only the most
probable recognition (therefore there can be no more than one empty transition for each source
word in the STS).

157

does not take many such transitions to cause a processing slowdown for a translation

system, if they are treated the same as other transitions. This was especially true

in the earliest implementation, when a chart parser was used. The reason why

empty transitions are potentially computationally expensive is that they are very

unconstrained. An empty transition can be “connected” to any other transition, so

long as their SWSs have a null intersection. One might envision a 1:0 alignment as

a source sentence, saying to a target sentence, “look, I don’t care where you put

it, but just take care of this word, go ahead and delete it if you want, but you’re

responsible for it.”

The SWSs of empty transitions need to be accounted for, or translations with any

1:0 alignments would not be available. And since the last stage of translation means

putting target transitions together in all ways possible, this includes the empty

transitions, whose state information is unspecified. Ignoring SWSs, any empty

transition can not only combine with any other empty transition, but also with

most non-empty transitions. This means that with just a few empty transitions,

the number of transitions to process quickly balloons.22

In this section, I delve a little more deeply into implementation details, to de-

scribe a solution which handles the empty transition problem quite efficiently, so

that translation speed is not adversely affected by the number of these transitions.

22For example, suppose the target parsing process begins with 100 transitions, which can be
“connected” in a number of ways (let’s say by a factor of 10), yielding 1000 total transitions.
If we add just 10 empty transitions, each which hypothetically could combine with, say, 90% of
the original transitions, we go from 100 transitions to 1000 (i.e., 100 + 900), before generation
begins, and assuming this same hypothetical rate at which the transitions can be connected,
we would get 9000 transitions instead of 1000.

158

The key to efficient processing with empty transitions is to realize that they only

have limited information to offer (i.e., an SWS and a probability), and to not access

that information until the final stage of the target parsing process. Here is how it is

done: The only thing that constrains what an empty transition can combine with

is its SWS. So what we want is some sort of record of all the SWS information

available from empty transitions, so that we need only check them once. What we

do is create an empty transition mask.

Suppose a source sentence has n words. Every SWS then for the given trans-

lation task is (given a bit vector implementation) a vector of n bits. A full SWS

has all n bits with a value of 1. Let’s assume we have a five word source sentence.

So a full SWS is [11111], an empty one is [00000], one representing just the first

source word is [00001], one representing the first and third words is [00101], and so

on. An empty transition mask then is just a bit vector which represents which 1:0

alignments exist. If there is one for every word, we have a full SWS; if only some of

the 1:0 alignments are present, the mask just has the relevant bits as one. Let’s as-

sume for this example that there are three 1:0 alignments, for the first, second, and

fourth source words in the five word source sentence. Then the empty transition

mask is [01011].

Now, every empty transition also has a probability. These probabilities are

different, because while the transition probabilities of empty transitions may be

uniform, the alignment probabilities need not be, and the resulting probabilities

associated with an empty transition will be some combination of the two (see

section 4.3.3). We use a second data structure, a small indexed table, called the

159

empty transition probability hash, to store the probabilities. This hash is indexed

by the SWS values. In our example, with three empty transitions, the hash might

look like:

(69)

[00001] → some probability value

[00010] → some probability value

[01000] → some probability value

With these two small data structures, the mask and the hash, target parsing

is easy. We first complete parsing without the empty transitions. Recall that this

leaves a store of longer transitions, which might typically be indexed by their SWSs

values (see section 4.5.3).23 Assuming the empty transition mask is non-empty

(otherwise we need not worry about empty transitions at all, since there are none),

we then simply make one pass through all of these longer transitions, checking to

see for each transition that has a non-full SWS, if unioning its SWS with the mask

(this is done with a bit-wise inclusive or) would create a full SWS. If so, we have

found a target parse.24 This process is made even faster (as done in the imple-

mentation) if the data structure storing the (non-empty) transitions is indexed by

the SWS, because rather than iterating through all the transitions, one need only

check once for each SWS that exists in the store (since the answer will be the same

23One can view this store as a chart, a hash, or whatever is convenient for the earlier stage. The
overall strategy here is not dependent on the target parsing method.

24I describe how this process works for extracting partial results (i.e., when we have failed to find
a parse, and are concerned with the best incomplete parses we can find), in section 6.3.4.

160

for all the transitions indexed by this SWS). For example, if the transition store

contains a transition with an SWS of [10111], then unioning with the mask ([01011])

will yield a full SWS, thus a successful target parse.25

For each such transition (i.e., one which would have a full SWS when unioned

with the mask) we create a new transition (i.e., a new parse). All that we have to do

is adjust the probability, and for this we use the empty transition probability hash

created earlier. We get the bit positions which were used from the mask,26 convert

them to an SWS for each bit position, and get the probabilities from the hash. The

probabilities are then combined just as they would have been if the transitions had

been chart-parsed together (i.e., they are multiplied; or added in the log domain).

So, from the transition with the SWS [10111], we get a new transition (a complete

parse, assuming the start-state and final state information are correct) with a full

SWS, and a probability that is the original transition’s probability multiplied by

the probability that existed in the empty transition probability hash for [01000].

Thus, by using this mask and probability hash method, at the end of the target

parsing process, we get the identical parses (complete transitions, those from a

start-state to a final state with a full SWS) that we would have gotten by treating

empty transitions as regular transitions, but without the computational overload.

1:0 alignments become unproblematic for the linked automata model to process.

25Indexing by state information will also be fast, because we can check just those transitions
that begin at the start-state and end at a final state, although the SWS technique proves more
useful, since we often want to be able to work with fragments anyway; see Chapter 6.

26This can be done in a number of ways, e.g., we use a bit-wise exclusive or between the original
non-empty transition’s SWS, and a full SWS: xor([10111], [11111] = [01000]); one could use a
bit-wise logical not with the original non-empty transition’s SWS, etc.

161

4.6 Comparing the Linked Automata Model to Previous

Work

I began to locate the linked automata MT model with respect to other data-driven

models in section 4.1. The model is a statistical MT system, which takes ad-

vantage of finite-state techniques by using automata as the language models and

links between the automata transitions as the translation model. Thus, it is most

closely related to the finite-state models described in section 2.2.2. In this section I

compare important aspects of the model with these earlier systems, concentrating

mainly on the data-driven finite-state models. I also discuss the linked automata

model’s relationship with EBMT.

4.6.1 Pure Statistical Machine Translation

Like all of the probabilistic finite-state systems, the linked automata model borrows

the ideas of the combination of translation and language models from SMT. But

unlike the SMT model (i.e., the IBM Model 3 in particular (Brown et al. 1993)), the

linked automata model does not have uniform structure. Rather, the two automata

(the source and target language models) capture the phenogrammatical structure of

the sentences, a linguistically motivated step (as such, the linked automata model

might be viewed as existing somewhere between the word-to-word and syntax-to-

syntax mapping levels in the MT hierarchy shown earlier in Figure 2.1). Addition-

ally, while for the IBM SMT approach proper word alignments can be viewed as

162

the overall goal of the system, the linked automata model begins with word-aligned

bitexts.27 Word alignments are clearly represented via links between transitions,

but they are only part of the story.

Another departure from pure SMT is that in the finite-state methods in general,

there are no separate parameters for notions such as fertility and distortion, or for

other potentially relevant factors not parameterized in IBM Model 3. These notions

are implicit in the finite-state models, and thus for the linked automata model as

well.

A major benefit of the proposed system over pure SMT is its simplicity. It

is much more understandable and modular, making further development more

straightforward. One area where the SMT model should generally be superior is in

terms of scalability, since the linked automata model can tend to grow quite large as

the number of training examples increases. This rapid growth can be constrained,

however, through generalization, which has the positive side-effect of reducing the

size of the system.

4.6.2 Probabilistic Finite-State Models

In section 2.2.2 I described several (mostly) finite-state translation models, in-

cluding 1) stochastic inversion transduction grammars (which are not finite-state,

but close enough in spirit to warrant discussion, section 2.2.2.1); 2) composed

transducers (section 2.2.2.2); 3) subsequential transducers (SSTs, section 2.2.2.3);

27In fact, it would not be unreasonable to use the IBM algorithm first as a word aligner for
the linked automata system, if its accuracy were high enough. This is experimented with in
section 3.2.3.

163

4) weighted head transducers (HTs, section 2.2.2.4); and 5) a model for lexical se-

lection and reordering (section 2.2.2.5); as well as a hybrid finite-state model (where

some of the finite-state devices are hand-crafted, in section 2.2.2.6). Since the com-

posed transducers of Knight & Al-Onaizan (1998) were intentionally a reimplemen-

tation of IBM’s pure SMT model, it would be redundant to compare the proposed

system to it. The clear motivation for Knight & Al-Onaizan’s (1998) work was to

demonstrate that the SMT model could be implemented in a very understandable

and well researched finite-state framework. Nor will I compare the system to the

hybrid system of Vogel & Ney (2000), presented in section 2.2.2.6, but as stated in

that section, many of the techniques used in that research for incorporating human

knowledge into an empirical system may be applicable for later research stages of

the linked automata model.

4.6.2.1 The Linked Automata Model and SITGs

Direct comparison with the stochastic inversion transduction grammars (SITG) of

Wu (1997) is difficult, but the proposed system tries to capture information much

the same way as the SITG model. In the SITG system, a bilingual grammar is

used to reflect the relationship between the two languages. This model combines

the language and translation models into one, but the fact that different sets of

symbols (i.e., different sets of non-terminals) for the two languages can be used

in rule productions, as well as the fact that these symbols can occur in different

orders relative to the two languages, coincides with the same information that the

linked automata model tries to express: An MT model should have a means to

represent the relationship between source language and target language words, yet

it should not impose the ordering constraints of one language on the other. The

164

SITG formalism, although context-free, is somewhat less flexible than the proposed

model, since some (generally unlikely) alignments are not permitted, and given its

context-free nature, the SITG model is not as easily made efficient as the finite-state

methods (at least potentially).

4.6.2.2 The Linked Automata Model and Subsequential Transducer

Models

More direct comparisons can be made with subsequential transducers and head

transducers. In fact, the linked automata model is most closely related to the SSTs

of Vilar et al. (1999) and Amengual et al. (2000). Both the linked automata and

SST models use a single, large finite-state system, and both are constructed from

word-aligned bitexts. The main difference between the two models, as discussed in

section 4.1, is that the SST model uses a transducer, whereas the linked automata

model uses two automata, a design more naturally suited for translation. Because of

this difference, the SST model must use special symbols (see section 2.2.2.3) in the

transducer’s output labels, to indicate the proper ordering for the target language

words (as well as to attempt to handle discontinuous alignments (Sanchis et al.

2001), see Chapter 7). In addition to the added theoretical and computational

overhead of this step, it is not clear that the SST model is easily reversed, to

allow for translation from target language to source language. But again, the main

point is that the linked automata model is simply a better fit for translation. The

alignments between words fit naturally into its design, making the system more

clear and the probabilistic modeling more appropriate to translation.

Another large difference between SSTs and the linked automata model is that the

former are subsequential, while the latter is clearly not. Thus, the SST model has a

165

determinism that allows for very efficient processing and generalization techniques,

as well as straightforward probabilistic modeling. Unfortunately, it is not clear that

deterministic finite-state devices are sufficient for natural language translation (i.e.,

natural language translation is not a subsequential function). For this reason, the

use of SSTs has been restricted to artificial unambiguous limited domain languages.

The linked automata model does not have these restrictions, but with its added

complexity comes a price to be paid in terms of less efficient algorithms for training,

translation, and generalization.

Both models are similar in that they accomplish generalization to unseen inputs

mainly through merging of states or transitions, but because of its determinism, the

SST model is able to merge to a greater extent, and thus is more scalable than the

proposed system. The SST system described in Vilar et al. (1999) also makes use

of an error model to restrict generalization, so that the source language model does

not overgenerate strings which are highly unlikely. This problem is very relevant

for the linked automata model, because generalization via merging vastly increases

the size of the search space for parsing the source sentence. It is not clear if the

SST error model technique is appropriate for the linked automata model, but the

idea is an important one which needs to be further studied.

4.6.2.3 Comparison with Weighted Head Transducers

The weighted head transducer approach of Alshawi et al. (2000) and Alshawi &

Douglas (2000) is much more complex than the linked automata model and the

SST model. It uses many small transducers applied recursively, and attempts to

model the hierarchical syntactic structure via dependency trees (see section 2.2.2.4).

In fact, it was the Alshawi et al. (2000) model that originally inspired the research

166

which resulted in the linked automata model, to see if a simpler translation model

could be sufficient. Of all the finite-state models, the Alshawi et al. model (and the

related Bangalore & Riccardi (2001) model) would probably be the most interest-

ing, notwithstanding its complexity, if it could be guaranteed that the hierarchical

alignments represented by the dependency trees were correct; but it is not clear if,

as presently formulated, these hierarchical alignments capture much more informa-

tion than do the word alignment and linear ordering information contained in the

simpler finite-state models (see the example in section 2.2.2.5). One benefit in the

use of many small transducers is better scalability than that of the linked automata

system.28

The HT model must begin with bitexts and perform its own hierarchical align-

ment, which is a more complex process than word alignment. And given the recur-

sive nature of the model, the algorithms for translation are more complicated than

for the linked automata model (although both make use of dynamic programming

to search through the space of translation possibilities). As demonstrated by good

preliminary results, the HT model appears to be effective. The question posed by

the proposed linked automata system is: Can a more simple system perform rea-

sonably as well? The HT system stores all the complexity in the model itself. The

linked automata system makes the translation and language models very simple,

but allows for more sophisticated techniques to use them. Thus, in some senses the

28Thus, as presently described, both the SST and HT models will scale better than the linked
automata model—a problem which needs to be addressed through increased generalization (i.e.,
less strict merging).

167

two approaches are the same, but we see the separation of model from translation

algorithm in the proposed system to be a benefit, since it makes the system more

understandable and easily modified.

In terms of increased coverage, the HT system and the linked automata system

use some of the same techniques. Much generalization, as in the SST system,

is achieved via merging. Merging in the HT system is much less conservative as

compared to the linked automata model, allowing for greater coverage, but possibly

at the expense of translation quality. Different (less conservative) merging strategies

will continue to be tested for the linked automata system, until the system converges

on the best translation results. Both the HT model and the linked automata model

also use what we term partial source parsing (as described in section 6.3.3), for

inputs which cannot be recognized. The techniques described are similar; matching

the longest sequence possible and recursively handling the remaining parts. Alshawi

et al. (2000) do not describe the use of heuristics for dealing with unknown words,

but it is likely such techniques could easily be incorporated into their system.

4.6.2.4 Comparison with Lexical Selection and Reordering

Like the head transducer model, the lexical selection and lexical reordering (LSLR)

model of Bangalore & Riccardi (2001) (presented in section 2.2.2.5) is a complex em-

pirical finite-state approach which attempts to model hierarchical syntactic struc-

ture. In fact, it uses the same alignment strategy of mapping source and target

dependency trees as does Alshawi et al. (2000). In this respect, comparison of the

linked automata model to the LSLR model is much the same as to the HT model.

168

In both the LSLR and HT cases, it is not clear if the automatically induced depen-

dency trees are accurate enough to provide better translations than can be derived

from word alignments alone.

Like the HT model, the LSLR more easily generalizes than the linked automata

model because, from the very outset, it aligns phrases rather than word sequences,29

thus does not require a separate generalization strategy, as do models which only

model phenogrammatical syntactic structure, such as the SST and linked automata

models.

What the LSLR model and the linked automata model share is the separation

of the language and alignment models. The lexical selection model of LSLR is

like the alignment model (i.e., the table) of the linked automata approach, and

the lexical reordering model is similar to the target language model (the target

automaton) of the linked automata model. There are some crucial differences,

however, beyond the aforementioned modeling of hierarchical structure. The LSLR

models are in a sense more separate: The two models may be built from different

bilingual corpora, whereas for the linked automata model, the same corpus must be

used in construction (since it all takes place at once). So, in the linked automata

approach, the language and alignment models are more tightly coupled than in the

LSLR approach. Even though the LSLR models are in this sense more separate, the

fact that both are transducers allows them to be composed, making decoding more

straightforward (and likely more efficient) than for the linked automata model (see,

for example, the linked automata translation process as described in section 4.5).

29In the case of the LSLR, this generalization strategy can be viewed as more of an approximation
than in the HT case, however, because the phrases themselves are approximated with strings.

169

The fundamental question of comparison with the LSLR model, as with the

HT model, remains whether the hierarchical alignments improve the translation

process. Certainly they should, if the automatically induced alignments are reliable

enough (which continues as an open question for these methodologies); and using

such hierarchical (i.e., tectogrammatical) syntactic information appears to be the

direction in which many statistical MT approaches are heading (see the discussion

of Yamada & Knight (2001) in section 2.2.1). And it may be the case that more

syntactic information can be incorporated into the linked automata model (see

Chapter 7). Taking these steps will only be sensible, however, once it is clear how

far the model in its most basic form can be pushed as an MT system.

4.6.3 Example-Based Machine Translation

The relationship between the linked automata model and EBMT is not as trans-

parent as with the finite-state models. On an abstract level, they are quite similar,

in that they learn from data and perform little linguistic analysis of inputs during

translation. And indeed, the finite-state models could be viewed simply as storing

examples just as the EBMT models do, but the focus of the general approaches is

quite different. EBMT systems intentionally view examples blindly (training exam-

ples need not be word-aligned), as unanalyzable chunks to be retrieved via analogy

with inputs. Statistical finite-state models seek to store data in a framework which

captures more of the linguistic information inherent in the data, namely word align-

ments and linear ordering information. As such, the finite-state approaches may

be more appropriate for pairs of languages where word order is relatively fixed, but

170

may yield little improvement over EBMT for other types of language pairs, at least

in terms of performance, but not necessarily understandability and the ability to

be further developed.

Where the linked automata model bears the strongest relationship with EBMT

is in terms of the increased coverage heuristics described in section 6.3. For exam-

ple, the techniques of fragment processing and partial source parsing are exactly

analogous to the EBMT techniques used in the matching stage. In EBMT the goal

of the matching stage is to partition the input in some well-motivated fashion and

use the associated examples. In the linked automata system, fragment processing

matches inputs to subparts of training examples, and partial source parsing finds

the best substring and recursively handles the remainder. Similarly, partial tar-

get parsing in the linked automata model is related to the recombination stage of

EBMT: The translations of the associated examples must be put back together in

a way consistent with the target language. The linked automata model uses the

target language model to assist in this process. EBMT recombination algorithms

use various other strategies for putting these translated parts together, but the goal

is the same. Thus, the techniques of EBMT matching and recombination may offer

insights for the linked automata model’s increased-coverage heuristics.

4.6.4 Summary

In summary, the linked automata model, like other finite-state MT models, is a nat-

ural outgrowth of the pure SMT models. It makes use of translation and language

models, but constrains the models to a finite-state shape which is more appropriate

to natural language translation. The linked automata model is more expressive than

171

the SST finite-state model, and is a better fit for translation than are transducers

in general, because it naturally represents the word alignment between sentences

without imposing the ordering constraints of one language upon the other, thus

also allowing for a more direct representation of discontinuous alignments between

word sequences. The model is much more simple than the HT model, since the

large, paired automata represent the translation and language models, as opposed

to the recursive application of smaller transducers. The linked automata model

does not, however, model the hierarchical syntactic structure, as the HT and lexical

selection and reordering models do. The hypothesis to be investigated is if this sim-

pler, more direct approach can produce a reasonable natural language translation

system. Lastly, while the system is not an EBMT system, it does share the ideas

of matching and recombination with EBMT, when inputs cannot be completely

processed.

172

CHAPTER 5

PRELIMINARY EVALUATION

There is no such thing as the correct translation (King 1997:261).

5.1 Introduction

There appear to be as many different evaluation methods for machine translation

as there are machine translation methods. This state of affairs arises from the fact

that there is little agreement on how to define what a correct translation is, much

less how to measure it, be the measurement automatic or by human judgement:

One of the moments that many MT research presentations have in com-

mon is the viewgraph that makes the assertion that there is no standard

method for evaluating machine translation There are indeed many

well-known MT evaluation methods But it is quite correct to assert

that none are universally accepted as standard. It is also true that the

useful ones take considerable effort, cost, and time to perform, and that

none of the methods tell us all of the things different people might need

to know about an MT system The best known example of why there

isn’t such a thing has to do with the fact that MT, unlike information

extraction, topic or document detection, optical character recognition or

speech recognition, doesn’t have a possible “ground truth” This is

not because no one has bothered to devise such a set of data, but rather

because it cannot be done in a straightforward way (White 2000:100–

101).

173

Further compounding the problem, it is common in the MT literature for researchers

to discuss their systems in terms of “accuracy” or “coverage,” with no definition

of what these terms mean. These problems with evaluation are so long-standing

and commonplace that MT evaluation (MTE) has become a small research niche

in its own right, but, perhaps as should be expected, these efforts have yielded few

accepted results. Researchers generally return to one of the fundamental truths of

MT evaluation—that (as the quote at the beginning of this chapter indicates) just

as there is more than way to express the same idea in a single language, there is

more than one way to translate a sentence from one language to another; so there

can be no unique, correct translation.

One aspect of MTE on which some consensus has been reached is that evaluation

methods should vary depending on the reasons for the test. That is, the role of the

MT system and its stage of development should play a part in determining the

appropriate evaluation method. I begin with a brief discussion of the different

types of MTE and their history. Next, I discuss the sorts of dimensions along

which MT systems should be evaluated. In the final section, I present a simple,

automatic evaluation method for the proposed linked automata model, and present

some feasibility results.

5.2 Types of MT Evaluation

Probably the single most important event in the history of MTE was the publication

of the ALPAC report (Pierce et al. 1966). The report had the effect of damning MT

research in the United States for nearly 20 years (Arnold et al. 1994), and served

to set a precedent for the methods of MTE. In that evaluation, human judges were

174

asked to rate human and machine translations from Russian to English using a

rating scale, in terms of two attributes, intelligibility and faithfulness, where one

could informally take intelligibility to mean: Is it a good sentence of English? and

faithfulness to mean: Does the English translation have the same meaning as the

Russian original? Intelligibility was rated on a nine point scale and faithfulness on

a ten point scale, in terms of informativeness. This second measure turned out to be

somewhat counterintuitive, because judges were asked to measure how informative

the original Russian version was compared with the translation, to gauge a degree

of informativeness of the translation (i.e., had something been lost in the process).

As King (1997) points out, although the evaluation was carefully designed, the

methodology was flawed, since the human judgments were highly subjective, and

dependent on the quality of the human translations, which could vary with the

translator; and, more importantly, because the fidelity (we substitute this more

common term for faithfulness; accuracy is also used in the literature) task was

confusing and is inherently hard to measure.

Human evaluations, like the ALPAC judgments, have historically been the most

common in the published literature, especially across different MT platforms. The

other type of MT evaluation is automatic, i.e., carried out without human interven-

tion. Within these two evaluation groups are many different types of tests, and in

general the tests for human evaluation and automatic evaluation are quite differ-

ent, since human and computer capabilities are so different. Human evaluation is

time-consuming, expensive, error-prone, and can be very subjective. Nevertheless,

175

if the resources are available, human evaluation is often the best as well, because of

issues such as fidelity. For example, suppose we have a Russian utterance, whose

expected (i.e., correct) English translation is:

(70) The small boy likes pop.

Next suppose that an MT system produces the following translation:

(71) The little lad is fond of soda.

A human judge might tell us that this is an excellent translation. But how would

a computer fare? A computer which is given the reference translation (70), and

checks only in terms of the number of keystrokes it would take to convert the

resulting translation, (71), to the reference translation might judge the translation

to be poor. Thus, humans will for the foreseeable future always be better judges

of fidelity. Still, these fidelity judgments are quite difficult, since only in very rare

cases (e.g., limited domains) can fidelity even be defined (King 1997). One key for

getting human judgments which can be relied on is to get many judgments, and

to apply statistical techniques so that it can be determined whether the judgments

converge. The problem with this idea is that it makes getting human judgments

even more expensive and more than a typical MT researcher wants to do to see if

a slight change in the system has produced any benefit.

Since the ALPAC tests, human evaluation methods have generally improved,

but are still difficult and error-prone, even when the resources are available. White

& O’Connell (1993) report methods for the DARPA 1992 MT test and 1993 MT

pretest. In the 1992 evaluation, accuracy was creatively measured by having mono-

lingual participants read translated texts then take a multiple choice test to see

176

how much information was accurately transmitted. Fluency of the translations was

graded on a numerical scale. In the 1993 pretests fluency was judged similarly, but

accuracy was judged as compared to reference (baseline) texts. Still, these tests

have been viewed as highly subjective (Melamed 2001). The search for less sub-

jective human evaluation methodologies continues today, with approaches ranging

from methods inspired by tests used in language learning (e.g., those tests used to

assess the abilities of government linguists, see Vanni & Reeder (2000)), to spe-

cialized evaluation tools that display a range of translations, which evaluators can

compare against reference translations (Niessen et al. 2000).

In the world of automatic evaluation, tests are typically more modest.1 One

might begin with the same types of tests as used with human judges, but, as al-

luded to earlier, complications immediately develop. First, take the dimension of

intelligibility, i.e., is the translated sentence a fluent instance of a target language

sentence. Many MT systems develop a means to test target language fluency,

namely a target language model. Unfortunately, target language models are always

less than perfect, so how much can we rely on them as automatic evaluators? More

importantly, if we use the same target language model as we did in the MT sys-

tem itself, our approach would be circular: We would be using the same system

to make the translation and evaluate it. Thus, using a target language model to

evaluate intelligibility would require a separate language model, an enterprise many

researchers might not want to undertake, just for the sake of evaluation.

1A notable exception is Akiba et al. (2001), where a decision tree is trained (with human eval-
uated translations) to evaluate translations based on the values of 16 different edit-distance
measures.

177

One very interesting recent MTE approach which only attempts to measure in-

telligibility is presented in Corston-Oliver et al. (2001). They point out that humans

can typically very easily distinguish between MT output and human-translated out-

put, and suggest that the well-formedness (i.e., intelligibility) of the output can be

viewed as a classification problem. They use two types of measures: perplexity,

using lexicalized trigrams and part-of-speech trigrams; and (what they call) linguis-

tic features, which included many tree-structure related features (number of nodes,

amount and type of branching, etc.), number of modifiers, average lengths of cer-

tain constituents, ratios of different types of words (e.g., function words to content

words), and more. Using these sorts of features, Corston-Oliver et al. (2001) build

a decision tree to distinguish between human and machine translations, and achieve

an accuracy of nearly 83%. Their fully automatic approach (which requires a bit

of computational machinery for some of the feature measurements) may prove use-

ful for more sophisticated MT evaluations (i.e., at the later stages of a research

project), where it may be important to pinpoint what sorts of constructions are

problematic for a system in terms of its intelligibility only.

This brings us to the harder question: accuracy. It is difficult to correlate

distance metrics between translations with human judgements of translation quality

(Brew & Thompson 1994). While we can easily automatically calculate how much

a resulting translation differs from a reference translation, in terms of keystrokes

(keystroke distance, see section 2.3), or words (edit-distance or word-error-rate),

how do we automatically tell if one sentence has the same meaning as another?

This was the problem we identified with examples (70) and (71). To do so would

require the ability to parse utterances, get semantic representations, and compare

178

them, judging a kind of semantic distance. Again, this would mean that we have

this kind of computational machinery at our disposal, which is not always the case,

and, in addition, the same circularity argument would arise: If we used the same

machinery as in our MT system, the evaluation would be flawed, so we would

need separate syntactic and semantic modules for the evaluation. Even in the face

of these difficulties, we should not understate the desirability of automatic MT

evaluation. The average MT researcher simply does not have the time or resources

to do frequent human evaluation. Automatic MT evaluation is (or should be when

done properly) efficient, inexpensive, reproducible, and most importantly, objective.

Quality automatic evaluation is the holy grail of MTE (Vanni & Reeder 2000).

5.3 Other Aspects of Evaluation to Consider

Given the difficulty with human evaluation in terms of cost and objectivity, and

the shortcomings of automatic evaluation in terms of the breadth of areas that are

testable, an intermediate goal becomes finding ways to constrain and decompose

automatic evaluation so that the results are meaningful. As it turns out, the mean-

ingfulness of a given test is dependent upon the stage of the development of the

MT system, and its intended uses. White (2000) identifies five types of MT evalu-

ation: 1) feasibility evaluation, 2) internal evaluation, 3) declarative evaluation, 4)

operational evaluation, and 5) usability evaluation.

A feasibility evaluation’s purpose is to decide if a new MT approach has any

chance of success; therefore, it is not unreasonable for such tests to be confined to

a smaller set of possible outcomes. Of all the evaluation types, feasibility evalua-

tions are the most easily automatically evaluated, since the smaller, bounded set of

179

outcomes means that resulting translations can be compared directly to reference

translations, when the correct answers are known. An appropriate test here may

be edit-distance.

Internal evaluation has as its goal to be able to discern if a system is improv-

ing (e.g., is its coverage increasing) and if the parts of the system are working as

intended (i.e., do different modules function as designed). This sort of evaluation

will occur continually during the development of a model. Automatic internal eval-

uation is more difficult. If an MT system has different modular components (i.e.,

several different units, where each unit has an output that it feeds into the next),

such an evaluation may mean that at each stage an expected output needs to be

compared with an actual output. Human interpretation will likely be necessary to

figure out what the cause of errors are, but again tests such as edit-distance can be

used. If the MT system under consideration is simply a black box, i.e., a source text

goes in and a target text is returned, with no intermediate outputs, then internal

evaluation may behave exactly as feasibility evaluation, where reference translations

are simply compared to resulting translations. This type of testing may be sufficient

to gauge accuracy improvement and increased coverage, and White (2000) suggests

it may be possible to have automatic tests which also identify reasons for failure.

A declarative evaluation purports to identify the actual performance of the sys-

tem, to quantify the system’s behavior in terms of fidelity and intelligibility. Af-

ter a declarative evaluation, a researcher would expect to be able to claim that

their system was x% accurate, whereas for feasibility and internal evaluations, only

some degree of success or improvement needs to be demonstrated. As discussed in

180

section 5.2, these sorts of measures are notoriously difficult to get automatically,

but again there are some possibilities (e.g., the use of target language models to

test intelligibility).

An operational evaluation is intended to determine if an MT system is suitable

for the purpose for which it was created. This sort of evaluation deals with more

engineering-like tasks, such as compatibility with related systems, and managerial

tasks, such as, would such a system be cost-effective. Some of these tasks could

be handled automatically, via regression testing with related software, and costs

may be able to be automatically estimated. But clearly these sorts of concerns are

beyond the typical domain of a new research initiative, such as the linked automata

system presented in Chapter 4.

The final type of evaluation is a usability evaluation. These sorts of evaluations

aim to measure such aspects as utility and satisfiability, and would aim to answer

questions regarding how easy it is to use and learn such an MT system. These sorts

of questions are certainly beyond automatic evaluation, and beyond the needs of

the proposed model.

Given these five evaluation types, I will attempt to identify which is relevant for

the proposed system in the next section, but there are first some remaining aspects

of MT evaluation to consider. In the MTE literature, discussions usually center on

issues of fidelity and intelligibility. Focusing on these sorts of performance measures

makes sense, since if a system does not perform reasonably well, other issues are

irrelevant. Nevertheless, it is surprising that, given the wealth of literature on

MTE, including the discussions that accompany nearly every MT proposal, there is

very little discussion of such issues as efficiency (both in terms of time and space),

181

applicability (to different language pairs), ease of implementation, and scalability

(related to efficiency). A notable exception is Hovy (1999). Creating an MT system

that is only relevant to a single language pair, that does not scale reasonably, or

that takes hours to return the translation of a sentence means the system will

likely not be useful, no matter how good its performance in terms of fidelity and

intelligibility. Evaluating these sorts of non-performative aspects is not a question

of human or automatic testing, but rather a factor that should be considered in

all aspects of development. This means that performance cannot be considered in

isolation, and that during the development of the proposed system, such aspects

need to be considered both internally and in comparison with other systems.

The final aspect of MT evaluation to consider is comparative evaluation. Un-

fortunately, evaluating one MT model against another is often difficult, except in

abstract terms. For example, one may on occasion be able to demonstrate by means

of a proof that one system is more adequate than another, but in general, the most

reliable and believable means of comparing systems are in head-to-head competi-

tions with the same training and test data. Such competitions are difficult to create,

with the exception of some of the sponsored evaluation efforts like those by ALPAC

and DARPA, since often both the systems and the data used are proprietary (e.g.

SYSTRAN and VERBMOBIL), or simply hard to replicate, and many researchers

are not eager to share code for their complete systems.

Fortunately, there has been an effort by some researchers to make comparative

MT evaluation more practical. In the summer of 1999, several of the most prominent

MT researchers came together in a workshop at Johns Hopkins University (see

Al-Onaizan et al. (1999)), where one of the goals was to create an MT toolkit

182

which would not only assist in the development of MT systems, but also provide

an implementation of IBM’s Model 3 (Brown et al. 1993), so that researchers could

compare their systems’ results with another well-known system, without having to

rebuild it. Unfortunately, a decoder for the toolkit was never completed, leaving

the system able to provide word alignments, but not translation. Another means

to perform comparative evaluation may be by sharing data, and comparing the

results with earlier published results. Melamed (2001) has made such training data

available, in the form of a gold standard of hand-aligned French and English bitexts

(although this data would likely be most useful for comparisons in terms of word

alignment, rather than translation). The use of such resources may one day make

comparative evaluation an attainable goal.

5.4 An Evaluation Method for the Proposed System

Having described some of the different types of MT evaluation and important issues

to consider, we now turn to the evaluation of the proposed linked automata model.

As discussed in section 5.3, there are several different stages in the development

of an MT system, and evaluation techniques should vary accordingly. Thus, we

first need to identify which stages are relevant for the dissertation research. Cer-

tainly, during the development of the prototype system, the MT development was

in a feasibility stage. Automatic evaluation methods were used at this time and

were quite suitable, since, naturally, early results were poor, especially prior to any

generalization, and small changes in the model could yield large changes in test

scores. For the early stages of the dissertation research, development continued to

be at the feasibility stage, since a number of new techniques were tried, and some of

183

the existing techniques were reimplemented to see if they could yield improved effi-

ciency. Automatic evaluation is called for in these cases; in fact, the goal should be

to replicate earlier tests exactly, so that any improvements can be judged without

bias.

In later research, the development moves to the internal evaluation stage. We

will want to assess not only if the approach is feasible, but if it is providing the im-

provements we expect. For example, in the final stages of the research, we further

hybridize (here hybridize means adding more linguistic information, not human-

coded information) the model, in experiments using additional linguistic features,

such as part-of-speech tags (see Chapter 7). While we will want to know if such an

approach is feasible, we will also need to be able to discern if it results in significant

enough improvement to warrant its use. The hypothesis at this point is that trans-

lations will improve, but that translation error rates will be high enough so that

automatic evaluation methods are appropriate, i.e., we hope to see changes with

some of the methods, since there will be ample room for improvement (given that

without the use of generalization and other increased-coverage techniques, the sys-

tem is intentionally designed to provide only rough coverage). Automatic evaluation

appears to be most suitable at stages where there are large leaps in performance, and

human judgments are most warranted for finer grained distinctions. Additionally,

many of the non-performative aspects we will be evaluating, such as translation time

and the overall size of the system (i.e., efficiency and scalability), are best evaluated

with automatic methods. Lastly, the current reality for the research is that human

evaluation at this stage would be too costly, and should be considered premature

until the system approaches the performance of the better systems available today.

184

If automatic evaluation is appropriate, the next issue is what sort of automatic

evaluation. First, the design of tests should follow typical practice in machine

learning, as was done during the development of the prototype system: Given

word-aligned bitexts, a large portion should be used for training the system, and

a smaller remainder should be set aside for testing. Of course the system should

never be trained with test data. We may also set aside a third set of data for the

fine tuning of parameters. This methodology will provide us with test bitexts where

there is always a single, correct reference translation that is expected.

We will be testing the system often, thus we want our tests to be efficient. As

is often done in MT research, especially in cases where results are expected to be

less than perfect, string-based evaluation metrics appear to be the most appropriate

(see, for example, Alshawi et al. (2000)).2 It is important to remember that string-

based metrics can give only a rough idea of translation quality, as mentioned in

section 5.2, since in terms of accuracy, they can, for example, give poor scores even

when the meaning is right, if unexpected words are used; and similarly, in terms

of intelligibility, give very high scores to sentences that are ungrammatical.3 Even

given these imperfections, string-based metrics seem to be the best choice for this

stage in the model’s development, because they will still allow us to gauge the

impact of modifications to the model on its performance, and to test it frequently

and automatically.

2Matching techniques from EBMT may provide insights for more appropriate metrics.

3Instances of evaluation metric coarseness can be found in the appendix of translation examples
(see Appendix A, on page 280). For example, in (A.9), lamp counts as a full error even though
the correct word is lamps .

185

When using string-based metrics, it is also important to consider the types of

data being tested, which for MT means which language pairs. For the proposed

linked automata model, we hypothesize that it will be most effective for fixed word

order languages, and therefore we will test it mainly as a translator from English

to Spanish (and in some cases the reverse, in Chapter 7). These language pairs are

chosen partly because data is available, and partly because they should be relatively

easy. Since the system will be in feasibility and internal development stages, it

makes sense to use language pairs that offer it the best opportunity to demonstrate

its capabilities. Given these types of language pairs, string-matching metrics are

appropriate, but they would not be adequate evaluation measures, if, for example,

one of the languages was highly agglutinative (languages in which the morphology

is such that an entire sentence may consist of just a few multi-morphemic words,

such as Turkish), even if the system were able to handle such language types.

Perhaps the most common type of string-matching in natural language research

is edit-distance, the minimum number of insertions, deletions, or substitutions to

convert one string to another (see Kruskal (1999) for a discussion on how to compute

edit-distance and sequence comparison in general). In this case (and given these

types of language pairs), the edit-distance should be measured in terms of words

(although for a language like Turkish, characters would be a more appropriate

measure). I will use edit-distance as the basic measure, with some slight adjustments

to make results more easily comparable (i.e., to yield a number between 0 and 1,

where good scores have higher numbers).4

4Given the MTE problems identified in sections 5.1 and 5.2, I was reluctant to introduce any
new evaluation measures, and thus add to the confusion. I therefore selected what I feel are
good automatic measures which are easy to understand and replicate, and have been used

186

Alshawi et al. (2000) suggest using a measure related to edit-distance, but

amended so that it is more appropriate for translation evaluation. They suggest

that transpositions should be counted along with insertions, deletions, and substi-

tutions, so that a deviation where two words are misordered is counted as only

one error, rather than two (i.e., an insertion and a deletion, or two substitutions),

to avoid double-counting of errors. I will refer to an edit-distance which counts

the minimum number of insertion, deletions, substitutions, or transpositions as the

transposition-edit-distance. Akiba et al. (2001) also employ edit-distances which

count transpositions (they use the terms interchange and swap), using it as one of

four different variables (along with such techniques as restricting the edit-distance

comparison to content words and keywords) for a set of 16 different edit-distance

measures. One way to make such transpositions easy to calculate is to count them

by looking at the alignments after a more traditional edit-distance (one limited to

insertions, deletions, and substitutions) has been performed (Bangalore & Riccardi

2001).5 I follow Bangalore & Riccardi (2001) for transposition-edit-distance cal-

culations in the dissertation (and therefore also for translation-accuracy, see (73),

below), in treating an insertion of a token at one location of a string and a deletion

of the same token at another (not necessarily adjacent) location in the string as a

transposition.

significantly in other research (Alshawi et al. 2000; Alshawi & Douglas 2000; Bangalore &
Riccardi 2001), namely simply-accuracy and translation-accuracy.

5Another aspect of edit-distance which one might want to vary is the weighting. Not only
can insertions, deletions, and substitutions be weighted differently (I weight each at 1, for all
results in the dissertation), but one could also weight individual words differently (e.g., one
might want to weight content words more than function words; in the dissertation, I weight all
words equally). These notions are not unlike those possibilities presented for different types of
word alignment evaluation in section 3.3.

187

Edit-distance returns a natural number (e.g., 0 or 5), but the meaning of these

numbers depends on the length of the sentences being tested. So, in addition to

edit-distance, we would like to have a measure that we can compare across test

examples, that returns a value between 0 and 1. Following Alshawi et al. (2000)

and Bangalore & Riccardi (2001), I use simple-accuracy (SA), and translation-

accuracy (TA), as defined below, where I, D, and S are the number of insertions,

deletions, and substitutions, respectively, between a resulting translation and a

reference translation; I ′ and D′ are insertions and deletions if transpositions, T , are

taken into account, and R is the length of the reference translation.

(72) simple-accuracy = 1 − edit-dist

R
= 1 − I + D + S

R

(73) translation-accuracy = 1 − transposition-edit-dist

R
= 1 − I ′ + D′ + S + T

R

Intuitively, SA can be thought of as measuring what percentage of words are

correct and in the proper position in the translation. Note, however, that these

measures do not strictly yield a number greater than zero, since it is conceivable

to have a translation which is wrong by more words than R. In such instances we

treat the distance as R, thus SA and TA are 0.6

6To ensure that simple-accuracy and translation-accuracy always yield a non-negative number,
one might be tempted to use some worst possible edit-distance or transposition-edit-distance
number, W, in the denominator of (72) and (73), in place of R. The problem with this strategy,
however, is that W is impossible to calculate given unconstrained word alignments, because a
resulting translation could be made longer, for example, if one more 0:1 alignment had been
used in the translation. My solution, as mentioned above, is to treat any negative numbers,
if they arise, as 0, the lowest possible score. An equivalent approach which would guarantee
a result between 0 and 1 would be to use R as the denominator, unless the edit-distance (or
transposition-edit-distance) was greater than R, in which case the distance number would be
used as the denominator, thus yielding 1 − distance/distance = 0.

188

In summary, we have our automatic evaluation metrics, simple-accuracy and

translation-accuracy, for the development stages which the proposed system will be

in during the course of the dissertation research. In addition, evaluation will also

consist of assessment of those non-performative (i.e., non-accuracy related) criteria

identified in section 5.3, such as efficiency, ease of implementation, and scalability.

Efficiency (in terms of time) can simply be measured automatically during the

testing phase by collecting run times. Space efficiency and the related scalability

will need to assessed as the system develops, i.e., as the number of training examples

increases, how fast does the size of the system increase and how much do average

run-times increase. These measures will also need to be assessed each time the

model design is varied. Evaluative aspects not related to run-time issues, such as

ease of implementation and applicability, are more abstract concepts, and can be

assessed more directly through analyzing the system design than through automatic

testing. A thorough evaluation of the proposed system and its viability as an MT

approach should also include these types of assessments.

Test Word-Align Mean Source Simple Translation Mean Run

Suite Data Length Accuracy Accuracy Time (secs)

1 CYK 20.3 1.00 1.00 0.90

1 Giza++ 20.3 1.00 1.00 1.00

Table 5.1: Summary of feasibility test results (English to Spanish)

As a feasibility test for the basic linked automata architecture, I created a trans-

lation system using 1,529 bitexts from English and Spanish versions of the Bible,

189

word-aligned with the CYK word-aligner and Giza++ (see Chapter 3). I then col-

lected 10 of these bitexts at random (I call this test-suite 1), to see if the system

could correctly process them. This was, of course, not intended to measure the sys-

tem’s translation performance, as I used sentences on which it was trained. Rather,

it was a reality check, to make sure that the system could handle the bitexts from

which it was constructed. The results of true tests, on unseen data, will be pre-

sented in Chapters 6 and 7. As shown in Table 5.1, the system translated all the

sentences correctly, and relatively quickly, with mean run time for the CYK-aligned

training set well under one second, and for the Giza++ set at one second.7

Lastly, Appendix A, which begins on page 280, provides some examples of trans-

lations produced by various linked automata MT models that were constructed for

the tests reported in the dissertation. Translations are shown which yield different

translation-accuracies, ranging from very poor (0.13) to perfect (1.00). Although

detailed error-analysis is premature for a system at this stage of development,

Appendix A should help give an idea of what the accuracy numbers mean, here

and in Chapters 6 and 7, as well as give a sense of the type of sentences in the

translation domain.

7The slight run time disparity between the two is due to more target alignments being pro-
duced in the Giza++ case; this becomes more pronounced with more difficult translation tasks
(individual run times were rounded to nearest second).

190

CHAPTER 6

EXTENDING THE MODEL, PART I:

GENERALIZATION

[S]ince word-for-word translations are surprisingly good, it seems rea-

sonable to accept a word-for-word translation as a first approximation

and then see what can be done to improve it. (Yngve 1955:208).

6.1 Introduction

As presented in Chapter 4, the linked automata model can translate only the sen-

tences on which it was trained. In order to generalize to unseen examples, a number

of techniques will be considered in this chapter, the most important of which is merg-

ing. Merging refers to combining transitions in the individual automata, which can

also be thought of as combining states (i.e., the states on either end of one transi-

tion with the states on either end of another). Merging also necessitates changes

to the alignment table, so that the mapping between transition sequences remains

accurate. Merging has the twofold benefit of increasing coverage for the model and

reducing its size, which is important so that the model can scale reasonably. In this

chapter, I first present merging at the level of the automata in section 6.2.1, and

then at the level of the entire translation system in section 6.2.2. I also present some

191

of the complications that merging can bring for the model, in section 6.2.4. Next, in

section 6.3, I present some other techniques which can also be used to increase the

coverage of the model, which deal more with how the model is accessed than chang-

ing its structure. These heuristics include processing of fragments (section 6.3.1),

dealing with unknown words (section 6.3.2), extracting partial recognition results

from the source automaton (i.e., dealing with cases where recognition fails, in sec-

tion 6.3.3), and extracting partial results when the set of activated target transitions

do not yield a target parse (section 6.3.4). I also delve into more of the details as to

how these steps are made efficient. In the final section of the chapter (section 6.4), I

reevaluate the translation model using different combinations of merging and these

other increased-coverage techniques, to see how it generalizes to unseen examples,

as well as note any changes in size and efficiency.

6.2 Merging

6.2.1 Merging at the Automaton Level

Merging is the combining of two transitions. For all discussion of merging in this

section, I refer to transitions that share the same label. Thus, merging a transition

t1, labeled x, from state i to state j, with count c1 (t1 =< i, j, x, c1 >),1 and a tran-

sition t2, labeled x, from state k to state l, with count c2 (t2 =< k, l, x, c2 >), means

effectively removing t2 from the automaton and changing every other transition

1Recall, as described in section 4.3.1, transitions have a count, in addition to a probability; in
this section I typically show just the counts (probabilities obviously change as well as the result
of a merge, but recalculation is usually done once all merging or construction is finished).

192

that started/ended at k to start/end at i, and every state that started/ended at l

to start/end at j. More formally, a merge comprises the following steps (where we

also make sure that no start-state or final state information is lost):

(74) To merge t1 =< i, j, x, c1 > and t2 =< k, l, x, c2 >

(a) if k is the start-state, make i the start-state

(b) if k is a final state, make i a final state

(c) if l is the start-state, make j the start-state

(d) if l is a final state, make j a final state

(e) for all transitions with k as begin state, make i begin state

(f) for all transitions with k as end state, make i end state

(g) for all transitions with l as begin state, make j begin state

(h) for all transitions with l as end state, make j end state

(i) change t1 count to c1 + c2

(j) delete t2

Again, one can view merging as the combining of states rather transitions; thus,

in (74), state k is merged with state i, and state l is merged with j (so k and l

are effectively removed from the automaton). I focus on the transition aspect of

merging because it highlights the reason for merging in the first place, as labels of

transitions represent the words whose translation behavior we can generalize.

The primary reason for merging, as mentioned earlier, is to increase coverage.

A second benefit is that merging decreases the size of the automaton, in that af-

ter a merge there are fewer states and transitions. As mentioned earlier, merging

(of states) is also the primary means to achieve generalization and size reduction

in some other finite-state MT systems, such as subsequential transducer models

193

(see section 2.2.2.3). Merging for the linked automata model is similar, but more

complicated because transitions do not exist in isolation, but rather are linked to

one another via the table.

likes fish

bonesdog likes

0

the

a

1 2 3

5 6 7 8

cat
4

likes fish

0

the
1 2 3 4

bonesdoga

cat

65

Figure 6.1: Merging on the automaton level

As an example of merging, in Figure 6.1, the automaton on the left recognizes

the two sentences the cat likes fish and a dog likes bones. After merging the two

transitions labeled likes to get the automaton on the right side of the figure, the

automaton can recognize the two original sentences, plus the cat likes bones and a

dog likes fish, even though these two new sentences were not in the training data.

This increased coverage means that we now have the possibility of recognizing (and

thus at least a chance of translating) two sentences which we could not prior to the

merge. Thus, merging as described is not a ‘sound’ operation, like minimization or

determinization, because it intentionally changes (increases) the number of strings

that the automaton can recognize. Also note in Figure 6.1 that the merge reduces

the number of states from nine to seven and the number of transitions from eight

to seven. The decrease in system size resulting from merging does not necessarily

194

mean that there will be in increase in translation speed, however. This is because

while there may be fewer transitions, the overall search space can in many instances

be much larger, because of the large increase in the number of possible paths.

When we consider merging in the model as a whole, there are two major con-

straints to keep in mind. First, as mentioned earlier, we desire for our automata to

be acyclic (see section 4.2.1). Acyclicity in the automata makes the ordering of ac-

tivated transitions more clear. Second, we also want to make sure that we preserve

what we call the translation integrity for an entire translation system. This just

means that we want to maintain the translations on which the system was trained.

We formalize this notion as follows:

(75) Let P =
∑∗

source the set of strings over the set of source words,

Q =
∑∗

target the set of strings over the set of target words,

T ⊆ P × Q be the set of training bitexts, i.e., the set of ordered pairs

containing one source string and one target string, and

T ′ be the set of ordered pairs which are translations in the merged

translation system, then:

(∀p)(∀q) (< p, q >∈ T →< p, q >∈ T ′)

I describe how we make sure that merging preserves the translation integrity in

section 6.2.2. The basic idea is to not only check that the labels of transitions to

be merged match, but also that the labels of the transitions they are linked with

also match, i.e., that the words have the same translations.

To ensure that a merge operation will still leave the given automaton acyclic,

we need to do a check before the merge: To see if a cycle would be created by the

195

merge, we check if any of the states involved in the proposed merge are already in

an ordering relation in the automaton. If so, we do not want to allow the merge.

We formalize this notion as follows:

(76) Given an acyclic automaton, A, a merge(< i, j, x, c1 >,< k, l, x, c2 >) is

acyclic in A if and only if all of the following six conditions hold:2

(1) i 6= l

(2) j 6= k

(3) there is not a path from j to l

(4) there is not a path from l to j

(5) there is not a path from i to k

(6) there is not a path from k to i

The proof that these conditions will prevent the formation of cycles is somewhat

tedious, so we do not burden the reader with it here.3

2It would be much more efficient if we collapsed conditions (3) and (5) to a single condition:
there is not a path from i to l. However, while this single condition covers all the cases of (3)
and (5), it is stronger, and rules out some non-cyclic cases. For example, it would rule out
merging when there was a transition from i to l not through j or k. The analogous argument
is true for conditions (4) and (6). Nevertheless, if a speed-up is needed for merging, this might
be a good trade-off, since the potential number of merges missed would probably be small, and
the time for merging could be almost halved (this is in fact done in the implementation of the
system).

3One can get a feel for the structure of the proof by imagining two pieces of rope laid out
horizontally from left to right. If the ropes are already knotted in one place, and we attempt
to add any knots where a piece of rope to the right of the knot is newly tied with a piece of
rope to the left of the original knot, then we have created a loop in the ropes (the same is true
if a piece of rope originally to the left of the knot is to be tied with a piece of rope to the right
of the knot).

196

We show an algorithm which demonstrates the two checks we require for a

merge to be able to take place on the automaton level in Figure 6.2 (this algorithm

is employed by the algorithm which does the actual translation system merging,

shown in the next section, in Figure 6.5).

fsa-merge-okay (fsa, tran1, tran2)
{ if [equal(transition-label(tran1), transition-label(tran2)) AND

merge-would-be-acyclic(fsa, tran1, tran2)]

then TRUE

else FALSE }

Figure 6.2: The algorithm to okay automaton transition merges

6.2.2 Merging at the Translation System Level

Having defined merging at the automaton level, I now describe merging at the level

of the entire translation system. Again, the goal is to increase the coverage of

the system—the number of sentences it can successfully translate. While at the

automaton level, we only check for the same labels and for acyclicity to permit a

merge, it turns out that merging the automata independently (i.e., without regard

to the translation system as a whole) has potentially negative effects on the quality

of translation (i.e., it does not in general preserve translation integrity). This result

should not be surprising. The translation system’s two automata are intimately

connected via the table, and changes in one automaton are bound to affect the

other.

197

We illustrate the situation with two very simple examples in Figures 6.3 and

6.4. In both figures, we show the source automaton on the top and the target

automaton on the bottom, with the pre-merge version to the left of the large arrow

and the post-merge version to the right. In the first example (Figure 6.3) the source

sentence AB is translated into the target language sentence αβ and source DB is

also translated as αβ. Now, one possibility is to merge the two source B transitions

(we also merge the β transitions in the target, but the results would be the same

if we did not, or if the β transitions had already been merged). As can be seen on

the right side of the figure, the translation integrity after the merge is preserved.

We still would translate both AB and DB as αβ.

3 4

0

1 2

2

0 α

β

1

3

0 1 2

0 α 1 2β

A B
A B

β

D B
D

Figure 6.3: Safe merging on the translation system level

Now consider the situation, created from a different hypothetical pair of training

sentences, depicted in Figure 6.4. AB translates to αβ, but this time DB translates

198

to αδ. We naively go ahead and merge the two source B transitions. This time,

however, (again looking at the right side of the figure) the translation integrity has

been lost. An attempted translation of AB now allows both αβ and αδ as possible

translations, the second of which is wrong. In fact, given the probabilistic nature

of the alignments, the most likely scenario is that one translation will always win

out: that translation which was spawned from the most frequent training transition

sequence alignments, whether a possible translation or not. This is certainly not

the behavior we are after.

3 4

0

1 2

0 1 2

2

0 1

3

2

0 α 1

3

D

A
A

α

D

β β

δδ

B
B

B

Figure 6.4: Unsafe merging on the translation system level

To prevent such unwanted results, yet promote the increased coverage we seek,

we add a constraint on merging. We allow transitions to merge in an automaton

only if all the transitions they are associated with in the other automaton can (and

will) also be merged. We call this constraint merge congruity. This is our most

199

conservative version of the constraint, and the one we stick with for the results

reported in this chapter, but more lenient constraints (such as requiring that only

some of the associated transitions in the other automaton can be merged) are also

worthy of exploration in future research. It is important to remember that these

scenarios simplify the picture a bit as well, since the actual alignments are between

sequences of transitions, and there can be more than one alignment (i.e., recall

that the value in the table for each source transition sequence is a set of pairs of

target transition sequences and probabilities).4 Thus, we now have three constraints

on merging (i.e., constraints which will preserve properties which we desire the

translation system to have, namely acyclicity and translation integrity): labels must

match, merges must not create cycles, and merges must be congruent.

We have not yet discussed how merging affects the table. Since in essence what

a merge does is remove a transition from the system, we must go through the table

and change all references to the removed transition(s) to the transition(s) it was

merged with (we will call this the remaining transition). Further, any reference

to the states of the removed transition must be changed to the appropriate states

of the remaining transition.5 Additionally, we need to remove the table entry for

the alignment between the removed source transition sequence and removed target

transition sequence, since the transitions of these sequences no longer exist (thus we

4In the implementation I simplify this one step further. I only allow merges where a single
source transition was aligned with a single target transition (i.e., I did not merge sequences of
transitions with a length greater than 1), so there may be many more possible merges remaining
in the system than I later report.

5This proceeds automatically in the implementation, since I do not use copies of the transitions
in the table, rather I just have pointers to the transitions. So, once I have completed the
automaton-specific changes, the states are set correctly in the table.

200

reduce the size of the table as well when we merge). Finally, as in the automata case,

we increment the count (the unnormalized probability) for the remaining alignment

by the count for the alignment that was removed.

6.2.3 The Effects of Merging and When to Merge

Having discussed the questions of what merging is, why it is desirable, and how to

do it, there remains the question of when to do it. The answer to this question is

that it does not matter, but it can be very time consuming if put off to the end.

In this initial foray into merging, I began with doing all of the merging after sys-

tem construction (i.e., after over 1500 pairs of sentences were read in, making over

34,000 source transitions and 32,000 target transitions). Using a rather inefficient

algorithm,6 merging took well over 12 hours to complete. This glaring inefficiency

is due to the fact that as the translation system (i.e., number of transitions) grows,

so do the number of checks for a merge, and, more importantly, the cycle-check be-

comes extremely expensive. Thus, merging during construction (so that mergeable

transitions are never even made, or made only momentarily) will be much more

efficient, since the automata and table are smaller, and we can (possibly) omit the

removal steps altogether. As mentioned in section 4.2.1, I also plan to experiment

with allowing some cyclicity in the model. This will make the merging process much

faster.

6I do not give the algorithm here, but basically it amounts to comparing each transition of
a given label to every other with the same label, checking to see if the labels of the aligned
transitions also match, then checking for acyclicity if both merges were allowed, and finally, if
these conditions hold, completing the merge and necessary system adjustments.

201

I present a very simplified post sentence construction merging algorithm in Fig-

ure 6.5. This algorithm is used after each new sentence is processed during system

training, thus always keeping the system size to a minimum. The algorithm shown

assumes that any new transitions necessary to the system have been constructed,

and that only these new transitions need be checked for merging (this is a simplifi-

cation of what actually takes place). This is not necessarily the fastest algorithm,

since the newly constructed transitions may be immediately removed (i.e., merged

away), but has the benefit of making the cycle check straightforward.

do-construction-merge (trans system, src tran seq)
{ let source fsa = get-source-fsa(trans system)

let target fsa = get-target-fsa(trans system)

let ts table = get-table(trans system)

;;; for each transition of newly constructed source transition

;;; sequence, get the transition it is aligned with

foreach (s1 of src tran seq)

{ if new-transition(source fsa, s1) ;; merge only needed if new

let t1 = table-align(ts table, s1)

if new-transition(target fsa, t1) ;; merge only needed if new

let s1 label trans =

get-trans-w-same-label(source fsa, transition-label(s1))

;;; for each transition with the same label as source

;;; transition, see if transitions are mergeable, and if

;;; aligned transitions are mergeable, if so, do merge

for each transition s2 of s1 label trans

{ let t2 = table-align(ts table, s2)

if [fsa-merge-okay(source fsa, s1, s2) AND

fsa-merge-okay(target fsa, t1, t2)]
do-trans-system-merge(trans system, s1, s2, t1, t2)

return }}}

Figure 6.5: Overview of (simplified) construction merging algorithm

202

The basic algorithm is to check each transition used for the addition of the

source sentence to the source automaton with other source transitions of the same

label. If two source transitions can be merged, and the transitions they are aligned

with in the table can also be merged (i.e., share the same labels and would not

create a cycle), then a merge is completed using the algorithm shown in Figure 6.6.

Note that there are several simplifications in the construction merging algorithm

(Figure 6.5), shown to make the overall steps more clear, such as the table-align()

function returning a single transition, rather than a set of transition sequences and

probability pairs, and that as shown, there is a bias toward the merging of source

transitions (i.e., there may be mergeable target transitions which are not tried), etc.

The figure should, however, give an idea of the overall process.

do-trans-system-merge (trans system, src tran1, src tran2,

trg tran1, trg tran2)
{ do-fsa-merge(get-source-fsa(trans system), src tran1, src tran2)

do-fsa-merge(get-target-fsa(trans system), trg tran1, trg tran2)

table-merge-adjust(get-table(trans system), src tran1, src tran2,

trg tran1, trg tran2) }

Figure 6.6: The algorithm to merge in a translation system

Using the basic construction merging algorithm on the same set of training data

(just over 1500 bitexts), merging while constructing took approximately one hour.

While this is much slower than construction without merging (which takes less

than one minute, see section 4.4), it is significantly faster than doing construction,

then merging, which, as mentioned, took over 12 hours. Using the absolute most

203

conservative merging strategy (i.e., letting source transitions drive the process, and

merging only source transitions which were aligned with singleton target transitions,

and also not trying any null alignments), the size of the system was reduced by

approximately 31% (measured in terms of source automaton states, which went from

34,537 to 23,833). Given the algorithm’s conservativity, there should be significantly

more merging possible which still preserves the translation system integrity.

6.2.4 A Complication of Merging

In our discussion so far we considered only the simplest cases of merging, where

not a lot of swapping took place in the alignments. But suppose it did. What this

means is that we may be left with a series of activated transitions in the target

automaton which do not connect. In Figures 6.7 and 6.8, we demonstrate this

problem. Figure 6.7 shows the translation system before merging, where ABCDE

translates to αβγδε, and FGCHI translates to φχγηι. Now, from the figure we see

that the source C transitions can be merged and that the target γ transitions can

be merged.

We complete the merge to get the translation system shown in Figure 6.8 (only

alignments relevant to problem to be demonstrated are shown). We will still get the

correct translations for the two original source strings, ABCDE and FGCHI . But

what happens, given the alignments in Figure 6.7, if we try to translate the string,

newly made recognizable because of the merge, ABCHI (see the thicker transition

arrows in the source automaton in Figure 6.8)? The activated transitions in the

target (thick arrows) do not connect!

204

0

1 2 3 5

6 7 8 109

α

γ

0

1
B CA D

F

2 3 5

6 7 8 109

E

φ χ η

H

δβ ε

I

ι

4

4

G

γ

C

Figure 6.7: An emerging merging problem

Thus, if we allow merging, to have useful results we also require an algorithm

for extracting what we might call ‘partial’ results form the target automaton. Any

such algorithm will necessarily be a best-guess algorithm, based on heuristics , since

it is not guaranteed that there is one best order. The algorithm I choose for now

uses two heuristics, and is called partial target parsing. I present it shortly, in

section 6.3.4, along with the other increased-coverage heuristics.

6.3 Additional Increased-Coverage Techniques

There are four other methods used in addition to merging to improve generaliza-

tion in the translation model. They are discussed somewhat briefly here, mainly

because I do not see them as important theoretical steps, but rather as straightfor-

ward, common-sense heuristics which may in certain cases improve performance but

205

0

1 5

6

0

1
A D

F G

5

6

E

φ χ η

ε

2 3

2 3

7 8

7 8
ι

β

B
C

IH

δ

4

4
α

γ

Figure 6.8: Results of merging problem

cannot be claimed to be sound in the general case. The four methods are 1) fragment

processing (section 6.3.1), 2) unknown word fall-through (section 6.3.2), 3) partial

source parsing (section 6.3.3), and 4) partial target parsing (section 6.3.4).

It should be noted that these four techniques are typically used together, and

should not be thought of as stand-alone techniques. For example, both partial

source parsing and partial target parsing will usually need to invoke fragment pro-

cessing (the ability to recognize a given substring anywhere in an automaton) to

be effective. A typical scenario for translation might be as follows: Given a source

sentence, we try to recognize it from the start state to a final state. If successful,

we attempt to translate, as described in Chapter 4. The increased-coverage heuris-

tics come into play if source recognition fails. By relaxing the start-state and final

state requirements (i.e., fragment processing), we might be able to still recognize

the source sentence. If this fails, we then break the sentence into parts which can

206

hopefully be recognized (partial source parsing), which will also involve allowing

fragments. These recognized parts must be translated, and any unknown words

can be left for special treatment (unknown word fall-through). Translation of such

broken-up parts will often produce sequences where the ordering is unclear (as in

Figure 6.8) or worse, where the transitions are completely unconnected. Identify-

ing the best transitions to use and putting them in a reasonable target language

model order is the job of partial target parsing, which will also involve dealing with

fragments.

As mentioned earlier, all four of the increased-coverage methods involve changing

the way the model is accessed, rather than changing the structure of the model,

as does merging. Thus, unlike merging, none of these four heuristics changes the

model’s size (since they make no changes to the model). The heuristics begin to

give an idea of how the linked automata model can be used as a translation data

structure, to enable processing of translations which might otherwise have been

deemed beyond the model’s reach.

One overarching theme in this section is that the behavior I desire for the model

is that it always produce a translation, no matter how poor. I find this useful for two

reasons. First, it makes the evaluation process much more clear and useful, since I

can gauge improvements more easily by using different quality translations than by

only outputting a translation when it is perfect (which may never happen in some

cases). Secondly, a translation system which always produces a response is arguably

more useful to a user (even in some of the poorest translation cases, a translation

still might prove useful if it can give the user an idea of the subject matter, for

example, in the translation of a web page). To this end, I have one additional

207

heuristic which I will barely discuss at all, because it is only necessary under certain

implementations, and is strictly a practical move. Under some implementations of

the system, there may be limits on the length of sentences which can be translated

(e.g., the implementation of the SWS as an integer, representing a set, may limit the

source sentence size, as discussed in section 4.5.3). In those cases, a quick solution

is to break up the sentence into parts, perhaps at an arbitrary breakpoint, and to

translate these parts individually. For the results reported in this dissertation, this

was not done, because test sentence lengths never exceeded the implementation’s

cutoff. If such techniques are used, however, they will likely be most successful if

they use sensible breakpoints. This notion will be explored further in the discussion

of partial source parsing (section 6.3.3), where it is also relevant.

6.3.1 Fragment Processing

Of the four improvements, fragment processing should be the most straightforward.

Suppose that the system has been trained on several bitexts, which include a source

sentence, S. Next, suppose that we wish to translate a substring of S, and further

that this substring was not among the original training sentences (and that it was

not covered by merging). The system as described will fail because this shorter

string cannot be recognized by the source automaton, since it will not always be

true that the path of transitions which would represent it in the source automaton

will begin at the start-state and end at a final state. So, although we may potentially

have a perfectly reasonable path in the source automaton, we cannot use it. The

clear solution here is to relax the recognition requirement, so that any path which

covers all the words is a potential candidate source recognition solution, regardless

208

of whether it begins at a start-state or ends at a final state; hence the term fragment

processing, since these are fragments of the original trained-on sentences. We employ

this option only if we cannot recognize the string first from a valid start-state to a

valid end-state. We also use the same heuristic in the target automaton. If we have

transitions which cover all the source words but none which begin with the target

start-state and end in a target final state, we relax this requirement.

Fragment processing is a quite reasonable thing to do, especially when we con-

sider the types of training bitexts we began with: Biblical verses. These verses

are often more than one sentence in length. So, the only way we could process the

individual sentences of which they are comprised is with fragment processing. More-

over, fragment processing will prove to be the most necessary of all our heuristics,

because the other heuristics for extracting partial results rely on the identification

of fragments. Fragment processing gives us a method to extract reasonable paths

of transitions from the automata, enabling at least the possibility of translating

the substrings of the strings on which the system was trained. One instance where

fragment processing is likely to be used often, and where its efficiency will be im-

portant, is in the recognition of source sentences. Automata, however, are typically

constructed with only recognition from the start-state to a final state in mind. Thus

recognition of fragments may be impossible, and even with modifications to recog-

nition algorithms, painfully slow. I next describe an implementation of automata

which processes fragments efficiently.

209

6.3.1.1 A Few Implementation Details Concerning Fragments

There are many ways to implement automata. One aspect which all implementa-

tions of any size must share is a means to quickly determine which states, if any,

can be reached, from a given state, using a given label. That is to say, all au-

tomata implementations must model a (partial) transition function (a relation, for

nondeterministic automata), t, from states and labels to states. Thus, if Q is the

set of states, and W is the set of labels, then we can describe the transition function

t as:7

(77) t :< Q,W > → Q

Now the transition function (which is really the heart of an automata imple-

mentation) can be implemented as a two dimensional array (sometimes called an

adjacency matrix), of states and labels, with the value at each index being either

a state or empty.8 This array implementation yields an extremely fast transition

function. The problem with this approach is that for most applications, the vast

majority of the array cells will be empty. For large automata, the memory require-

ments make this approach impossible.

7The presentation of a transition function here differs from the presentation of automata given
in section 4.2.1, where transitions are presented as a set. The two presentations are equivalent,
and hopefully not confusing to the reader. In the earlier section, the set presentation makes for
easier description of the linking via the table, and of the notion of transition sequences. The
functional presentation is used here to more naturally evoke the operations which must take
place in an actual traversal of the automata.

8In this approach, one would typically make sure the states and labels are ordered in such a way
that cell addresses can be calculated in constant time. For states this may mean just ordering
things by number, while for labels a unique integer ID for each word may be useful, maintained
in a separate table.

210

Another implementation strategy uses adjacency lists. In this approach, one

might have an array of states, where associated with each state is a linked list of

labels, which each in turn point to a state (or for nondeterministic automata, a set

of states). The problem with the adjacency list approach is speed. While the initial

array access is fast (again, assuming the top-level array is ordered by state number,

with no gaps), searching through the associated linked list is relatively slow, since

one may have to (in a worst-case) search the entire list of labels. There are, of

course, techniques to speed up this approach. For example, the list of labels need

not be a list at all, but something much faster, such as some sort of balanced search

tree (e.g., a 2-3 tree or a red-black tree), so that search times are never worse then

the height of the tree (i.e., for a tree of N labels, worst-case search time would be

log(N)).

Unfortunately, for automata used in translation, this is still far too slow. One

has to imagine that during translation, once one begins to look for partial results,

and therefore no longer limits the search to paths that begin at the start-state,

but rather to all possible paths (i.e., a path starting at any state), search must be

in constant time. We need a function that when given a begin state and a label,

immediately gives an end state (like the two-dimensional array approach) but that

does not waste memory. The perhaps obvious answer at this point is to use a hash-

table, from states and labels to states. A hash-table has the benefit of very high

speed, and only need store entries for the state and label pairs that have values

(i.e., for the transitions that exist). In the actual implementation, I do a variant

of this, using a two-dimensional hash. That is, there is a top-level hash-table of

begin states (i.e., each state used as the beginning of a transition). The begin states

211

are the hash keys. The values associated with each key are also hash-tables, whose

keys are labels, whose values are states (i.e., the end states of transitions).9 This

setup is pictured in Figure 6.9 below. This two-dimensional hash is equivalent to

having a single hash with states and labels together as the keys (but of course does

use more resources), but has the benefit of allowing an application to access all the

transitions that begin with a given state instantaneously.

0

1
. . .

10,000

"book"

"delta"

"lake"

"tent"

. . .

231

14

9

60

"calf"

"walk"

. . .

312

2

33

"a"

"apple"

"book"

"zebra"

. . .

5

77

2

118

"apple"

4019

"beagle"

Figure 6.9: A two-dimensional hash as a transition function

Given this overall setup, recognition, the very first task necessary in translation

(see section 4.5.1), is very fast. For example, using a very simplified depth-first

9This is a bit of a simplification, since transitions in the linked automata model have more
than just states and transitions associated with them, but it gives the overall picture of the
architecture.

212

recognition algorithm, such as in Figure 6.10 below, search proceeds quite quickly,

since even in very large automata, the combination of states and labels at each

step severely limits the numbers of paths tried (i.e., we only continue down a path

if transition-function(cur state, next word) yields a new state, as shown in Fig-

ure 6.10). For example, in a deterministic automaton, there will be at most one

such path, so recognition of a string of n words takes just n applications of the

transition function; i.e., search time is linear with respect to the length of the input

sentence.

recognize1 (fsa, wordlist)
{ recognize-next1(fsa, get-start-state(fsa), wordlist, <>) }

recognize-next1 (fsa, cur state, wordlist left, transeq so far)
{ if (empty(wordlist left) AND final-state(fsa, cur state))

{ push transeq so far onto ∗successful recognitions∗ }
else

let next word = remove-first-word(wordlist left)

let next state = transition-function(cur state, next word)

if next state

{ recognize-next1(fsa, next state, wordlist left,

append(transeq so far,< cur state, next word, next state >)) }}

Figure 6.10: Overview of depth-first recognition algorithm (pruning not shown)

But what happens when we return to the topic at hand, the processing of frag-

ments? A quick fix might be to adapt the algorithm shown in Figure 6.10, so that

instead of beginning at the start-state and ending at a final-state, search could begin

and end at any of the automaton states, as shown in Figure 6.11. This approach

213

works, but again, for automata of a very large size, it is very slow, because, even

with techniques for making sure that the same paths are not repeatedly traversed,

the entire search space of the automaton must be searched (assuming one wants to

find all the given transition sequences for any fragment, so that the most probable

sequence can be found).

recognize2 (fsa, wordlist)
{ foreach state of get-all-states(fsa)

{ recognize-next2(fsa, state, wordlist, <>) }}

recognize-next2 (fsa, cur state, wordlist left, transeq so far)
{ if empty(wordlist left)

{ push transeq so far onto ∗successful recognitions∗ }
else

let next word = remove-first-word(wordlist left)

let next state = transition-function(cur state, next word)

if next state

{ recognize-next2(fsa, next state, wordlist left,

append(transeq so far,< cur state, next word, next state >)) }}

Figure 6.11: An inefficient fragment recognition algorithm (pruning not shown)

A much better solution is to use some extremely valuable information which we

already have, to help guide the search. What if instead of beginning with every

state, we begin our search with only the states that we know are the begin states

of transitions labeled with the first word of the fragment? For example, suppose

we are searching for the fragment black cat. Instead of looking to each state, to see

if it happens to begin a transition labeled with black, we could narrow the search

space dramatically if we could check only the begin states of the transitions that

214

are actually labeled with black. However, given the two-dimensional, begin state to

label hash-table architecture, this is cannot be done very efficiently (since one must

go through each top level key (each begin state), and check to see if keys (i.e., the

labels) in the associated value match the first word of the fragment.

Fortunately, there are several solutions. Perhaps the most elegant solution would

be to simply switch the two dimensional array from having begin states at the top-

level to having transition labels at the top level. This would be very fast, and use

no more resources. The reason why I do not opt for this strategy is that in doing

so I would remove the ability previously mentioned, to instantaneously get all the

transitions that begin with a given state. This can be a valuable feature for other

applications, as well as for other automata operations (such as state merging).

"book"

"delta"

"lake"

"tent"

. . .

231

14

9

60

"calf"

"walk"

. . .

312

2

33

"a"

"apple"

"book"

"zebra"

. . .

5

77

2

118

"apple"

4019

"beagle"

"a "< . >0

1
. . .

10,000
< . >

. . .
< . > "tent"
< . > "walk"

 "zebra"

< . . > "apple"

Figure 6.12: Adding a label index for fast fragment recognition

215

I instead take the pragmatic approach often used with databases. When it is

found that certain information is very often used to access the database, then it

is reasonable to add an additional index into the data (i.e., the speedup in access

usually more than justifies the additional overhead). Thus, I build a second (one-

dimensional) hash table, with labels as the keys.10 The architecture is shown in

Figure 6.12, where the index is added to the two-dimensional hash-table pictured

in Figure 6.9.

The modified recognition algorithm which makes use of the new indexing scheme

is shown in Figure 6.13. Here, the function recognize3 immediately limits the search

space by only using states that begin transitions labeled with the first word of

the fragment. Using such an algorithm with the modified architecture, fragment

recognition becomes very fast indeed.

recognize3 (fsa, wordlist)
{ foreach state of get-states-beginning-with-label(first-word(wordlist))

{ recognize-next2(fsa, state, wordlist, <>) }}

Figure 6.13: An efficient fragment recognition algorithm using the label index
(pruning not shown; recognize-next2 is unchanged from Figure 6.11)

To demonstrate this, I built an automaton from 1529 verses of the Bible (in

English) and searched for the fragment the man. Using an algorithm like that

sketched in Figure 6.11, which does not use special indexing for labels, (but does use

10These can point to pairs of begin and end states, lists of transitions, or, more likely, lists of
pointers to actual transition objects, etc.)

216

a pruning strategy, to make sure the same search path is never crossed twice), to find

every instance of the fragment took 1.7 seconds. Now this may seem relatively quick,

especially when one considers that the occurs in over 2,000 different transitions

in the automaton. But if we employ the label-indexing architecture, and use an

algorithm like that shown in Figure 6.13, recognition takes less than .03 seconds!

And for less common fragments (i.e., those beginning with less common words, such

as eat), while recognition in the non-label-indexed case remains relatively constant

around 1.7 seconds, in the indexed case (with the fast algorithm) recognition takes

place in .001 seconds, or less—several orders of magnitude faster.

This difference can have a tremendous effect on overall translation time, espe-

cially when source parsing fails miserably (i.e., in the worst-case, a word-for-word

translation, see section 6.3.3), since, for example, this sort of fragment searching

must be done for each word. This means the source parsing alone for a 10 word

sentence goes from around 17 seconds, to perhaps less than .010 seconds. This di-

vergence only gets worse with the growth of the automata, since the slower approach

must always begin with every state. So, the changes are important for scalability

of the system too. Thus, hopefully I have demonstrated how efficient fragment

processing can be done, and why it is important. All the other increased-coverage

heuristics to be discussed next rely on efficient fragment processing.

6.3.2 Unknown Word Fall-Through

Having dispatched with fragment processing and its implementation, we move to

another increased-coverage technique which is arguably the most practically-minded

217

of the four. Unknown word fall-through deals with the case of a source string con-

taining source language words never before seen in the training sentences. Rather

than simply rejecting the string, we use the unknown word(s) as a pivot of sorts.

We let the unknown word(s) fall through, untranslated, and attempt to translate

the words on either side of this pivot, as if these strings were translated on their

own. Thus, unknown word fall-through works best when used in conjunction with

fragment processing, since the pieces on either side of the pivot may be fragments

of sentences which could be translated. Note that this method is not guaranteed

to work on the pivot-divided substrings even if they can be recognized, since (as

described in the previous merging complications discussion, section 6.2.4) activated

target transition sequences may not be contiguous when broken up into parts; and

unknown word fall-through necessarily breaks the source string into parts, which

can lead to broken target sequences. Once again, partial target parsing may help

us extract partial results, if needed (see section 6.3.4). There are several instances

where the effects of unknown word fall-through can be seen in Appendix A. For ex-

ample, in (A.8), the Spanish words quedarán and galaad fall through to the results,

as does libación in (A.4).

The prediction with unknown word fall-through is that our translation accuracy

will in general be much better than if we had simply rejected the source string,

knowing we could not recognize it. Unknown word fall-through enables us to process

what we know, even if this means dividing up the input into very small parts. The

idea is that when all else fails, working with these parts should prove more accurate

than the typical worst-case scenario of not translating at all (recall that there exists

218

a worse possibility, one where the resulting translation actually has a higher edit-

distance from the desired translation than would the untranslated source string).

Again, given the desire to always produce a translation no matter how low the

accuracy, dealing with unknown words is a must, since they are bound to occur in

any real-world application. This sort of technique allows us an unbiased method

for dealing with these words, which may in addition to newly seen words include

misspellings, proper names, and combinations of words which are punctuated in

ways which make them unrecognizable to the system.11

6.3.3 Partial Source Parsing

The third method is partial source parsing. Suppose that all the individual words

in a source string have been seen before, but that we cannot recognize the string

itself, i.e., we cannot find any path in the source automaton for the given string,

even if we allow fragments. Once again, the perhaps most sensible thing to do is

look for ‘parts’ of this source string which we can recognize, and to translate these

parts individually in the linear order in which they occur. The most straightfor-

ward greedy algorithm here is to get the longest substring which we can recognize,

translate it, and then do the same with the remaining parts. We do a variant of

11There are likely more principled and effective ways for dealing with unknown words, which
will not be dealt with here. For example, one might be able to relatively accurately predict
the lexical category of unknown words, based on the categories of surrounding words and on
other clues such as punctuation. These could lead to more accurate translations of surrounding
words, when generalizations about categories are incorporated into the system, and might also
mean that breakpoints might not be needed, or could be less arbitrary, to keep phrases intact
(see the next section on partial source parsing, section 6.3.3, for more discussion of sensible
sentence breakpoints).

219

this,12 by first finding the largest substring recognition we can that includes the

first source string word, translating it, and then doing the same with the remaining

words. This approach, at its worst, devolves to a simple word-for-word translation,

where the source string imposes its word ordering on the translated target words.

As mentioned in section 6.3.1.1, efficient fragment processing is imperative in such

instances.

Note that another option is available here. The individual recognitions can be

collected, then translated all at once, letting the target language model determine

the order, as it is intended to do—but remember, determining the proper ordering

may be quite difficult, since the target transitions may be completely unconnected.

We experiment with this technique when handling discontinuous alignments, in

Chapter 7. A side-effect of such a technique can be significantly faster run times

(see section 7.3.4).

Partial source parsing is valuable again because it allows us to work with the

parts we know, translating substrings of the strings supplied. Partial source parsing,

when used in conjunction with the appropriate methods to extract partial results

from the target automaton, will yield translations where they would otherwise be

impossible, but may do so at the expense of accuracy (as opposed to more principled

generalization techniques, such as merging; i.e., merging is more likely to produce

correct translations, but ordering may be an issue; while partial source parsing may

12Of course, a better approach would be to check all possible substring combinations for the
highest scoring recognition and/or translation, but this can be more expensive computationally.
I briefly make use of such a technique to maximize performance when discussing extensions to
the model in section 7.3.4.

220

produce translated parts which are locally correct, but globally incorrect). Nev-

ertheless, we hypothesize that partial source parsing for otherwise unrecognizable

strings should allow for marked improvement in translation accuracy (see the results

in section 6.4). Partial source parsing may serve the same function in translation as

does partial parsing in the world of parsing in general: It allows processing of those

phrases or substrings which are easy to handle, with the idea that partial results

are more desirable than none.

There are several ways in which one may improve partial parsing performance.

One method alluded to previously was to use less arbitrary breakpoints. Instead

of matching the longest word sequence possible, partial source parsing is likely to

be more effective if segmentation occurs at natural boundaries, such as between

phrases, rather than in the middle of them. For example, given a sentence with

an embedded clause, a sensible breakpoint might be at the beginning of the clause,

rather than, say, in between an adjective and the noun that it modifies. To do so,

one might do a full syntactic parse of the sentence, but such means are not always

possible and (at least at this point) are beyond the capabilities of the basic system

described (i.e., if one could obtain an effective parser for any language, one might

envision a different translation model).

An alternative to carrying out a full parse is to attempt to spot certain words

which are likely to indicate phrasal boundaries. As mentioned in the survey of

Example-Based Machine Translation, in section 2.3, Veale & Way (1997) propose

a technique which involves using a closed-class of function words, called markers

221

(which might be hand coded, or automatically induced via word-frequencies), to

delineate phrasal boundaries. They justify their approach based on psycholinguistic

studies of human sentence processing.

Another approach to this segmentation problem comes from the world of statis-

tical machine translation, where the idea of a rift is introduced (Berger et al. 1996).

A rift is a position, j, in the target sentence of an aligned bitext such that all target

words to the left of j are aligned with (i.e. generated by)13 source words to the left

of the source word, eaj
(i.e., the source word that target word fj is aligned with

via the alignment aj), and all target words to the right of j are aligned with source

words to the right of source word eaj
. An example of a word-aligned bitext indicat-

ing safe segmentation points (i.e., rifts) and unsafe ones is shown in Figure 6.14. As

Berger et al. (1996:61) point out, using such segmentations will not always “result

in semantically coherent segments.” For example, in Figure 6.14, le and chat are

part of one noun phrase, yet could be separated by the rifts indicated.14

Berger et al. (1996) create a segmentation model, based on this idea, which can

be used during translation, to (ideally) make reasonable breaks of the input sentence

which will not cause problems later in the translation process. They train the model

based on a set of word-aligned bitexts (i.e., they use their main translation model

to align the bitexts), and use several features to determine whether a position in

the target should be marked as rift or no-rift (the features include part-of-speech

13This follows the same terminology typically used in statistical machine translation, where in
a translation task from f to e, e is called the source, which is responsible for generation the
target, f ; see section 2.2.1).

14This issue will arise again in the discussion of the handling of discontinuous word alignments,
in Chapter 7.

222

noirle chat poissonle||aime|||| X X

the black cat likes fish

Figure 6.14: A word-aligned English and French bitext, showing safe segmentation
points (known as rifts, marked with ‖), and unsafe segmentation points
(marked with X).

tags, word class information, and a number of others obtained within a six-word

window of context around the position in question). They then use a dynamic

programming algorithm to determine an optimal split point for each training source

sentence. Although Berger et al. (1996) do not provide a quantitative evaluation

of their segmentation model, the idea appears promising, and could be relevant for

future partial source parsing research with the linked automata model.

One final interesting partial source parsing idea, previously mentioned in sec-

tion 2.2.2.6, departs from the goal of finding suitable segmentation points, and

attempts to instead match (otherwise unrecognizable) source sentences by allowing

mismatches of certain words (Vogel & Ney 2000). This is accomplished by using a

weighted edit-distance during recognition, where the recognition process can con-

tinue so long as the edit-distance so far accumulated in the process is less then some

threshold. For example, suppose we can recognize the sentence the dog went in the

door but not the dog went to the door. If function words like the prepositions in

and to are weighted sufficiently low, such a recognition might be permitted (i.e.,

using the first sentence as an approximate recognition of the second), allowing for

perhaps a better translation then if segmentation of the source sentence was tried.

Such a technique puts more of the burden on the target language model, which can

223

be viewed as having an opportunity to fix the source model’s approximations (e.g.,

two function words in the source language might have the same target translation

anyway).

Partial (source) parsing, is, of course, a potentially vast research area in its

own right. In this dissertation, we have just scratched the surface in terms of

its possibilities. Clearly, the performance of the linked automata model could be

enhanced by improving the partial source parsing, and many of the ideas identified

in this section could be of some use. Perhaps the most interesting might be full-

blown regular expression matching for the automata (i.e., allowing for matches such

as word X followed by some number of words followed by phrase Y), which might

prove especially useful when discontinuous alignments are used (see Chapter 7). We

next turn to the last of the increased-coverage techniques, one which also concerns

extracting partial results, but this time from the target automaton.

6.3.4 Partial Target Parsing

Partial target parsing is used at the last stage of the translation process, to ex-

tract information from the target automaton, when neither a complete parse (i.e.,

a transition which begins at the start-state, ends at a final state, and has a full

SWS; see section 4.5.3) nor a complete fragment (a transition with a full SWS)

can be found. Partial target parsing is just like normal target parsing, in that

it begins with activated target transitions, generates longer transitions from the

small automaton created, and identifies which of these transitions to use in the

resulting translation. However, partial target parsing differs in one crucial respect:

224

The resulting transitions will likely need to be ordered, since they probably do not

connect (if they did connect, they would have been found via normal target parsing

that allows for fragments, except in cases where the SWS was not full).15

The situation of having unconnected transitions can arise as the result of merg-

ing and the other generalization techniques, as was demonstrated in section 6.2.4

(see Figure 6.8). The algorithm used to order unconnected transitions employs two

heuristics. First, given two activated transitions A and B, if A precedes B in the

automaton, then A precedes B in the resulting translation. We use the following

second heuristic only if the first heuristic does not hold in either direction: If the

distance from the start-state to A is less than the distance to B, then A precedes B

in the translation. The distance of the various transitions from the start-state are

pre-compiled (i.e., done at training time), as a time-saving step, but the precedence

heuristic must be computed at run time. Note that both heuristics are computed

relative to the entire target automaton, and not the smaller one that is defined by

the activated target transitions (since precedence relations might not show in the

smaller automaton, and distance calculations are both quite different, and poten-

tially impossible to calculate in the smaller automaton). Using these techniques, we

can guarantee that the system always produces something; again, this a property

that simplifies the task of evaluation.

There may, of course, be better techniques to order the transitions using just the

basic architecture of the model (i.e., without moving to techniques which make more

use of linguistic information, such as POS tags, or different statistical information,

15Recall that, as described in section 4.5.3, the ordering in normal target parsing comes for free,
because the sequences are all connected as a single path in the target automaton.

225

such as separate language models), and although the precedence techniques make a

great deal of intuitive sense, I do not see the distance heuristic as being very helpful

or well-motivated, especially given how much transitions may move around after

merging (but remember, merging will not affect the order of transitions already

in a precedence relation). One such technique which makes a great deal of sense,

especially when language pairs exhibit some degree of ordering similarity, is to let

the source sentence suggest an order for the activated target transitions. This third

heuristic can be very valuable after using partial parsing techniques, especially those

which collect recognized source transition sequences for translation as a unit (see

section 6.3.3). This suggested-ordering heuristic is used for some of the results

reported in section 7.3.4. I leave the search for other such techniques to future

research.

Although the main processes of partial target parsing are similar (with the

exception of ordering) in terms of their implementation to those of normal target

parsing, we should spend a moment highlighting some of the differences in terms of

both generation of transitions and selection of which of these transitions to use.

Of the two, the generation process is the most straightforward. Recall that

in the third translation stage, we generate and store all the transitions that can

be built by putting them together (i.e., smushing them), so long as their SWSs

do not intersect. This generation process, which uses the smaller automaton (i.e.,

only the activated target transitions), begins at the start-state. Thus after normal

target parsing has failed, every transition in the chart which stores these smushed

transitions has a begin state which is the start-state. To obtain all other possible

smushed transition sequences, we simply redo the generation process, but this time

226

using all of the smaller automaton begin states (less the start-state) as potential

starting points. There are clearly more efficient ways to do this step, since in doing

so we are likely crossing some paths already crossed in the first generation stage,

but given the automaton’s small size, the time used is unproblematic.16

After generation, the selection of which transitions to use is somewhat trick-

ier. The process uses the same data structures that were discussed regarding the

processing of empty transitions, in section 4.5.3.1, namely the empty transition

mask, and the empty transition probability hash, as well as the store of newly built

transitions made from generation.

The technique used is based on one important theoretical assumption. We are

likely to get better translations by using connected target transitions which cover a

lot of source words, than by using unconnected target transitions which cover the

same amount of source words (or more) but are less connected. This is consistent

with our notion of assuming word-for-word translations will typically not be as good

as translations made from units longer than a word, and makes better use of the

target language model. This assumption will come into play should a situation arise

like that depicted in (78) below.

(78) a. {< i, k, .7, [01110] > < a, d, .8, [10001] >} combined probability = .56

b. {< a, b, .9, [10000] > < w, x, .9, [00010] > < l, q, .9, [00001] >

< t, q, .9, [00100] > < a, c, .9, [01000] >} combined probability = .59

16As mentioned before, should the small automaton’s size become large enough to make this
technique problematic, one could limit the number of activated transitions produced in the
second translation stage (see section 4.5.2). Should this situation arise, however, more efficient
generation strategies will first be developed, since they retain the possibility of guaranteeing
that the most probable transition sequence could be found, while the technique of restricting
the number of activated transitions does not.

227

Suppose we began translation with a five-word source sentence, and are trying

to choose between the two partial target parses (i.e., sets of transitions, where only

states, SWSs, and probabilities are shown), (78a) and (78b). The parse with five

transitions, each representing one source word, in (78b), has a higher combined

probability at .59, than does the alternative at .56 in (78a), which uses only two

transitions to cover the same source words. Nevertheless, we will select (78a),

because it will likely make a more fluent target language sentence than will the

transitions of (78b).

With this assumption explained, the algorithm to select which transitions to

use is relatively simple, and is depicted in Figure 6.15 and Figure 6.16. The basic

idea begins with the store of the generated target transitions. Here we assume that

they are indexed by the number of source words they cover. The top-level function,

get-best-transition-set (Figure 6.15), extracts the best available transition which

covers the most source words not yet covered, adds this transition to its collection,

and continues, until it cannot find another transition or the combined SWS of the

collected set is full.

The function which get-best-transition-set calls to get the best transition, extract-

best-tran (shown in Figure 6.16), uses the indexed store to quickly get the best tran-

sition that covers the most source words, and also checks to see if this transition’s

combined probability could be beaten by a collection of empty transitions which

cover the same number of source words (where all the source words are needed,

but are not necessarily the same source words that the best transition covers). In

this manner, the empty transitions are pulled into the process. Note that this does

228

get-best-transition-set (transeqs by numsources, full sws)
{ sws size = 1 - numwords(full sws)

cur sws = make-empty-sws(full sws)

best tran = extract-best-tran(sws size, cur sws, transeqs by numsources)
best tran set = push best tran onto make-set()

while(best tran AND not(full-sws(cur sws)))

{ cur sws = union sws(cur sws, tran-sws(best tran))

best tran = extract-best-tran(num-sws-needed(cur sws), cur sws,

transeqs by numsources)

push best tran onto best tran set }
return best tran set }

Figure 6.15: Overview of algorithm for selecting best set of target transitions in
partial target parsing

not deviate from the earlier mentioned desire to bias the collection to connected

transitions, since the empty transitions can be viewed as being able to connect to

anything.

Once this the selection of the best transition set is complete, the target parsing

process finishes with ordering the set of transitions, using the two heuristics de-

scribed earlier (i.e., precedence and, if that fails, distance from the start-state). As

mentioned, a third heuristic, using a suggested order from the source recognition

process, can also be used if the precedence heuristic fails. In these cases, the dis-

tance heuristic is used only as a last resort. For all of the results in the dissertation,

except for where indicated in section 7.3.4, this suggested-ordering heuristic was

not employed, as it was developed after the tests were completed. Note that we

229

extract-best-tran (size to check, cur sws, tranhash by num sources)
{ best tran = null

while((size to check > 0) AND null(best tran))

{ best tran = get-best-of-sws-size(size to check, cur sws,

tranhash by num sources)

if not(best tran) { size to check = 1 − size to check } }
if exist better empty tran collection(best tran, cur sws)

{ best tran = get empty tran collection(best tran, cur sws)}
return best tran }

Figure 6.16: Overview of algorithm for selecting best transition in partial target
parsing

must use some heuristic to order the set, because they cannot already be connected,

otherwise we would have selected the combined longer transition in the first place,

i.e., partial target parsing would not have been necessary.

So ends the presentation of the heuristics for increasing coverage in the linked

automata model. In the next section, I evaluate the impact of all of the generaliza-

tion techniques, including these heuristics and a very conservative implementation

of merging.

6.4 Evaluation After Generalization

As with the earliest evaluation (the feasibility evaluation, from Chapter 5), I be-

gan the evaluation of generalization by first making sure that I did not break

anything that was working before. To that end, I repeated the same feasibility

tests performed in section 5.4, shown in Table 5.1, but this time used translation

230

systems that had been merged during construction (and which were again trained

on 1529 bitexts). The size of the translation systems were reduced by over 30%, as

was described in section 6.2.3.17

I present the test results in Table 6.1. As in the earlier test (Table 5.1), I used

test-suite 1, which consists of 10 training sentences. The goal here is to make sure

that merging did indeed preserve the translation integrity, i.e., to make sure that

all translations which could be accomplished prior to merging were still available.

Again, this being a test on training data, I view it as more of a reality check; tests

on unseen data are presented next.

Test Word-Align Mean Source Simple Translation Mean Run

Suite Data Length Accuracy Accuracy Time (secs)

1 CYK 20.3 .99 .99 0.30

1 Giza++ 20.3 .99 .99 1.80

Table 6.1: Summary of feasibility test results (English to Spanish), merged systems

The very slight decrease in accuracy, from 1.00 to .99 for both the CYK and

Giza++ word-aligned training sets, is unproblematic. Manual inspection of the

17Size reduction is an important goal for the model, so that it scales well, and while I will not
further evaluate the model in terms of its size, it will remain an important area for future
research in tandem with the prototypical generalization goal of increasing coverage.

231

translations produced showed that the one-word deviation from the reference trans-

lation which resulted in the accuracy reduction was a perfectly acceptable alterna-

tive translation that was made available to the system via merging.18 As was also

the case in the earlier results, the times for the CYK trained data are significantly

faster than for the Giza++ data. As stated earlier, this is because the number of

transitions produced (i.e., activated) in the Giza++ is typically much larger (usually

by a factor of 4 to 5). We will discuss this more as additional results are presented.

Readers may also note that the run time for the CYK data using the merged sys-

tem is faster than the CYK times for the unmerged system (see Table 5.1). This

should not be weighed too heavily, because the tests were run in somewhat differ-

ent environments, and times were also subject to rounding errors.19 Nevertheless,

important deviations in mean run times are quite apparent (i.e., show larger differ-

ences) in some of the additional results to be presented shortly, where they will be

further discussed.

In Table 6.2 we present the results for test-suite 2, in a slightly different format

from the two earlier result tables. First, we add the information for each general-

ization and increased-coverage technique, to indicate what was used on each test.

Thus, we indicate when a merged system was used, and when partial source parsing,

18More specifically, there are many English sentences in the Bible beginning with the word And,
sometimes appearing in Spanish with the word Entonces, other times with Cuando, and other
times with no word at all, etc. The one word deviations were of this type; ones which we
would actually hope the model would make (i.e., without other information, to choose the most
probable alternative).

19I tried as best I could to measure actual CPU seconds, rather than real time, to minimize the
effects of other processes on the same machine, but result times still varied in rather similar
contexts, suggesting that the measuring mechanisms were not as independent of other processes
as one might hope.

232

fragment processing, partial target parsing, and unknown word fall-through were

invoked. The tests are presented in the fashion that those with fewer techniques

used are shown first, and those employing additional techniques shown later. Thus,

the expectation is that results further down in the table should be better. Also,

to save space, we present the simple accuracy and translation accuracy results for

each training set in a single column, divided by a ‘/’. Lastly, because there are

more tests being presented than in the earlier tables, and to make for easy cross

training-data comparison, we present the results for the CYK and Giza++ sets on

the same line, for each different test configuration.

Test-suite 2 consists of ten randomly chosen (English and Spanish) bitexts from

the Bible, which were not in the training data. Additionally, the bitexts were se-

lected to ensure that they only used source words which had appeared at least once

in the training data. Thus, this might be viewed as the first real test of the sys-

tem. As will be shown in this test, and the succeeding one, accuracy results are

relatively low (never higher than .40). This should not be surprising, given that

the translation domain is a particularly difficult one, the amount (and accuracy)

of training data was limited, and that the model is still in a very early stage of

development, and may turn out to be unsuitable for such unrestricted translation

tasks. Accuracy and future prospects for its improvement will be discussed fur-

ther in the final chapter of the dissertation (Chapter 7), and some examples of a

range of translations with different translation-accuracies are shown in Appendix

A. The area to focus on here is whether the changes in the use of different techniques

233

result in improvements in accuracy, so that we can gauge the extent to which they

have improved coverage in the model, and assess their viability as future foci for

improvement.

CYK-wa Giza-wa CYK Giza
TS SL Mrg PSP FRG PTP UFT SA/TA SA/TA Time Time

2 19.5 no no no no no 0.00/0.00 0.00/0.00 0.0 0.0
2 19.5 yes no no no no 0.00/0.00 0.00/0.00 0.0 0.0
2 19.5 no yes yes no no 0.16/0.16 0.39/0.39 4.1 15.2
2 19.5 yes yes yes no no 0.13/0.13 0.38/0.39 4.0 14.4
2 19.5 no yes yes yes no 0.30/0.30 0.40/0.40 4.2 15.2
2 19.5 yes yes yes yes no 0.28/0.28 0.39/0.39 4.1 14.4

Table 6.2: Summary of test suite 2 results key: TS=test-suite, SL=mean source
sentence length, Mrg=Merged, PSP=partial source parsing, FRG= frag-
ment processing, PTP=partial target parsing, UFT=unknown word fall-
through, CYK-wa=CYK word alignment, Giza-wa=Giza++ word alignment,
SA/TA=simple-accuracy/translation-accuracy, Time=mean run time (sec-
onds)

In terms of the increased-coverage techniques, Table 6.2 shows a marked im-

provement (for each training set) as the various techniques are added, showing the

necessity of being able to extract partial results. Thus, translation of unseen sen-

tences is impossible without, for example, invoking partial source parsing, since the

source sentences are unlikely to be recognized (thus we see accuracies at 0.0 in the

first two result lines of the table). One important exception to the improvements is

merging. A merged configuration of each test is shown on the line following the same

unmerged configuration. As can be seen, in many cases merging actually slightly

234

decreases the accuracy. This, together with 0.0 accuracy results for the merging

without additional increased-coverage heuristics case (the second result line of the

table), suggest that the merging as currently being done is not sufficient to pro-

vide increased coverage.20 This means that more merging (i.e., less conservative

merging) will have to be done, before it will bear fruit as a generalization tech-

nique. Merging remains the most important technique (i.e., the one with the most

potential), since it achieves generalization in a principled way (allowing sentences

to be processed in full, rather than broken into parts), and, as stated earlier in this

chapter (see section 6.2), less conservative merging is one of the most important

and most promising areas for future research in the model.

Another aspect of Table 6.2 to be discussed is the mean run times. Times in

general increase, as expected, over the run times reported earlier, since much more

work is being done in terms of processing partial results. Worst-case run times

for the CYK trained data are around 4 seconds for translation of source sentences

averaging 19.5 words in length. Worst-case run times for the Giza++ data are much

worse, at just over 15 seconds. This disparity is again due the greater number of

transitions being activated in the Giza++ case. In fact, the factor by which the

time increases is roughly equal to the factor by which the number of activated

transitions increases. Part of the reason for the greater number of transitions in the

Giza++ case is because all of the 0:1 alignments are activated with each translation

task, and the Giza++ data has more 0:1 alignments. When we motivated this step

in section 4.5.2, we hypothesized that this number would not be problematic. In

20Manual inspection of the results supports this conclusion; recognition of the full source sentence
failed in all cases.

235

retrospect, however, it seems that a principled approach to limiting the number of

0:1 transitions used, such as those described in section 4.5.2, could be helpful, and

would make the system scale much better, since as currently defined, the number

of activated transitions will increase with the size of the system, in terms of the 0:1

alignments.

Although in the dissertation I will not experiment with any of these improve-

ments, I do identify several possible steps that might be taken. Such solutions

should be relatively easy to find, and range from what might be viewed as hacks, to

restructuring of the system. On the hack side of things, one might simply restrict

the number of 0:1 alignments used in a translation (i.e., the beam search idea from

section 4.5.2), or could not use them at all in partial target parsing, since they are

unlikely to be used anyway given the present search algorithms (given that they

offer no new SWS information). More principled solutions include that given in

section 4.5.2, of adding extra transitions to the automata so that 0:1 alignments

could be registered for each transition sequence (thus we would only activate the

relevant ones, a very small number). Another solution could be having a second,

small alignment table, which only dealt with the null alignments (i.e., the 0:1 and

1:0 cases), which could for each non-null transition sequence of a source sentence,

also align it with target transitions involved in any 0:1 alignments for the given

bitext. In this manner, when a fragment of the sequence was used for recognition,

the appropriate 0:1 alignments would be activated. This solution is somewhat like

the solution to fragment recognition of section 6.3.1.1 (i.e., adding an additional in-

dex), in that we would trade some additional memory used for much more efficient

processing.

236

Almost all the time increase comes in the third and final translation stage, which

includes identifying and selecting and ordering (if necessary) the activated target

transitions. I take this is a good sign, first, that the time increase is linear with

the number of activated transitions and not worse. Secondly, the time increase

(and overall long times—I would like to see run times faster than 4 seconds for the

CYK data) is due to the one translation stage which has not been optimized at all.

For example, the generation step of the process uses no pruning, and techniques

to greatly improve the efficiency should be able to be developed. In fact, it may

turn out to be the case that generation is not the most efficient technique at all.

This is one area of the project where future research should have an immediate and

profound impact (although of course only on efficiency, and therefore scalability,

but not on the accuracy of the model).

One other good sign is that the times for using the merged systems are roughly

the same as in the unmerged systems, even though the search spaces are much

greater in the merged case. This indicates that the first stage of the translation

process, recognition using the source automata, is operating at a very efficient level,

since the increase in search space has seemingly no effect (thus demonstrating the

importance of the extra indexing mechanism for labels, discussed in section 6.3.1.1).

A final time efficiency point to note is that, as touched on in section 6.3.3, even

before improvements in the third translation stage’s efficiency are made, the use of

different partial source parsing techniques (such as those which collect recognitions

and translate them as a unit) will likely vastly improve run times. This is because

for each translation, the slowest translation stage will be invoked once, rather than

one time for each recognized source substring.

237

The results for the third test set, test-suite 3, are shown in Table 6.3. Test-suite

3 consists of 10 randomly chosen bitexts from the Bible which were not included in

the training data. In addition, the bitexts were selected so that the source sentences

contained some unknown words (i.e., words not which did not appear in the training

data). Thus, test-suite 3 is the most difficult of the test sets, where perfect scores

would likely be impossible for any MT system. I included this test to get an idea of

how well the unknown word fall-through technique was working, and would expect

the accuracy numbers to be lower than they were for the previous test (as they are),

where all words were known.

CYK-wa Giza-wa CYK Giza
TS SL Mrg PSP FRG PTP UFT SA/TA SA/TA Time Time

3 24.3 no no yes no yes 0.02/0.02 0.02/0.02 0.2 0.9
3 24.3 yes no yes no yes 0.02/0.02 0.02/0.02 0.1 0.8
3 24.3 no yes yes no yes 0.16/0.17 0.33/0.33 4.8 20.4
3 24.3 yes yes yes no yes 0.21/0.21 0.36/0.36 4.7 18.4
3 24.3 no yes yes yes yes 0.22/0.23 0.34/0.34 5.1 20.4
3 24.3 yes yes yes yes yes 0.31/0.23 0.38/0.38 4.8 18.4

Table 6.3: Summary of test suite 3 results key: TS=test-suite, SL=mean source
sentence length, Mrg=Merged, PSP=partial source parsing, FRG= frag-
ment processing, PTP=partial target parsing, UFT=unknown word fall-
through, CYK-wa=CYK word alignment, Giza-wa=Giza++ word alignment,
SA/TA=simple-accuracy/translation-accuracy, Time=mean run time (sec-
onds)

As can be seen in Table 6.3, the test-suite 3 results roughly pattern after those

for test-suite 2 (Table 6.2). The increased-coverage techniques significantly improve

238

the overall accuracies. Similarly, the times required for translation show the same

patterns (i.e., Giza++ data taking more time than CYK data), with the overall run

times being higher, given that the sentences are more difficult, as well as longer

(averaging 24.3 words per source sentence). What is perhaps most interesting in

Table 6.3 is that using the merged translation systems consistently improved accu-

racy. Thus merging showed the greatest effect on the most difficult of the tests, i.e.,

where additional generalization would be expected to be the most helpful.

The final test, using test-suite 4, consisted of sentences not found in the corpus,

but rather fragments of sentences from the training bitexts, with one or two words

replaced (all the words had been encountered in the training data, and the categories

of words replaced varied, including nouns, verbs, determiners, etc.). As such, this

test suite should be the easiest of the latter 3 tests (i.e., test suites 2–4). The

translations for these slightly modified source sentences were also adjusted to reflect

the changes (using what were taken to be the most likely translations after having

inspected the training sentences). An example of such a sentence might be instead

of using the sentence:21

(79) In the beginning God created the heaven and the earth

this test suite might contain something like:

(80) In the beginning God created the day and the light

The goal for this fourth test was to see how the linked automata system would

fare when presented with an easier task: shorter sentences that were closer to the

original training data. I present the results for test-suite 4 in Table 6.4.

21As stated elsewhere in the dissertation, I apologize if my use and manipulation of such Biblical
sentences offends anyone, but it was a simple way to create another test set for the system.

239

CYK-wa Giza-wa CYK Giza
TS SL Mrg PSP FRG PTP UFT SA/TA SA/TA Time Time

4 17.6 no no no no no 0.00/0.00 0.00/0.00 0.0 0.0
4 17.6 yes no no no no 0.00/0.00 0.00/0.00 0.0 0.0
4 17.6 no yes yes no no 0.66/0.66 0.51/0.53 1.2 3.9
4 17.6 yes yes yes no no 0.62/0.62 0.51/0.51 1.0 3.5
4 17.6 no yes yes yes no 0.88/0.88 0.80/0.82 1.2 3.9
4 17.6 yes yes yes yes no 0.84/0.85 0.80/0.81 1.0 3.5

Table 6.4: Summary of test suite 4 results key: TS=test-suite, SL=mean source
sentence length, Mrg=Merged, PSP=partial source parsing, FRG= frag-
ment processing, PTP=partial target parsing, UFT=unknown word fall-
through, CYK-wa=CYK word alignment, Giza-wa=Giza++ word alignment,
SA/TA=simple-accuracy/translation-accuracy, Time=mean run time (sec-
onds)

The results in Table 6.4 appear somewhat promising. Although merging did

not improve accuracy, the overall high relative accuracy scores suggest that the

increased-coverage heuristics are on the right track. Replacing trained-on words at

certain locations with different trained-on words does not cause the system to com-

pletely fail, when the heuristics are used, and in fact, accuracy scores range as high

as .88 with an unmerged system. Interestingly, here the poor word-aligned data

leads to better results than the better word-aligned data. I have no explanation

for this result; using more test sentences might give a better indication if this was

just coincidence or not. Also, the overall run times are much faster than they are

for the more difficult tests (see Tables 6.2 and 6.3). This should be expected, since

easier sentences should mean less work needs to be done. It also bodes well for the

240

future, in the sense that higher accuracies and faster translations will typically go

hand in hand (i.e., as we improve accuracy, we can typically also expect to improve

the run times).

In summary, the results of the tests post generalization suggest that increased-

coverage techniques are both necessary and helpful for the system to handle sen-

tences on which it was not trained. Clearly more generalization will need to be

achieved in future research of the model for more reasonable accuracies to be

achieved. It may also be the case that unrestricted translation, especially that

as difficult as the Bible—where translations are sometimes more distant from one

another than one might expect, and where the language can be at times rather

figurative—may not be the appropriate domain for the linked automata model. I

hope that, through these tests, I have been able to begin to evoke some of the

possibilities of the model as not only a translation tool, but as a data structure

from which translations can be accessed. In the next chapter, I attempt to further

expand the model, and suggest how far it may be taken as a translation system.

241

CHAPTER 7

EXTENDING THE MODEL, PART II: USING MORE

LINGUISTIC INFORMATION AND MORE COMPLEX

ALIGNMENTS

A number of classical mathematical problems have been rigorously

proved to be unsolvable, as a result which no mathematician, worthy of

such a title, would ever again try, for example, to trisect an angle by

means of a straightedge and compasses. There are, however, scores of

ways in which an angle can be approximately trisected to a high degree

of accuracy. The art of translation is not as fortunate. Not only can one

adduce rigorous proof that a perfect version of the import, expressed in

a source language, can not be achieved in any target language, but one

cannot even guarantee an acceptable approximation to the solution of

the formidable problem of translation. (Rhodes 1967:431).

In Chapters 4 and 6, I introduced the linked automata MT model in its most

basic form, and gave the primary techniques for generalization. As mentioned at

several points in the dissertation, I view the linked automata model as a foundation

upon which more ambitious MT systems can be built. In this chapter, I present

experiments with two different types of possible extensions to the model: using

more linguistic information by means of part-of-speech (POS) tags (section 7.2),

and increasing the coverage of the model by allowing for discontinuous alignments

242

(section 7.3). Before presenting the results of these two experiments, however, I

first attempt to answer another question for the model, by presenting a brief test to

examine how training set size affects translation-accuracy, in section 7.1. In the final

section of the chapter (section 7.4), I close the dissertation with some comments on

where the model stands and where it may be taken in the future.

7.1 On the Effect of Training Set Size

The question of the effect of training set size on translation performance is an

important one; in data-driven approaches one needs to have an idea of what amount

of training data is necessary to yield a given performance. More specifically, one

hopes to learn (for a given translation domain) how many bitexts are necessary for

the MT system to begin to be able to translate at all (i.e., until at least a minimal

amount of data is processed, no translations will be possible, since most words will

be unknown); and how fast performance improves relative to increases in training

set size.

In an attempt to shed some preliminary light on these questions, I tested linked

automata MT systems of various sizes, using the best performing word alignments

identified earlier (namely, Giza++, see Chapters 3 and 6). While in all of the earlier

tests I used approximately 1,500 bitexts (i.e., the Biblical book Genesis), in this test

I used training sets ranging from 0 to 3,000 bitexts, at intervals of 250 bitexts. I used

all of the increased-coverage techniques in the tests, including the very conservative

merging described in Chapter 6.

Although the topmost size of this range is still small by data-driven MT stan-

dards, the span of training set sizes is enough to give an initial view of the effect

243

of training size on the model. Given that the model is still in an early stage of

development, and therefore not fully optimized for handling large training sets, and

further that, as mentioned in Chapter 6, the preliminary generalization techniques

are currently insufficient to yield top-level performance, testing the size with larger

training sets would be inappropriate at this time. Of course, further testing of

training set size should be done as the base performance of the model is improved.

I tested the various systems with a test set of 20 randomly selected sentences

from English and Spanish Bible bitexts which were not part of the training data

(i.e., they were not a part of the training data for any of the tested models). The

results are shown in a graph in Figure 7.1, where training set size is on the x-axis

and translation-accuracy is on the y-axis.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000

T
ra

ns
la

tio
n-

A
cc

ur
ac

y

Number of Training Bitexts

Figure 7.1: The effect of training set size on translation-accuracy

244

As can be seen in the figure, translation-accuracy begins at .00 with 0 bitexts,

rising rapidly to .21 at 250 bitexts, then continues to generally rise—there are some

falls as well, as should be expected when a few examples may incorrectly skew the

model, which in turn may get outweighed by the addition of other examples—but

much more slowly, to approximately .32. Note that we see an increase in translation-

accuracy from .25 to .32 when we double the training set size used for earlier tests

from 1,500 to 3,000.

While the overall translation-accuracy numbers remain low, this is an encour-

aging result, since by adding 1,500 bitexts (i.e, doubling the size) we were able to

increase the translation-accuracy by 28%. Of course, as is suggested by the graph,

the rate of improvement will slow (this too should be expected, since the addition of

250 bitexts should have relatively less effect at each increasing stage), and will likely

taper off. This is because there is a limit on how good the system’s performance can

be, until significant generalization is achieved, since translation without sufficient

generalization typically amounts to concatenated translations of small fragments or

even words.

What should be clear from the test is that as expected, increasing the amount of

training data does improve the model’s performance. One might question whether

the test is fair, since the smaller models have no chance of correctly translating

words which they have never seen, and there are likely to be more instances of

unknown words for the smaller models. However, selecting sentences which con-

tained only words known to the smaller models (and therefore known as well to

the larger models) would bias the tests towards the smaller models. That is, even

245

if we randomly selected such sentences, it would be as if we got exactly the sen-

tences where the smaller models would be likely to perform the best. Thus, I stuck

with standard practice in such test selections, using truly randomly chosen test

sets. I leave the relative performance of larger sizes and of different training sets

and increased-coverage configurations, as well as questions as to how increases in

training set size and translation-accuracy relate to data-sparseness and the number

of unknown words, to future research. In the next two sections, I turn to expanding

the model.

7.2 Extending the Model with More Linguistic Information

In earlier chapters of the dissertation I hypothesized that the linked automata model

could benefit from using more linguistic information. More linguistic information

can take many forms, such as using hierarchical syntactic information (as do some

other MT methods, see sections 2.2.2.4 and 2.2.2.5); grouping words into classes (like

the IBM model in described in section 2.2.1); enabling special handling of function

words, idioms, or collocations; having separate grammars for important subdomains

(such as times and dates, see section 2.2.2.6), etc. The list of possibilities here is

quite large, and ranges from the mundane: special treatment of capitalized words;

to the more complex: detailed semantic analysis. Using a given method of course

requires that one has the means to obtain the necessary information.

The goal for this part of the dissertation research was to choose one such type

of information which could be easily folded into the model, and which would be

246

consistent with the overall automatic, data-driven approach (e.g., I did not want

to hand-code a grammar), and therefore hopefully applicable to a wide range of

language pairs and translation situations. I selected part-of-speech (POS) tagging.

7.2.1 A POS Tagging Experiment

POS tags can benefit a translation model in a number of ways. First, POS tags can

be used to differentiate between words which are spelled the same but have multiple

meanings (i.e., that are polysemous) and therefore often different translations.1

Second, POS tags can be used to make generalizations about classes of words;

for example, a specific verb followed by a word tagged as a preposition might be

translated differently than the same word when followed by a word tagged as a noun.

In the POS experiment to be described, I focused on the first benefit, dealing with

multiple meanings.

POS taggers can be constructed automatically from tagged corpora. In this

sense, the use of POS taggers is consistent with the overall data-driven approach

taken in this research. The fact that the corpora must be POS tagged, however,

suggests that at some point people must have done at least some of the tagging—

thus the method is not fully automatic, and therefore not necessarily applicable to

all languages, since the tagged data may not exist. There are however, POS taggers

which do not require previously tagged corpora from which to train (although their

performance will typically not be as good as those which use hand-tagged data).

1I will employ polysemy here to cover both different word senses and true lexical ambiguities.

247

These unsupervised tagging approaches are thus quite similar to methods which

attempt to induce word classes (i.e., such as in the IBM model experiments, in

section 2.2.1).

For this experiment, I wanted to use the best tagger I could find, and chose the

TnT tagger for English, a Hidden Markov Model approach which is trained from

previously tagged corpora (Brants 2000). There are a number of different directions

I could have gone with the experiment. As with other parts of the research, I opted

for as straightforward a technique as possible, and chose to POS tag only the English

half of the bitexts, rather than both the English and Spanish, or just the Spanish.

I hypothesized that tagging just the English would give us the most benefit in

terms of research effort. This is because given an English-to-Spanish translation

direction, tagging of the source language is likely to have a significant effect in

terms of reducing the overall search space, since it would directly affect the first

translation stage, source recognition, by allowing for better differentiation among

polysemous source language words. Words and their tags could be stored together

in transition labels (for example, instead of the label word , one would use word.tag).

Thus two different taggings of the same word would be treated as different words

by the source automaton. This means that instead of always choosing the most

likely translation (i.e., activated target transition sequence) from what might have

been two choices, the system only makes the single, correct choice, because tagging

differentiates between the words.

POS tagging just the target language (i.e., Spanish), would likely produce fewer

benefits, since the search space would be being reduced only at the final transla-

tion stage, and the number of transitions in the target would have increased. This

248

would in turn likely result in more unconnected transitions being activated, which,

as mentioned in section 6.3.4, can be problematic. POS tagging of both the source

and target would be an interesting experiment, because it would allow for general-

izations between categories (e.g., a source word of category X is often translated

with a target word of category Y). Such generalizations could lead to better choices

between translation alternatives. This is the second sort of benefit which one may

derive from POS tagging (i.e., in addition to handling polysemy), but it requires

more complex handling than the simple POS experiment done here, and is left as

a potentially fruitful area for future research.

A final decision to be made for the experiment was when to do the tagging:

before or after word alignment. This decision was easy. I assume all along that the

model is built from word-aligned bitexts. Thus, to be consistent, the data should

not be accessed prior to word alignment, save for choosing which word-aligner or

word alignments to use. A second, and perhaps more important criteria, is that

word-aligners (such as Giza++) often are designed to make their own generalizations

about word classes. POS tagging the data might interfere with this process and

result in poorer word alignments, or might simply be duplicative. Thus, I chose to

POS tag the training bitexts after word alignment.

The procedure for the experiment then was rather simple. For the same test

sets as used previously (in Chapters 5 and 6), I POS tagged each English sentence

in the test sets, and used these as input to a translation system where the En-

glish sentences of the training bitexts had also been POS tagged. In essence, this

resulted in a source automaton with more word types than one without tagging, and

249

hypothetically therefore finer-grained distinctions. As in the other experiments

reported in this chapter, we used the Giza++ word alignments, since they were of

the best quality.

7.2.1.1 Results of the POS Tagging Experiment

The results of the POS tagging experiment are shown in Table 7.1. The presenta-

tion follows that of some of the earlier tables. I show the test-suites and various

configurations used for each training set, side by side (POS tagging on the right).

The four test-suites are the same four described in Chapters 5 and 6: Test-suite 1

is actually a training set, used just to make sure no translations were lost in the

process—i.e., a reality check; test-suite 2 uses all previously seen words; test-suite 3

contains some unknown words; and test-suite 4 contains training sentences which

were hand-manipulated to yield new, unseen sentences. Times for the test runs are

not shown, because they are typically nearly identical to those shown earlier, and

in this case were run on a different computer. Note also that in the table I show

only the results for configurations which used all of the increased-coverage heuris-

tics, since these are the most important comparisons, but do again show a merged

configuration below each unmerged one.

As can be seen in Table 7.1, the results were mixed, and thus inconclusive.

For the feasibility test (test-suite 1), results were correct, as expected. For test-

suite 2, POS tagging of the English sentences slightly degraded simple-accuracy

and translation-accuracy, and for test-suite 3, POS tagging slightly improved per-

formance. In the last test, using test-suite 4, results were nearly identical.

250

Giza++ wa Giza++ waPOS
TS SL Mrg PSP FRG PTP UFT SA/TA SA/TA

1 20.3 no no yes no no 1.00/1.00 1.00/1.00
1 20.3 yes no yes no no 0.99/0.99 0.99/0.99
2 19.5 no yes yes yes no 0.40/0.40 0.39/0.39
2 19.5 yes yes yes yes no 0.39/0.39 0.37/0.38
3 24.3 no yes yes yes yes 0.34/0.34 0.35/0.35
3 24.3 yes yes yes yes yes 0.38/0.38 0.39/0.39
4 17.6 no yes yes yes no 0.80/0.82 0.80/0.82
4 17.6 yes yes yes yes no 0.80/0.81 0.79/0.81

Table 7.1: Summary of POS tagging experiment results key: TS=test-suite,
SL=mean source sentence length, Mrg=Merged, PSP=partial source parsing,
FRG= fragment processing, PTP=partial target parsing, UFT=unknown word
fall-through, CYK-wa=CYK word alignment, Giza++ wa=Giza++ word align-
ment, Giza++ waPOS=Giza++ word alignment with English sentences then
POS tagged, SA/TA=simple-accuracy/translation-accuracy

If we read these results on the whole as indicating that POS tagging did not

significantly change performance, we need to ask why. There are several possi-

ble explanations. First, as elsewhere, improvement may be limited by the poorly

generalized or poorly word-aligned base from which we start. In either case (i.e.,

insufficient generalization or less-than-ideal word alignment), we may be applying

POS tags in many instances to data that is already somewhat incorrect or not infor-

mative enough to produce a significant change in translation performance.2 Thus,

as elsewhere, it would be instructive, for example, to re-run this test after improving

2For example, if merging is insufficient and/or very conservative, not many cases will arise where
identical source words with different translations would exist as labels for the same transition,
so it would be unrealistic to expect a big change.

251

the overall generalization in the model. Second, as mentioned, we only took advan-

tage of one of the ways by which POS tags may improve translation performance

(i.e., in terms of polysemy), and we might see more improvement from also making

generalizations about categories, as previously suggested. A final possible explana-

tion might be that, as being used in the experiment, POS tags may add little more

information than is already gained from the word alignment process itself (since

Giza++ does indeed use word classes), and may be subject to the same sorts of

errors as automatic word-aligners. In the next section, I present a more promising

result, one which focuses on increasing the coverage of the linked automata model,

rather than the amount of linguistic information used.

7.3 Extending Model Coverage: Discontinuous Alignments

As mentioned earlier in this chapter, there are two different dimensions along which

the linked automata MT model may be extended. The dimension discussed in the

previous section centers on improving translation performance by making use of

additional linguistic information. The second and perhaps more crucial dimension

along which the model can be extended is in terms of its coverage. As described

earlier in Chapter 4 (see especially section 4.2.2), the model architecture does not

lend itself to efficient processing of discontinuous alignments. In this section, I

remedy the situation, presenting a modified table architecture as well as slightly

modified translation algorithms which expand the model so that discontinuities are

no longer a problem. Before doing so, I present translation examples which motivate

the extension and give a brief review of the alignment terminology first presented

in Chapter 3.

252

7.3.1 Motivation

When the words of sentences in two languages are aligned, the alignment may

sometimes be discontinuous. For example, in Figure 7.2, the non-adjacent German

words habe and gesehen are aligned with the English word saw.

Ich habe ihn gestern gesehen

I saw him yesterday

Figure 7.2: A discontinuous German to English word alignment, from Schiehlen
(1998)

While, as mentioned in the chapter on alignment (see in particular sections 3.2.1

and 3.2.2), I first hypothesized that lack of coverage of discontinuous alignments

would not be problematic, I soon realized that discontinuous alignments are quite

prevalent in the data (see section 3.2.4). For example, in Figure 7.3 (repeated from

the earlier Figure 3.6) the discontinuous English words set and up are aligned with

the Spanish word erigió, in a sentence fragment from Genesis. In fact, during the

hand-aligning process, at least 15% of the bitexts contained an alignment where

discontinuous alignment was preferable. Discontinuous alignments may also be

prevalent in word alignments which are automatically produced. For example, in

the Giza++ word alignment set for Genesis, where singleton source words can be

aligned with many target words (see section 3.2.3), over 50% of the bitexts exhibit

some target discontinuity (see section 7.3.2).

253

and set it up for a pillar

y la erigió como memorial

Figure 7.3: A discontinuous English to Spanish alignment from Genesis

As can be seen from these sorts of examples, MT systems which model word

alignments need to be able to account for discontinuous alignments. In purely

finite-state translation systems, such as those which use transducers, incorporating

these discontinuities directly into the model is made difficult by the lack of ordering

flexibility (i.e., discontinuities cause even more difficult ordering issues for trans-

ducer models than those identified in the literature review, in section 2.2.2.3). In

section 7.3.3, I will show how the basic separation between language and alignment

models of the linked automata can be exploited to handle such alignments.

7.3.2 A Review of (Discontinuous) Alignment Terminology

Discontinuous alignments are a property of translations (i.e., of bitexts). They

are therefore to be distinguished from other discontinuous phenomena, such as

topicalization or scrambling, which can occur in the individual source and target

sentences of bitexts. For example, in Figure 7.4, although in the German sentence

the pronouns are some distance from the verbs which take them as arguments, the

alignments produced with the English translation are all continuous.

4Note that in all of the word-aligned examples, I and not the cited authors made the alignments,
and bear responsibility for any errors.

254

weil es ihm jemand zu lesen versprochen hat

since somebody promised him to read it

Figure 7.4: Discontinuous constituents without discontinuous alignments (Müller
to appear)4

Thus, single sentence discontinuity does not necessarily pose problems for align-

ment-based translation models (at least not on the alignment model level), because

the alignments themselves may still be continuous.

To help demonstrate exactly what sort of alignments are considered discontinu-

ous, I now review the alignment terminology from section 3.2.1. An alignment is a

correspondence between (possibly non-contiguous) sequences of source and target

words of a bitext. The set of all such correspondences in a bitext (i.e., the mapping

between source and target words) is called a word alignment. I refer to the source

words of an alignment as source anchors and the target words as target anchors.

An alignment is discontinuous if either the source anchors (source discontinuous)

or target anchors (target discontinuous) do not form a contiguous substring (i.e.,

they are not adjacent). So, discontinuous alignments can only occur where either

the number of source or target anchors is greater than one.

255

wen glaubst du liebt Maria

whom do you believe loves Maria

Figure 7.5: Target discontinuity in a German to English word alignment (Kallmeyer
2000)

Consider the word alignments shown in Figure 7.5 and earlier in Figure 7.3.

In Figure 7.5, a plausible word alignment might be to align glaubst with do and

believe.5 This alignment is target discontinuous. In Figure 7.3, as in Figure 7.2, we

have an example of source discontinuity.6

The notion of aligning conceptually similar entities follows Brown et al. (1993),

where the set of source anchors viewed as generating target anchors in an alignment

are call cepts (evocative of part of a concept). Figures 7.2, 7.5, and 7.3 all involve

complex verb predicates (CVPs) (Schiehlen 1998). The types of discontinuous align-

ments, if any, will depend on the pairs of languages (e.g., discontinuous CVPs need

not result in discontinuous alignments if both languages divide the semantic entities

similarly).

5do encodes the tense and person of glaubst and believe the meaning, so it is reasonable to view
them as a unit (see Schiehlen (1998)).

6Note that any example of source discontinuity can be viewed as an example of target discon-
tinuity (and vice versa), if we invert the senses of source and target (i.e., if we reverse the
translation direction).

256

7.3.3 Handling Discontinuous Alignments in the Model

In this section I describe how the linked automata model can be used to process

both source and target discontinuities. As mentioned in the previous section, dis-

continuous alignments can exist on either side of the translation relation. Other

finite-state MT models either cannot handle these discontinuities, or, as in tech-

niques to handle word-order differences, insert special symbols to account for them

(see, for example, Sanchis et al. (2001)). Here I present what I view as a more

direct encoding of such alignments.

7.3.3.1 Target Discontinuities

For the linked automata model, the treatment of target discontinuities is easy.

Recall that in the last translation stage (see section 4.5) activated target transition

sequences are collected to form a smaller target automaton. This process is shown

in Figure 7.6 steps 6 and 7 (repeated from Figures 4.7 and 4.11 which were shown

with the description of the translation process).

Contiguous transitions can be joined into single transitions which span the same

range of states. This step has the benefit of reducing the size of the automaton pro-

duced. Joining the transitions in this way also allows for a clear accounting of

the source words which generated the transitions, in cases where source transition

sequences are aligned with more than one target transition. This occurs in the

alignment of bitexts shown in Figure 7.7 (repeated from Figure 4.2 shown earlier).

There, fish is aligned with le poisson, and thus the two transitions produced during

257

"le chat noir aime le poisson"

Records Which Source Transition(s) Generated it

6. The Collected Target Transition Sequences
Define An Automaton. Each Target Transition

7. Generate Each Complete Transition Sequence
Which Uses Each Member of STS Exactly Once

Transition Sequence are the Translation
8. The Labels of the Highest Probability

1 4

le,{S1} chat,{S3} noir,{S2} aime,{S4} le poisson,{S5}

6320

. . .

<0,1,le,{S1}>
<2,3,noir,{S2}>
<1,2,chat,{S3}>
<3,4,aime,{S4}>
<4,6,le poisson,{S5}>

Figure 7.6: The final translation stage

translation: 〈4,5,le〉 and 〈5,6,poisson〉 are combined to form 〈4,6,le poisson,p,S5〉,
where the SWS (this is the source-word-store, see section 4.5.3), S5, represents fish,

and p represents the probability of this combined transition.

1 2 40

black cat likesthe fish

1 3 50
poissonle chat noir aime le

2

3

4

5

6

Figure 7.7: A bitext in the linked automata MT model

258

When target transition sequences are generated from the same source transition

sequences and are not contiguous, they cannot be joined (i.e., such sequences are

not permitted by the target language model). So, the probability and SWS need to

be allocated among the individual target transitions. In the case of the probability,

a number, spreading the value over the target transitions is just a matter of dividing

it appropriately among the parts.7 The SWS, on the other hand, represents a set

of words. It is implemented as a bit vector representing the set of source words

covered. The correct step then is to change the SWS from a vector of bits to a

vector of rational numbers. Given n generated target transitions, each transition

gets 1/n of the given source word representation, and a transition has a full SWS

only when all of the vector positions contain a 1.8

7.3.3.2 Source Discontinuities

Recall that in the second translation stage (see section 4.5.2), the transitions of

the most probable source transition sequence (STS) are used to activate target

transition sequences. This is done by first computing the substring closure (the

set of all substrings—i.e., those transition sequences that are contiguous) of the

STS. As mentioned previously, this use of the substring closure naturally precludes

the use of discontinuous source alignments. For a source sentence of n words, the

7This depends on the interaction of the various probabilities. For an alignment probability, a,
and n non-contiguous transitions, n

√
a should be allocated to each transition (this becomes a

n
in the log domain).

8This change may cause a slowdown, since fast bit operations are disallowed. For the results
described, I implemented a hack of giving an SWS value of 1 to one target transition of a
sequence, and 0 to the others. This permits the transitions to be later joined, but does not
guarantee that the most probable result will be found.

259

substring closure contains n(n + 1)/2 substrings, plus the empty string. So, the

time needed to retrieve target transition sequences is quadratic with respect to the

length of the source sentence. Given sentences of a typical length (< 100 words in

our translation domain), which can be broken up into parts if necessary, and the

fast operation of the target transition retrieving table function, the time needed for

retrieval comprises a negligible portion of the overall translation time.

T(x)
for each member x of substring closure,

to it, and collect the results
apply the alignment table function T

5. Get Target Language Alignments via Table

 S2, S2 S3,..., S2 S3 S4 S5,..., S5 }
{S1, S1 S2,..., S1 S2 S3 S4 S5,

4. Compute Substring Closure for STS

Figure 7.8: The second translation stage as presented with the simple table archi-
tecture of section 4.5.2

When we move to discontinuous sequences of source transitions, however, this

number can quickly explode, and is, in fact, exponential with respect to the source

length. If we think of the source transition sequence as being a set, the set of all

(possibly non-contiguous) sequences is the power set of the set of transitions (the

sequence closure), with cardinality 2n. Using the notion of trying to apply the table

function, T , as shown in Figure 7.8 (repeated from Figure 4.10), to each possible

sequence is untenable. For example, consider a source sentence of 30 words. Using

260

the substring closure, this means 466 applications of the function. For the sequence

closure method however, this means 1,073,741,824 applications! The time needed

to check each sequence would quickly overwhelm the system.

Given the simple table architecture, as described earlier and shown on the left-

side of Figure 7.9, one could attempt a brute-force solution of using the table itself

to decrease the search space. This would mean going through every source tran-

sition sequence in the table and checking if the sequence contains only transitions

retrieved after source parsing. While this is an improvement over the sequence

closure method, it is far from ideal, since the number of different STSs used in

alignments can be very large. For example, in a completely ungeneralized system,9

trained with just over 1,500 bitexts, the table contains over 30,000 STSs. The

problem with this solution, like the sequence closure method, is that many STSs

are being tried which have no chance of succeeding.

<s1,s2,s4> TargVals1

<s1> TargVals2

<s4,s5> TargVals3

<s1,s2> TargVals4

<s1,s3> TargVals5

s1 [(TargVals1)]

s4

[(TargVals2) s3, s2] [(TargVals4) s4]

[(TargVals3)]

[(TargVals5)]

[() s5]

Figure 7.9: Two table architectures: simple (left) and discontinuous capable (DC)
(right)

A much better solution is to make a modification to the table, so that we can

use the words of the source sentence to decrease the search space. Recall that tables

9Generalization greatly reduces this number.

261

are functions from source transition sequences to sets of pairs of target transition

sequences and probabilities. I will abbreviate the elements of this range by simply

calling them target values, since their implementation will not change. The simple

table can be envisioned as a tall, narrow table, implemented via a hash from STSs

to target values (see Figure 7.9). This implementation means that to check the

table’s hash keys for a given transition, we must check each key.

The modification to the table which I will make (called a DC table, for discon-

tinuous capable), is to store each STS as a chain of individual transitions. At the top

level, each source transition used in an alignment points to a data structure called

a link box. A link box contains two elements: 1) A (possibly empty) target value

for the transition sequence which points to the box, and 2) a (possibly empty) list

of transitions, each which points to other link boxes (see Figure 7.9). This makes

for a shorter, wider table than a simple table, and means the table can be searched

based on individual transitions (i.e., those which begin a given transition sequence)

rather than an entire transition sequence. This has the effect of greatly reducing the

search space, since one need only check the transitions that actually arise as a result

of recognizing the source sentence (rather than all of them, as in the brute-force

approach, or a huge number that do not exist, as in the sequence closure approach).

Consider a hypothetical source sentence of five words, represented by the tran-

sition sequence: s1, s2, s3, s4, s5. Rather than trying 32 possible subsequences, 16

possible substrings, or all of the potentially many STSs in the (simple) table, we

simply, for each transition si, get the associated link box, T (si), if there is one, and

store its target value. We then proceed recursively with any transitions in the link

262

box’s transition list which are also transitions of the sentence we started with.10 In

this manner, we let the words of the sentence decrease the search space. The speed

of this step improves from roughly quadratic in the substring closure method, to

nearly linear using the DC table, in a typical case, since even DC tables will be

much taller than they are wide (chains of transitions tend to be quite short, and

can never be longer than the sentence(s) from which they came).

7.3.4 Evaluation

Following the feasibility test methodology used previously for the basic system, in

section 5.4, I first tested modified and unmodified systems with training sentences,

to see if discontinuous alignments could be processed. Again, because I used training

sentences, these tests do not assess the model’s translation performance, but rather

the capability of the different architectures—that is, I wanted to make sure that I

had indeed extended the coverage of the model.11

I used training sentences for this first test because doing so was the only way in

which I could guarantee that I was testing the handling of discontinuous alignments.

The goal for a test of the discontinuous alignment architecture is to see if bitexts

which make use of discontinuous alignments can be correctly translated. To find

such bitexts which use discontinuous alignments (i.e., which would need to make

use of these alignments), we need to be able to inspect the alignments. Since only

10This replaces steps 4 and 5 in Figure 7.8.

11Note that the table modifications should have no effect on the translation performance for
translations where discontinuous alignments do not arise; but they crucially provide a means
to process translations when they do.

263

training sentences have alignments which we can inspect, they are the only option.12

Thus this use of training sentences should again be viewed as a feasibility test of the

discontinuous alignment modifications, where the focus should be on the difference

in performance between the unmodified and modified architectures. That said, at

the end of this section, I will, for completeness, present results which used true test

sentences, and describe some of the steps which I made to construct appropriate

test sets, as well as additional partial parsing techniques I employed to better draw

out distinctions in performance.

I used the same Giza++ word-aligned training set as in the POS-tagging exper-

iment in this chapter (i.e., the paired English and Spanish verses of Genesis, see

section 7.2.1). The Giza++ data set was useful because it contains some alignments

which are target discontinuous. I selected 10 bitexts at random from those which

exhibited at least one alignment which was target discontinuous, and used these as

the test set.

To test source discontinuity, I made use of a feature of the linked automata

system briefly mentioned in Chapter 4: I inverted (or reversed) the translation

system. Inverting a linked automata model is a simple process, and in effect amounts

to renaming the source language model to the target language model (and vice

versa), and making one pass through the alignment table to invert the alignment

function. I also inverted the test set. As in other tests, I report both simple-accuracy

and translation-accuracy.

12Test sentences may or may not have word alignments, i.e., one might use the same word
alignment techniques on test data as used on training data (although, of course, test sentences
need not be aligned—all that is needed are the source and target sentences); but there is no
reason to assume that these alignments are relevant to those in the trained-on model, since the
model has never seen them.

264

The results for the test are shown in Table 7.2. In terms of testing target discon-

tinuity, without the modifications described for handling the activated discontinuous

target transition sequences (section 7.3.3.1), one would expect the system to have a

lot of trouble, even with training sentences. That is indeed the case, as shown on the

first line of the table results. Simple-accuracy and translation-accuracy were .39 on

these trained-on sentences. Note that these tests did not use any of the methods for

extracting partial results (i.e., the increased-coverage heuristics). Thus, without the

modifications for discontinuous alignments, some activated target sequences could

not be used at all. When the modifications for target discontinuity were invoked,

however, accuracy returned to its expected level (see the second results line of the

table).

Source Target SrcLength DC-modified SA/TA Time

English Spanish 25.7 no 0.39/0.39 3.5

English Spanish 25.7 yes 0.99/0.99 1.8

Spanish English 23.0 no 0.00/0.00 3.0

Spanish English 23.0 yes 1.00/1.00 3.0

Table 7.2: Summary of discontinuous alignment test results key: SrcLength=mean
source sentence length, SA/TA=simple-accuracy/translation-accuracy,
Time=mean run time (seconds)

Turning to discontinuous source alignment tests, we look at the last two lines

of the table. Using the inverted translation system and the inverted test set, the

265

unmodified system (i.e., one which used a simple table) had no means to activate the

necessary transitions. In other words, discontinuous alignments could not be used

at all, since they would never even be tried using the substring closure method first

given in section 4.5.2. This means in turn that no complete target parses could be

found, since the SWSs could never be full (at least two source words would never be

represented). Again, since none of the increased-coverage techniques were invoked

for these tests, the unmodified architecture was expected to fail completely, as it

did, with accuracies of 0.00. As in the target discontinuity case, the architecture

modification again proved to be successful. Use of the DC table allowed the source

discontinuous alignments to be handled perfectly.

7.3.4.1 On Finding A Test Set for Discontinuous Alignments

As mentioned at the beginning of section 7.3.4, tests on training sentences are likely

the best means to check whether the discontinuous alignment architecture is func-

tioning as planned. This is because training sentences have alignments which we

can inspect, in order to discern if discontinuous alignments would be necessary for

accurate translations, absent other means to produce the same translations (e.g.,

increased-coverage techniques, similar bitexts with non-discontinuous alignments,

etc.). Nevertheless, I also wanted to see if I could create tests which were at least

somewhat appropriate using real test bitexts (i.e., those which the model had not

used for training). As mentioned, this turns out to be rather difficult. To know

that it is only the supposed handling of discontinuity which makes the difference

in translation performance, one needs to make sure that discontinuous alignments

266

are the only means by which a correct result would be achieved and that these

alignments are selected (i.e., that they have the highest probability, and, in the

case of source discontinuity, that all the source anchors are recognized as a unit).

Both of these criteria are difficult to enforce. Since we typically also need to

invoke increased-coverage heuristics to achieve accuracies where we can even be-

gin to make comparisons, and since different alignments can be used to produce

the same results, it is not transparent which alignments are ultimately responsible

for producing a translation (recall that translation involves the interplay of three

models, as well as, on occasion, the heuristics for extracting partial results). As

far as the second criterion, whether we would select the relevant alignments at all,

we would only expect to see differences in results where the alignments in question

were selected—meaning they came from a highest probability source recognition,

and then were the highest probability alignments this source transition sequence

had (and which also ended up being used in the final translation stage). Given

the generally low accuracies of the model so far, this means that many times these

alignments would not be selected in the first place, making comparison between

architectures impossible (i.e., modified and unmodified systems would produce in-

correct results).

In order to ameliorate these difficulties, I sought to create test sets which would

give us the best chance to bring out the differences afforded by the expanded cov-

erage. Certainly, if discontinuous alignments were to be used, they could only be

invoked if the words used in the alignments had been seen before. So, as in some of

the tests from Chapter 6 (namely, test-suite 2), I made sure that all of the source

words used in the test bitexts had been seen at least once in the training data. For

267

the same reasons, I also made sure that all the target words had also been seen—

knowing that in addition, a translation system could normally never produce target

words which it had never seen (i.e., unless words happened to be spelled the same

in the two languages and unknown word fall-through was employed). The last step

I took, even though I knew it bore no direct relevance on the alignments in the con-

structed model, was to word-align some of the potential test bitexts using Giza++.

I then selected only bitexts which showed at least one target discontinuity (recall

that this is the only option available with this training set), with the hopes that

these same discontinuities existed in the trained model, and could thus be exploited.

I found 18 such bitexts in the potential test bitexts which I had word-aligned, and

I refer to them as test-suite 5.

As mentioned, these testing efforts also had some interesting side-effects in terms

of the implementation of new (parts of) partial parsing algorithms. Specifically, I

implemented the source partial parsing technique of first finding the longest, most

probable recognition, rather than the longest, most probable recognition beginning

with the first word (this idea was first discussed in section 6.3.3), hoping that such a

step would improve the overall accuracy. Along these same lines, I also implemented

the partial source parsing technique briefly touched on (again, in section 6.3.3) which

collects recognized source sentence parts so that they may be translated as a unit,

rather than one at a time (I refer to this technique as collecting partial source pars-

ing). This technique makes it more likely that discontinuous source transitions will

be used during the activation stage of translation (i.e., that the alignment func-

tion will be applied to them), since when using a non-collecting strategy, source

anchors recognized separately might not be present in the same activation stage

268

(since the various stages will occur more than once). These two partial source pars-

ing ideas can be used together. Lastly, so that the activated transitions produced

by a collecting partial source parsing strategy can be ordered in the absence of

better information, I implemented the third partial target parsing heuristic which I

identified in section 6.3.4, which I call the suggested-ordering heuristic, in which the

source sentence word order can be used to influence the activated target transition

order. I will touch on some of the more interesting properties of these techniques,

and the motivation for them, as I present the test results.

DC PSP PSP
TS Source Target SL Mod Mrg Method Match SA/TA Time

5 English Spanish 23.4 no no F S 0.31/0.32 21.9
5 English Spanish 23.4 yes no F S 0.34/0.34 18.7
5 English Spanish 23.4 no yes F S 0.37/0.38 14.6
5 English Spanish 23.4 yes yes F S 0.41/0.42 14.3
5 English Spanish 23.4 no no L S 0.31/0.32 17.8
5 English Spanish 23.4 yes no L S 0.34/0.34 17.9
5 English Spanish 23.4 no yes L S 0.36/0.37 15.5
5 English Spanish 23.4 yes yes L S 0.39/0.40 15.3
5 English Spanish 23.4 no no L C 0.29/0.30 3.2
5 English Spanish 23.4 yes no L C 0.32/0.33 3.2
5 English Spanish 23.4 no yes L C 0.32/0.33 2.9
5 English Spanish 23.4 yes yes L C 0.35/0.36 2.8

Table 7.3: Summary of test suite 5 results for target discontinuous alignments
key: TS=test-suite, SL=mean source sentence length, DC-Mod=adjust for
discontinuous alignments, Mrg=Merged, PSP=partial source parsing (Meth-
ods: S=standard, C=collecting; Matches: L=most-probable longest, F=most-
probable longest—with first word), SA/TA=simple-accuracy/translation-
accuracy, Time=mean run time (seconds)

269

I first experimented with target discontinuities, and present the results in Ta-

ble 7.3. I show 12 runs of six different basic configurations; there could of course

be other combinations than are shown, but I present those that I found the most

interesting. For each of the six basic configurations, I first show the test results for

the system unmodified for discontinuous alignments, then show the same configu-

ration with the discontinuous handling enabled. For example, the first line shows

the results of an unmerged system using the standard partial parsing techniques

(i.e., non-collecting) and the same longest-most-probable match containing the first

word strategy as reported in earlier tests. The next line in the table shows the

same configuration with the discontinuous handling enabled. As can be seen, the

accuracy measures improve when the discontinuity architecture is used. Following

these two lines of results, I show the results for the same configurations, but this

time using merged systems. Encouragingly, not only do we also see that the dis-

continuous handling improves the accuracy results, but that merging yields a real

benefit (although the merging result did not hold up for the source discontinuous

tests). The next two groups of four show the use of the longest-most-probable

match strategy, and the longest-most-probable match strategy together with col-

lecting partial source parsing, respectively (note that for all of the results in this

and the next table, I also used the new partial target parsing heuristic, suggested

ordering). In both of the sets of four, the same basic results hold: Discontinuous

handling improves accuracy, as does merging.

Surprisingly, however, the longest-most-probable match strategy actually

slightly degrades performance, as shown in the merging cases (the seventh and

eighth result lines in the table). I have yet to determine why this should be the

270

case and hypothesize that it may be simply a coincidence, but leave the answer for

future testing. The accuracy again lowers when the collecting method is invoked.

This should not be too surprising, since the target language model (at least in

some senses) has to do more work, without much more information. I also suspect

there may be some (negative) impact from the fact that all of the 1:0 alignments

(the empty transitions) are available at this final translation stage, leading to more

spurious deletions.

Given that both of these techniques were implemented rather quickly, I suspect I

should be able to improve their performance, and see their combination as probably

the best way to go for the model (especially since they may show dramatic improve-

ments over the non-collecting techniques for language pairs whose word orders are

quite different). Additionally, a real positive for the collecting strategy is a run time

improvement of nearly an order of magnitude better than the non-collecting strat-

egy. As discussed in section 6.4, this speed-up is due to using the last translation

stage only once (note that this result also runs counter to the tendency of lower

accuracy scores to take longer, suggesting that even faster run times will occur as

these techniques are improved). In any case, the major point to take from these

results is that where the only difference between two systems was the ability to

process discontinuous alignments, for bitexts where discontinuous alignments were

at least somewhat likely to be needed, performance improved.

When I turned to source discontinuities, results were not so easy to come by.

Reversing the translation systems in the same manner described for the tests re-

ported in Table 7.2, so that Spanish was the source language and English the target

(thus giving us hopefully some source discontinuous alignments) I ran the same

271

basic test configurations. Invariably, discontinuous alignment enabled scores were

always identical to the unenabled scores (thus I do not show these results). Why

should this be? The answer is that the relevant discontinuous alignments were never

invoked. The reason that this is the case is that such alignments are more difficult

to invoke than target discontinuous alignments. To activate a target discontinu-

ous alignment, only one source word need be recognized (recall that the Giza++

alignments are one-to-many, where there may be discontinuities in the target).

When a translation system is reversed, however, the discontinuities move to

the source language. Given the basic recognition strategy, this means that to ac-

tivate the same discontinuous alignments that existed before, the source parsing

stage would have to recognize not one word, but at least two, and these two would

never be adjacent. This is a much more difficult task, and the partial source pars-

ing algorithms have not been adapted to fully handle such a situation (indeed, an

appropriate treatment of this problem—which generalizes to full-blown regular ex-

pression matching for handling discontinuity in partial parsing, as mentioned in

section 6.3.3—is a likely dissertation topic in its own right). This means that acti-

vation of the appropriate transitions is even more dependent on very good partial

source parsing—and that the recognitions not only need to span more words, but

more than ever need to match the alignments. For example, if the English the men

are source discontinuously aligned with the Spanish hombres in the bitext shown

in (81), but the partial parsing algorithm (or any of the other algorithms which

segment, such as unknown word fall-through or the technique for breaking up long

sentences) segments in the middle of such an alignment (e.g., between good and

men), then the proper alignments would not be available to the system.

272

(81) the good men

hombres buenos

((the men:hombres)(good:buenos))

Given that proper segmentation models (such as the rift technique identified in

section 6.3.3) are beyond the scope of this research, and will still not guarantee

proper segmentation for discontinuities (i.e., in some cases, segmentation may not

be possible, given very long discontinuities), things might appear dire. But the

situation is not as bad as it seems. The recognition pattern need not match the

alignment pattern, so long as all the relevant source anchors are available at the

same time. For example, if the partial source parser recognizes first: the good

and then: men, the discontinuous alignments will still be available, if the source

transition sequences produced are used all at once to generate the appropriate

alignments. This is the reason why the collecting partial source parsing technique

was invented. In cases where source parsing is less than optimal, it still gives us

a chance to activate the appropriate alignments.13 Unfortunately, even with this

modification to the partial source parsing strategy, I was unable to demonstrate

that the modified architecture was more suitable for discontinuous alignments.

Thinking about the situation a bit more, I realized there still might be a way

to demonstrate the capability of the architecture on real test sentences. I was con-

vinced that the lack of difference between test runs on the modified and unmodified

architectures was due to the combination of the relatively poor recognitions and the

13Note that these difficulties are independent of the discontinuous alignment architecture, and are
more indicative of familiar problems that occur in the processing of single language sentences
(i.e., as opposed to being a property of bitexts), where long-distance dependencies have often
caused problems for tools such as parsers, partial-parsers, and taggers.

273

overall low-accuracy, but that the architecture was still correctly built to handle

source discontinuities which otherwise could never be processed (i.e., with a sim-

ple table and not using the brute-force techniques as described in section 7.3.3.2).

We had already seen, however, in section 7.1, that increasing translation size could

increase translation-accuracy. Also, increasing the size of the test set might yield

some bitexts where the situation would be right so that discontinuous alignments

would be activated, if permitted by the architecture. So, I doubled the size of the

translation system (to just under 3,000 Spanish and English verses), and using this

new system, randomly selected 50 test bitexts as before (where source and target

words were known to the system, and Giza++ would align each bitext with at least

one target discontinuity). This test set is called test-suite 6. I then reversed the

translation system, and ran the tests, translating from Spanish to English.

DC PSP PSP
TS Source Target SL Mod Mrg Method Match SA/TA Time

6 Spanish English 23.5 no no L C 0.34/0.35 13.5
6 Spanish English 23.5 yes no L C 0.34/0.36 12.7

Table 7.4: Summary of test suite 6 results for source discontinuous alignments
key: TS=test-suite, SL=mean source sentence length, DC-Mod=adjust for
discontinuous alignments, Mrg=Merged, PSP=partial source parsing (Meth-
ods: C=collecting; Matches: L=most-probable longest), SA/TA=simple-
accuracy/translation-accuracy, Time=mean run time (seconds)

The test-suite 6 results are shown in Table 7.4, where for brevity, we show just

the results for an unmerged configuration, using collecting partial parsing and a

274

longest-most-probable match strategy (results for the other configurations patterned

similarly). On four of the 50 sentences, the translation-accuracy improved when the

discontinuous alignment modifications were enabled. On none of the sentences was

the performance degraded. These results cause only a slight change in the overall

accuracy numbers shown in the table (although of course small changes are more

significant given a larger number of test sentences), but serve to make the point.

The modified architecture correctly processes source discontinuous alignments, and

the unmodified architecture does not. The degree to which such differences will

be exploited in a translation situation is dependent, as mentioned, on the overall

quality of other translation operations, such a recognition, as well as on the over-

all prevalence of discontinuous alignments in the training data. Nevertheless, the

results sufficiently demonstrate that the architecture has extended the coverage of

the model as desired.

Thus, the results shown in Tables 7.2–7.4 demonstrate that the extensions to

the model are successful, for both target discontinuous and source discontinuous

alignments. The linked automata approach, so modified, handles any possible type

of word alignment, leaving future development of the model free to focus on im-

proving translation accuracy. These results epitomize one of the basic strengths of

the model: Its straightforward architecture of decoupled language and alignment

models allows for relatively easy modifications which can expand its coverage. This

then leads us to the final section of the dissertation, where I briefly assess the linked

automata model’s present and its future.

275

7.4 Conclusions: Where the Model Stands and a Look to

the Future

In this final section of the dissertation—having completed a preliminary exploration

into the linked automata MT model—I will spend a moment considering how we

got here, and what directions this research will next take.

7.4.1 The Present

The linked automata model was created with the intention of filling a void in data-

driven MT. Probabilistic finite-state machine translation systems, while limited

in power, have shown some potential to serve as the foundations of MT systems.

Finite-state techniques are attractive because they can often yield very efficient

processing within a well-understood and well-researched domain. Most finite-state

MT applications have employed transducers in one form or another. It is the na-

ture of these devices to tightly couple source and target language words by means

of single transitions. In essence such devices used as MT systems are intended to

combine language and translation models into one. As was demonstrated, this cou-

pling makes the direct representation of word-order differences between languages

quite difficult, and poses additional challenges for the representation of alignments

between sequences of words, in particular those that are discontinuous.

The linked automata MT model was created in order to expand such finite-state

MT approaches, so that ordering differences and discontinuities can be directly

stored in a model. By breaking apart the source and target language models from

their alignment, this augmented finite-state device achieves the flexibility necessary

for storing all of the possible word alignment relationships that may occur in bitexts.

276

In addition to providing this model which is more expressive than pure trans-

ducer-based approaches, I have also provided detailed descriptions of the means by

which it may be constructed, used as a translation device, preliminarily generalized,

and expanded in terms of both information used and coverage, as well as presented

detailed algorithms and implementation details for its efficient use at crucial points

in the MT process. Ideally I have also identified those aspects of the model which

remain problematic and suggested possible steps for improvements.

In addition, I have attempted to demonstrate how the separation of language

from alignment models allows the linked automata system to be treated as a

database from which translation information can be mined. It is in this sense

that the linked automata form the stone which serves as the catalyst for the good

soup to come—as in the folktale. Hopefully too I have been able to demonstrate

in this chapter and the preceding one how the model can be extended beyond its

modest means, both in terms of the use of techniques for making use of partial

results and in terms of the use of additional linguistic information. In this manner

the model may be expanded beyond its finite-state framework.

The linked automata model is a data-driven statistical approach which makes

little use of syntactic or semantic information in a traditional sense. As such, its

place in the world of machine translation is clear, in that in its most basic form—like

many other finite-state models—it does not have sufficient means to fully process

unrestricted natural language translation. My goal in this research, however, was

to begin to explore how far the system could be pushed and to demonstrate that

the model can be further augmented to serve as a foundation for more powerful

systems.

277

7.4.2 The Future

One of the keys to improving the model’s performance will be to improve its abil-

ity to generalize. Better generalization will have the twofold benefit of improving

scalability (i.e., it will keep the model to a reasonable size, although not necessarily

reduce search space) and coverage. In the model’s future there will also need to be

more efficient techniques for translation, which will likely involve improved methods

for handling null alignments. Along with these developments, additional testing on

the use of more linguistic information will be called for, so that the model operates

less blindly.

As I write the last sentences of this chapter, a number of ideas for improv-

ing the system come to mind—from better implementation techniques—to cleaner

definitions of the model—to ways to incorporate more information—to ways to hy-

bridize the model with other MT techniques and human input. Some of these ideas

will hopefully prove promising in future research. The ideas fall into two major

directions in which the linked automata research may turn.

The first research direction is the evolution of the linked automata model as an

MT system. This dissertation has presented a number of ideas for expansion and

improvement, and clearly portions of the overall architecture and algorithms can be

made better. Of equal importance is the second research direction: Linked automata

as formal devices need to be investigated, apart from their use as models for machine

translation. Certainly different classes of linked automata can be defined, each with

particular properties in terms of their expressive power, efficiency, and ability to be

278

combined and augmented. Research in either of these directions will ideally inform

the other. I hope that the dissertation has provided enough of a kernel from which

such research can be continued, both by me and by others.

279

Appendix A

TRANSLATION EXAMPLES OF VARIOUS

TRANSLATION-ACCURACIES

To help give an idea of what the translation-accuracy numbers reported in the

dissertation mean (as well as to acquaint readers with the type of data used), in

this Appendix I present a small sample of actual translations of test sentences. The

test sentences all come from Bible verses on which the system was not trained,

and were drawn from various tests run for the dissertation, as produced by linked

automata models trained on approximately 3,000 Biblical verses.

Two examples are shown for each of five different translation-accuracy ranges,

where 0.00 is the worst possible score, and 1.00 is a perfect score.1 For systems

trained on 3,000 verses and test sentences where all of the source words had been

seen at least once during training, typical translation-accuracies were in the low

.40s, at the close of the research reported in the dissertation.

In each range one of the examples is from English to Spanish, and the other

from Spanish to English. Translation-accuracy scores and ranges are reported to

the left, and the source sentence, the reference translation (that from the Bible),

and the resulting translation that the given system produced are to the right.2

1Translation-accuracy is defined in section 5.4, on page 188.

2All text is shown in lower-case, since for the results reported in the dissertation, the systems
ignored case distinctions (as well as punctuation).

280

.00–.19
.13 Source and eleazar the son of aaron the priest shall be chief over the

chief of the levites and have the oversight of them that keep
the charge of the sanctuary

1) Reference el principal de los jefes de los levitas era eleazar hijo del sacer-
dote aarón dirigente de los que estaban a cargo del santuario

Result eleazar hijo del sacerdote aarón jefe sobre jefe de levitas y de-
volved personalmente de los que cumpliréis la ordenanza de

.17 Source todo su fruto servirá de comida a tu ganado y a los animales
que hay en tu tierra

2) Reference and for thy cattle and for the beast that are in thy land shall
all the increase thereof be meat

Result all fruit thereof anoint eaten thy cattle and abram beast that
is in thy land

.20–.39
.21 Source and if it be any unclean beast of which they do not offer a

sacrifice unto the lord then he shall present the beast before
the priest

3) Reference si se trata de algún animal inmundo que no se puede presentar
como sacrificio a jehovah entonces el animal será puesto delante
del sacerdote

Result si trae un sacrificio alguna inmunda animal del cual no jehovah
presente animales delante sacerdote

.39 Source también ofrecerá a jehovah el carnero como sacrificio de paz
junto con la cesta de tortas sin levadura luego presentará su
ofrenda vegetal y su libación

4) Reference and he shall offer the ram for a sacrifice of peace offerings unto
the lord with the basket of unleavened bread the priest shall
offer also his meat offering and his drink offering

Result and offer unto the lord the ram for a sacrifice of peace besides
basket of cakes unleavened and bring his offering meat and his
libación

281

.40–.59
.43 Source este mes os será el principio de los meses será para vosotros el

primero de los meses del año

5) Reference this month shall be unto you the beginning of months it shall
be the first month of the year to you

Result this month be to you beginning of be holy unto you months
first the year

.50 Source and he said unto his people behold the people of the children
of israel are more and mightier than we

6) Reference he aqúı el pueblo de los hijos de israel es más numeroso y fuerte
que nosotros

Result sus pueblo de los hijos de israel has hecho más poderoso que
nosotros

.60–.79
.61 Source then will i remember my covenant with jacob and also my

covenant with isaac and also my covenant with abraham will i
remember and i will remember the land

7) Reference yo me acordaré de mi pacto con jacob y me acordaré de mi
pacto con isaac y de mi pacto con abraham y me acordaré de
la tierra

Result entonces yo me acordaré de mi pacto con jacob también mi
pacto con isaac mi pacto con abraham yo acuérdate me acor-
daré tierra

.79 Source nuestros niños nuestras mujeres nuestros rebaños y todo nue-
stro ganado quedarán alĺı en las ciudades de galaad

8) Reference our little ones our wives our flocks and all our cattle shall be
there in the cities of gilead

Result our little our wives our flocks and all our cattle quedarán there
in the cities of galaad

282

.80–1.00
.83 Source manda a los hijos de israel que te traigan aceite de olivas claro

y puro para la iluminación a fin de hacer arder continuamente
las lámparas

9) Reference command the children of israel that they bring unto thee pure
oil olive beaten for the light to cause the lamps to burn con-
tinually

Result command children of israel that they bring thee pure oil olive
beaten for the light to cause the lamp to burn always

1.00 Source and every raven after his kind

10) Reference todo cuervo según su especie

Result todo cuervo según su especie

283

BIBLIOGRAPHY

Aho, Alfred V., & Jeffrey D. Ullman. 1972. The Theory of Parsing,
Translation, and Compiling, Volume I.: Parsing . Englewood Cliffs, NJ: Prentice-
Hall, Inc.

Ahrenberg, Lars, Magnus Merkel, Anna S̊agvall Hein, & Jörg Tie-

demann. 1999. Evaluation of LWA and UWA. Working Papers in Computa-
tional Linguistics and Language Engineering, Department of Linguistics, Uppsala
University 15.

——, Magnus Merkel, Anna S̊agvall Hein, & Jörg Tiedemann. 2000.
Evaluation of word alignment systems. In Proceedings of the Second International
Conference on Linguistic Resources and Evaluation (LREC-2000), 1255–1261,
Athens, Greece.

Akiba, Yasuhiro, Kenji Imamura, & Eiichiro Sumita. 2001. Using
multiple edit distances to automatically rank machine translation output. In
Proceedings of the MT Summit VIII , Santiago de Compostela, Spain.

Al-Onaizan, Yaser, Jan Curin, Michael Jahr, Kevin Knight, John D.

Lafferty, I. Dan Melamed, Franz-Josef Och, David Purdy, Noah A.

Smith, & David Yarowsky. 1999. Statistical machine translation, final
report, JHU workshop. (available at http://www.clsp.jhu.edu/ws99/).

Alshawi, Hiyan, Srinivas Bangalore, & Shona Douglas. 1998. Learning
phrase-base head transduction models for translation of spoken utterances. In
Proceedings of the fifth International Conference on Spoken Language Processing
(ICSLP98 , 2767–2770, Sydney.

——, ——, & ——. 2000. Learning dependency translation models as collections
of finite-state head transducers. Computational Linguistics 26.45–60.

——, & Adam Buchsbaum. 1997. A comparison of head transducers and
transfer for a limited domain translation application. In Proceedings of the 35th
Annual Meeting of the ACL, 360–365, Madrid. ACL.

284

——, & Shona Douglas. 2000. Learning dependency transduction models
from unannotated examples. Philosophical Transactions of the Royal Society,
Series A: Mathematical, Physical, and Engineering Sciences 358.1357–1372.

Amengual, Juan Carlos, Asunción Castaño, Antonio Castellanos,
Victor Manuel Jiménez, David Llorens, Andrés Marzal, Federico

Prat, Juan Miguel Vilar, José Miguel Bened́ı, Francisco Casacu-

berta, Moisés Pastor, & Enrique Vidal. 2000. The EuTrans-I spoken
language translation system. Machine Translation 15.75–103.

——, & Enrique Vidal. 1996. Two different approches for cost-efficient
viterbi parsing with error correction. In Advances in Structural and Syntacti-
cal Pattern Recognition: 6th International Workshop, SSPR ’96 , ed. by Petra
Perner, Patrick Wang, & Azriel Rosenfeld, 30–39. Berlin: Springer.

Arnold, D., L. Balkan, R. Lee Humphreys, S. Meijer, & L. Sadler.
1994. Machine Translation: An Introductory Guide. Manchester, UK: NCC
Blackwell.

Bangalore, Srinivas, & Giuseppe Riccardi. 2001. A finite-state approach
to machine translation. In Proceedings of the 2nd Meeting of the North American
Chapter of the Association for Computational Linguistics, 135–142, Pittsburgh,
PA.

Baum, L.E. 1972. An inequality and associated maximization technique in
statistical estimation of probabilistic functions of a Markov process. In Inequali-
ties 3: Proceedings of the 3rd Symposium on Inequalities , 1–8, Los Angeles, CA.
Academic Press.

Berger, Adam L., Peter F. Brown, Stephen A. Della Pietra, Vin-

cent J. Della Pietra, John R. Gillett, John D. Lafferty, Robert L.

Mercer, Harry Printz, & Luboš Ureš. 1994. The Candide system for
machine translation. In Proceedings from the 1994 ARPA Workshop on Human
Language Technology , 157–162.

——, Stephen A. Della Pietra, & Vincent J. Della Pietra. 1996.
A maximum entropy approach to natural language processing. Computational
Linguistics 22.37–71.

Booth, A. Donald, & William N. Locke. 1955. Historical introduction.
In Machine Translation of Languages, ed. by William N. Locke & A. Donald
Booth, 1–14. Cambridge, MA: The Technology Press of MIT.

285

Brants, Thorsten. 2000. TnT – a statistical part-of-speech tagger. In Pro-
ceedings of the Sixth Applied Natural Language Processing Conference (ANLP-
2000), Seattle, WA.

Brew, Chris, & Henry S. Thompson. 1994. Automatic evaluation of
computer generated text: A progress report on the TextEval project. In Human
Language Technology: Proceedings of the Workshop, ed. by C. Weinstein, 108–
113. ARPA/ISTO.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra,
& Robert L. Mercer. 1993. The mathematics of statistical machine transla-
tion: Parameter estimation. Computational Linguistics 19.263–311.

Brown, Ralf D. 1997. Automated dictionary extraction for “knowledge-
free” example-based translation. In Proceedings from the Seventh International
Conference on Theoretical and Methodological Issues in Machine Translation,
TMI ’97 , 111–118, Santa Fe, NM.

—— 1999. Adding linguistic knowledge to a lexical example-based translation
system. In Proceedings from the Eighth International Conference on Theoretical
and Methodological Issues in Machine Translation, TMI ’99 , 22–32, Chester, UK.

—— 2000. Automated generalization of translation examples. In Proceedings
of the 18th International Conference on Computational Linguistics (COLING-
2000), 125–131, Saarbrücken, Germany.

Castellanos, Antonio, Isabel Galiano, & Enrique Vidal. 1994. Ap-
plication of OSTIA to machine translation tasks. In Grammatical Inference
and Applications: Second International Colloquium, ICGI-94 , ed. by Rafael C.
Carrasco & José Oncina, 93–105. Berlin: Springer-Verlag.

Chen, Stanley F. 1993. Aligning Sentences in Bilingual Corpora Using
Lexical Information. In Proceedings of the 31st Annual Meeting of the ACL,
9–16, Columbus, Ohio.

Corston-Oliver, Simon, Michael Gamon, & Chris Brockett. 2001.
A machine learing approach to the automatic evaluation of machine translation.
In Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics , 140–147, Toulouse, France.

Dunning, Ted. 1993. Accurate methods for the statistics of surprise and
coincidence. Computational Linguistics 19.61–74.

286

Gale, William A., & Kenneth W. Church. 1993. A program for aligning
sentences in bilingual corpora. Computational Linguistics 19.75–102.

Germann, Ulrich, Michael Jahr, Kevin Knight, Daniel Marcu, &
Kenji Yamada. 2001. Fast decoding and optimal decoding for machine trans-
lation. In Proceedings of the 39th Annual Meeting of the Association for Com-
putational Linguistics, 228–235, Toulouse, France.

Gold, E. Mark. 1967. Language identification in the limit. Information and
Control 10.447–474.

Grefenstette, Gregory. 1999. The world wide web as a resource for
example-based machine translation tasks. In Translating and the Computer
21: Proceedings from the 21st International Conference on Translation and the
Computer , London. ASLIB.

Gross, Alex. 1992. Limitations of computers as translation tools. In Comput-
ers in Translation: A Practical Appraisal , ed. by John Newton, 96–130. London:
Routledge.

Hovy, Eduard. 1999. Toward finely differentiated evaluation metrics for
machine translation. In Proceedings of the EAGLES Workshop on Standards
and Evaluation, 127–133, Pisa, Italy. draft of January 1999.

Hutchins, W. John. 1986. Machine Translation: Past, Present, Future.
Chichester, UK: Ellis Horwood Limited.

—— (ed.) 2000a. Early Years in Machine Translation, volume 97 of Studies in
the History of the Language Sciences . Amsterdam: John Benjamins Publishing
Co.

——. 2000b. The first decades of machine translation. In Early Years in Machine
Translation, ed. by W. John Hutchins, volume 97 of Studies in the History of
the Language Sciences, 1–15. Amsterdam: John Benjamins Publishing Co.

——. 2000c. Yehoshua Bar-Hillel: A philospher’s contribution to machine
translation. In Early Years in Machine Translation, ed. by W. John Hutchins,
volume 97 of Studies in the History of the Language Sciences, 299–312. Amster-
dam: John Benjamins Publishing Co.

——, & Harold L. Somers. 1992. An Introduction to Machine Translation.
London, UK: Academic Press Limited.

287

Johnston, Michael. 1998. Unification-based multimodal parsing. In Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguistics
and the 17th International Conference on Computational Linguistics, 624–630,
Montreal, Quebec, Canada.

Jones, Daniel. 1996. Analogical Natural Language Processing . London,
England: UCL Press.

Kallmeyer, Laura. 2000. A query tool for syntactically annotated corpora.
In Proceedings of the Joint SIGDAT conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, 190–198, Honk Kong.

Kay, Martin. 1982. Machine translation. American Journal of Computational
Linguistics 8.74–78.

——. 1997a. It’s still the proper place. Machine Translation 12.35–38.

——. 1997b. The proper place of men and machines in language translation.
Machine Translation 12.3–23. reprint of 1980 Xerox PARC working paper.

——, Jean Mark Gawron, & Peter Norvig. 1994. Verbmobil: A Transla-
tion System for Face-to-Face Dialog . CSLI Lecture Notes Number 33. Stanford,
CA: CSLI.

King, Margaret. 1997. Evaluating translation. In Machine Translation and
Translation Theory , ed. by Christa Hauenschild & Susanne Heizmann, 251–263.
Berlin: Mouton de Gruyter.

Knight, Kevin. 1997. Automating knowledge acquisition for machine trans-
lation. AI Magazine 18.81–96.

——. 1999. A statistical machine translation tutorial workbook. (available at
http://www.isi.edu/natural-language/mt/wkbk.rtf).

——, & Yaser Al-Onaizan. 1998. Translation with finite-state devices. In
Machine Translation and the Information Soup: Proceedings of the Third Con-
ference of the Association of Machine Translation in the Americas, AMTA ’98 ,
ed. by David Farwell, Laurie Gerber, & Eduard Hovy. Berlin: Springer-Verlag.

Kruskal, Joseph. 1999. An overview of sequence comparison. In Time
Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, ed. by David Sankoff & Joseph Kruskal, 1–44. Stanford: CSLI
Publications, Reissued edition with an introduction by John Nerbonne.

288

Macklovitch, Elliott, & Marie-Louise Hannan. 1998. Line ’em up:
Advances in alignment technology and their impact on translation support tools.
Machine Translation 13.41–57.

Manning, Christopher D., & Hinrich Schütze. 1999. Foundations of
Statistical Natural Language Processing . Cambridge, MA: MIT Press.

Marcu, Daniel. 2001. Towards a unified approach to memory- and statistical-
based machine translation. In Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, 378–385, Toulouse, France.

McTait, Kevin. 2001. Linguistic knowledge and complexity in an EBMT
system based on translation patterns. In Proceedings of the MT Summit VIII ,
Santiago de Compostela, Spain.

Melamed, I. Dan. 1998. Manual annotation of translational equivalence: The
Blinker project. Technical Report #98-07, IRCS, University of Pennsylvania.

——. 2001. Empirical Methods for Exploiting Parallel Texts. Cambridge, MA:
MIT Press.

Melby, Alan. 1997. Some notes on the proper place of men and machines in
language translation. Machine Translation 12.29–34.

Mel’čuk, Igor A. 1988. Dependency Syntax: Theory and Practice. Albany,
NY: State University of New York Press.

—— 2000. Machine translation and formal linguistics in the USSR. In Early
Years in Machine Translation, ed. by W. John Hutchins, volume 97 of Studies
in the History of the Language Sciences , 205–226. Amsterdam: John Benjamins
Publishing Co.

Müller, Stefan. to appear. Continuous or discontinuous constituents? A
comparison between syntactic analyses for constituent order and their processing
systems. Language and Computation .

Nagao, Makoto. 1984. A framework of a mechanical translation between
Japanese and English by analogy principle. In Artificial and Human Intelli-
gence: Edited Review Papers presented at the International NATO Symposium
on Artificial and Human Intelligence, held in Lyon, France, October, 1981 , ed.
by A. Elithorn & R. Banerji, 173–180. Amsterdam: North-Holland.

289

Niessen, Sonja, Franz Josef Och, Gregor Leusch, & Hermann Ney.
2000. An evaluation tool for machine translation: Fast evaluation for MT re-
search. In Proceedings of the 2nd Internation Conference of Language Resources
and Evaluation, 39–45, Athens, Greece.

Nirenburg, Sergei, Constantine Domashnev, & Dean J. Grannes.
1993. Two approaches to matching in example-based machine translation. In
Fifth International Conference on Theoretical and Methodological Issues in Ma-
chine Translation, TMI ’93: MT in the next generation, 47–57, Kyoto, Japan.

Och, Franz Josef, & Hermann Ney. 2000. Improved statistical alignment
models. In Proceedings of the 38th Annual Meeting of the ACL, 440–447, Hong
Kong, China.

Oettinger, Anthony G. 2000. Machine translation at harvard. In Early
Years in Machine Translation, ed. by W. John Hutchins, volume 97 of Studies
in the History of the Language Sciences , 73–86. Amsterdam: John Benjamins
Publishing Co.

Oncina, José, Pedro Garćıa, & Enrique Vidal. 1993. Learning subse-
quential transducers for pattern recognition interpretation tasks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 15.448–458.

——, & Miguel Angel Varó. 1996. Using domain information during the
learning of a subsequential transducer. In Grammatical Inference: Learning Syn-
tax from Sentences: Third International Colloquium, ICGI-96 , ed. by Laurent
Miclet & Colin de la Higuera, 301–312. Berlin: Springer.

Pereira, Fernando C. N., & Rebecca N. Wright. 1997. Finite-state
approximation of phrase-structure grammars. In Finite-State Language Process-
ing , ed. by Emmanuel Roche & Yves Schabes, 149–173. Cambridge, MA: MIT
Press.

Pierce, John R., John B. Carroll, Eric. P. Hamp, David G. Hays,
Charles F. Hockett, Anthony G. Oettinger, & Alan Perlis. 1966.
Language and Machines: Computers in Translation and Linguistics: A Report by
the Automatic Language Processing Advisory Committee (ALPAC), Divison of
Behavioral Sciences, National Research Council, Publication 1416 . Washington,
DC: National Academy of Sciences.

Rhodes, Ida. 1967. The importance of the glossary storage in machine
translation. In Machine Translation, ed. by A. D. Booth, 429–449. Amsterdam:
North-Holland Publishing Co.

290

Roche, Emmanuel, & Yves Schabes. 1997. Introduction. In Finite-
State Language Processing , ed. by Emmanuel Roche & Yves Schabes, 1–65.
Cambridge, MA: MIT Press.

Rosetta, M.T. 1994. Compositional Translation. Dordrecht, The Netherlands:
Kluwer.

Sanchis, Alberto, David Picó, Joan Miquel del Val, Ferran Fab-

regat, Jesús Tomás, Moisés Pastor, Francisco Casacuberta, & En-

rique Vidal. 2001. A morphological analyser for machine translation based
on finite-state transducers. In Proceedings of the MT Summit VIII , Santiago de
Compostela, Spain.

Sato, Satoshi, & Makoto Nagao. 1990. Toward memory-based translation.
In Proceedings of the 13th International Conference on Computational Linguistics
(COLING-90), 247–252, Helsinki, Finland.

Schiehlen, Michael. 1998. Learning tense translation from bilingual corpora.
In Proceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and the 17th International Conference on Computational Linguistics,
1183–1187, Montreal, Quebec, Canada.

Shannon, Claude E. 1948. A mathematical theory of communication. Bell
System Technical Journal 27.379–423,623–656.

Somers, Harold L. 1999. Review article: Example-based machine translation.
Machine Translation 14.113–157.

Vanni, Michelle, & Florence Reeder. 2000. How are you doing? a
look at MT evaluation. In Envisioning Machine Translation in the Information
Future: 4th Conference of the Association for Machine Translation in the Amer-
icas, AMTA 2000 , ed. by John S. White, Lecture Notes in Artificial Intelligence
#1934, 109–116. Berlin: Springer.

Vasconcellos, Muriel. 2000. The Georgetown project and Léon Dostert:
Recollections of a young assistant. In Early Years in Machine Translation, ed. by
W. John Hutchins, volume 97 of Studies in the History of the Language Sciences,
87–96. Amsterdam: John Benjamins Publishing Co.

Veale, Tony, & Andy Way. 1997. Gaijin: A bootstrapping, template-drive
approach to example-based MT. In Proceedings of NeMNLP ’97: New Methods
in Natural Language Processing , Sofia, Bulgaria.

291

Vilar, Juan Miguel, Victor Manuel Jiménez, Juan Carlos Amen-

gual, Antonio Castellanos, David Llorens, & Enrique Vidal. 1999.
Text and speech translation by means of subsequential transducers. In Extended
Finite State Models of Language, ed. by Andras Kornai, 121–139. Cambridge:
Cambridge University Press.

Vogel, Stephan, & Hermann Ney. 2000. Translation with cascaded finite
state transducers. In Proceedings of the 38th Annual Meeting of the ACL, 23–30,
Hong Kong, China.

——, Franz Josef Och, Christof Tillmann, Sonja Niessen, Hassan

Sawaf, & Hermann Ney. 2000. Statistical methods for machine translation.
In Verbmobil: Foundations of Speech-to-Speech Translation, ed. by Wolfgang
Wahlster, 377–393. Berlin: Springer-Verlag.

Weaver, Warren. 1955. Translation. In Machine Translation of Languages,
ed. by William N. Locke & A. Donald Booth, 15–23. Cambridge, MA: The
Technology Press of MIT. Reprint of memorandum of July 15, 1949.

White, John S. 2000. Contemplating automatic MT evaluation. In Envision-
ing Machine Translation in the Information Future: 4th Conference of the Asso-
ciation for Machine Translation in the Americas, AMTA 2000 , ed. by John S.
White, Lecture Notes in Artificial Intelligence #1934, 100–108. Berlin: Springer.

——, & A. O’Connell, Theresa. 1993. Evaluation of machine translation.
In Proceedings of the 1993 ARPA Workshop on Human Language Technology ,
206–210, Princeton, NJ.

Wilks, Yorick. 1992. SYSTRAN: It obviously works but how much can it
be improved? In Computers in Translation: A Practical Appraisal , ed. by John
Newton, 166–188. London: Routledge.

Wu, Dekai. 1997. Stochastic inversion transduction grammars and bilingual
parsing of parallel corpora. Computational Linguistics 23.377–403.

Yamada, Kenji, & Kevin Knight. 2001. A syntax-based translation model.
In Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics , 523–529, Toulouse, France.

Yngve, Victor H. 1955. Syntax and the problem of multiple meaning. In
Machine Translation of Languages, ed. by William N. Locke & A. Donald Booth,
208–226. Cambridge, MA: The Technology Press of MIT.

292

—— 1967. Mt at M.I.T. 1965. In Machine Translation, ed. by A.D. Booth,
451–523. Amsterdam: North-Holland Publishing Company.

—— 2000. Early reseach at M.I.T.: In search of adequate theory. In Early
Years in Machine Translation, ed. by W. John Hutchins, volume 97 of Studies
in the History of the Language Sciences , 39–72. Amsterdam: John Benjamins
Publishing Co.

293

Subject Index

acceptor, see automata

accuracy, see translation-accuracy,

simple-accuracy

activation, see transition

acyclicity, see automata

add-to-fsa, 139

adjacency, 76, 77, 80, 84, 128, 187,

218, 253, 255, 257, 259, 260,

272

adjacency list, 211

adjacency matrix, 210

agglutinative, 186

algorithms, see linked automata, word

alignment

alignment, 69–113

0:1, 1:0, 1:1, 2:1, 1:2, 2:2, 74

continuous, 144, 254, 255

crossing, 48, 76, 81, see also align-

ment: swapping

discontinuous, 4, 77, 80, 89, 90,

93, 94, 111, 128, 137, 144, 165,

172, 220, 222, 224, 242, 252–

257, 259, 260, 263–270, 272–

276

many-to-many, 74

many-to-one, 74

missing, 96, 98, 99, 101, 109

none-to-one, 74

null alignment, 33, 43, 74, 77, 92,

93, 95, 96, 99, 104, 105, 109,

112, 113, 135, 147, 155, 204,

236, 278

one-to-many, 74

one-to-none, 74

one-to-one, 74

sentence alignment, 28, 71, 72–73,

74, 77

swapping, 76, 77, 80, 81, 84, 87,

111, 204

word alignment, 26, 28, 29, 32, 36,

40, 41, 52, 53, 56, 74–113, 116,

134, 138, 149, 150, 152, 155,

156, 162, 167, 169, 170, 172,

183, 188, 243, 249, 251, 252,

257–276

alignment (as subpart of word

alignment), 74–76, 255

conservative, 97, 98–100, 103,

105, 106, 108, 113

CYK, 78–87, 87, 89, 94, 111–

113, 190, 231–235, 237–240,

251

evaluation, 3, 86, 95–113, 151,

187

Giza++, 87–89, 94, 111–113,

190, 231–235, 238–240, 243,

249–253, 264, 268, 272, 274

gold standard, 3, 89, 90, 95, 96,

99, 101, 108, 111–113, 183

hand alignment, 3, 79, 86, 89–

95, 96, 97, 110–113, 183, 253

alignment function, see linked au-

tomata

alignment probability, 33, see also

linked automata

alignment table, see linked automata

ALPAC, 8, 9, 174–176, 182

ambiguity, 14–17, 90

294

analogy principle, analogy-based, see

example-based machine trans-

lation

analysis, see example-based machine

translation

anchor, 76, 77, 255, 256, 267, 268, 273

annotation, 26, 90, 91, 96, 100, 111

Association for Computational Lin-

guistics, 10

Association for Machine Translation

and Computational Linguis-

tics, 10

asynchrony, 47, 50, 51, 117, 118

automata, 120–123, see also linked au-

tomata

acceptor, 42, 43

acyclicity, 121–123, 195–197, 200,

201

construction, 139

add-to-fsa, 139

cyclicity, 119, 122, 123, 196, 201

deterministic, 121, 210, 211, 213

final state, 121, 121, 131, 142, 148,

153–155, 161, 193, 206, 208,

209, 224

probability, 127, 131–133, 136,

140

generation, 155, 156, 158, 222,

226, 227, 237

merging, 192–197, 215, see also

linked automata

minimization, 139, 194

probability, 125–127, 130–136

recognition, 121–124, 129, 131–

134, 137, 138, 142, 143, 149,

157, 168, 192, 194, 204, 206,

208, 209, 212–220, 223, 226,

229, 234–237, 248, 262, 267,

268, 272, 273, 275

recognize-next1, 213

recognize-next2, 214

recognize1, 213

recognize2, 214

recognize3, 216

start-state, 121, 131, 140, 142,

153–155, 161, 193, 208, 209,

211, 224, 225, 229

transition function, see transition

Bayes’ theorem, 30

beam search, 35, 144, 147, 148, 236

begin state, 121

Bible, 71–73, 81, 87, 91, 93, 95, 111,

140, 189, 216, 232, 233, 238,

241, 244, 280

bilingual corpora, 38, 56, 71, 169

bilingual dictionary, 65, 69

bilingual lexicon, 98, 110

bit vector, 84, 153, 159–161, 259

bitext, 28

aligned, 70

Blinker project, 90, 91

boundary friction, 64, 66

breakpoints, 208, 219, 221

build-translation-system, 138

Candide, 28, 30, 116, see also IBM

model

Cantonese, 72

cartesian product, 76, 92, 106

cascade, see transducer

case-based, see example-based ma-

chine translation

295

cept, 256

chart parsing, 81, 154, 158, 161

Chinese, 5

collecting partial source parsing, 268–

271, 273, 274

collocation, 18, 86, 246

COMIT, 20

computational linguistics, 1, 9, 10, 115

conservative word alignment, see

alignment: word alignment

construction, see automata, linked au-

tomata: training

context-free grammar, 57

context-free language, 39, 48, 119, 165

contiguous, see adjacency

controlled language, 13

corpora, 22, 26, 38, 56, 57, 65, 69–71,

79, 81, 87, 94, 104, 107, 110,

127, 140, 169, 239, 247, 248

parallel, 3, 26, 28, 35, 40, 60, 67,

69–71, 104

cyclicity, see automata

CYK, see alignment: word alignment

DARPA, 176, 182

data-driven MT, see machine transla-

tion: empirical

data-sparseness, 78, 86, 246

DC table, see linked automata: align-

ment table

decoding, 34, 43, 44, 57, 141, 169

deficient, 34, 98

deletion, 79, 86, 109, 110, 187

dependency grammar, 50–53, 55, 56,

166–168

depth-first, 212, 213

determiner, 19, 239

deterministic, 166, see also automata

discontinuous constituents, 255

discontinuous, discontinuity, see align-

ment

distortion, 33, 34, 41, 44, 163

distortion, 32

do-construction-merge, 202

do-trans-system-merge, 203

EBMT, see example-based machine

translation

edge, 45, 82–84

edit-distance, 60, 64, 109, 110, 177,

178, 180, 186, 186, 187, 188,

219, 223

efficiency, 40, 41, 73, 110, 116, 137,

159, 165, 166, 169, 179, 181,

182, 184, 185, 189, 192, 196,

201, 209, 216, 217, 220, 227,

236, 237, 252, 276–278

ellipsis, 17

EM algorithm, 32

empirical MT, see machine translation

empty transition, see transition

end state, 121

England, 6

English, 5, 6, 10, 15, 17–19, 24, 28–31,

33, 35, 38, 42, 43, 45, 48, 54,

57, 58, 62, 63, 70–72, 75, 80,

91, 93, 94, 102, 111, 117, 118,

140, 175, 176, 183, 186, 189,

216, 223, 231–233, 244, 248–

250, 253, 254, 256, 264, 271,

272, 274, 280

epsilon transition, see transition

error correcting parsing, 49, 116

error model, 49, 166

296

EURATOM, 9

Europe, 9, 10

evaluation, see machine translation

example-based machine translation,

11, 26, 27, 60–68, 162, 170–

172, 185, 221

analysis, 61, 63, 67

matching, 60, 61, 63–67, 185

recombination, 60, 61, 64, 66, 67,

171, 172

Exodus, 87

experience-based, see example-based

machine translation

extract-best-tran, 230

faithfulness, 175

feasibility evaluation, 179, 180, 230

fertility, 33, 42, 44, 99, 163

fidelity, 175, 176, 180–182

final state, see automata

finite-state, 2, 27, 36–44, 49, 56–60,

116, 119, 120, 162, 164–166,

193, 254, 257, 276, 277

finite-state MT, see machine transla-

tion

Finnish, 19, 72

flattening, 106, 106, 107, 109

fragment, 61–64, 66, 67, 131–133,

136, 161, 192, 207, 209,

210, 213–219, 224, 225, 236,

239, 245, see also increased-

coverage techniques

probability, 121, 125, 130–134,

136

French, 10, 18, 28–31, 33, 34, 39, 43,

45, 70, 71, 75, 91, 117, 118,

183, 223

frequency, 78–81, 86, 127

fsa-merge-okay, 197

full SWS, 153, 155, 159–161, 224, 225,

228, 259, 266, see also source-

word-store

g-score, 78, 79, 85, 86

generalization, 2, 4, 23, 25, 27, 45–

47, 50, 53, 59, 64–67, 115,

116, 120, 121, 123, 131, 137,

140, 163, 166–169, 183, 184,

191–241, 242, 244, 245, 247,

249, 251, 252, 261, 277, 278,

see also merging, increased-

coverage

techniques

generation, 61, 98, 99, see also au-

tomata

Genesis, 81, 87, 93, 94, 111, 243, 253,

254, 264

Georgetown, 6, 8, 10

German, 19, 58, 72, 80, 119, 253, 254,

256

get-best-transition-set, 229

Giza++, see alignment: word align-

ment

gold standard, see alignment: word

alignment

hand-crafted/hand-coded, 10, 25, 26,

35, 38, 58–60, 62, 65, 67, 69,

115, 164, 247

hash table, 155, 211, 212, 215, 216

head transducer, see transducer

heuristics, 2, 4, 34, 40, 44, 79, 80, 85,

120, 142, 144, 146, 168, see

also increased-coverage tech-

niques

297

Hidden Markov Model, 35, 248

hierarchical alignments, 55, 69, 167,

170

hierarchical structure, 37, 50, 52, 53,

55, 56, 58, 66, 116, 119, 166,

168–170, 172, 246

hill-climbing, 87

HT, see transducer: head

human judgements, 95, 173–178, 184

human-aided translation, 10

hybrid models, 27, 38, 58, 64, 67, 115,

164, 184, 278

IBM model, 22, 27–36, 41–44, 88, 89,

116, 162, 163, 246, 248

idiom, 18, 20, 67, 246

increased-coverage techniques, 4, 142,

171, 184, 205–230, 232, 234,

235, 240, 241, 243, 246, 250,

265–267

fragment processing, 137, 148,

171, 206, 208–217, 217, 218,

220, 236

partial source parsing, 168, 171,

206–208, 219–224, 234, 237,

268–270, 272, 273

partial target parsing, 151, 171,

205–207, 218, 224–230, 236,

269, 270

extract-best-tran, 230

get-best-transition-set,

229

unknown word fall-through, 207,

217–219, 238, 268, 272

indeterminacy, 14, 17, 19

indexing, 161, 216, 237

insertion, 79, 86, 109, 110, 156, 187

intelligibility, 175, 177, 178, 180–182,

185

interlingua, 6, 10, 23

inversion transduction grammar, 38–

40, see also stochastic inver-

sion transduction grammar

ITG, see inversion transduction gram-

mar

Japan, 10

Japanese, 19, 54, 57, 58, 62, 63

keystroke distance, 64, 178

King James Version, 72

label, 121

label indexing, 215, 216

lemmatization, 86

Leviticus, 87

lexical ambiguity, 15

lexical category, 219

lexical hole, 17

lexical mismatch, 17, 18

lexical selection and reordering, 54–58,

168–170, 172

lexicon, 6, 14, 19, 98, 110

linear order, 36–38, 82, 167, 170, 219

linguistic analysis, 62, 67, 170

linguistic knowledge, 37, 38, 115

linguistic processing, 24, 64

linguistic universals, 5, 12

link, 75, 91, 93, 101, 103, 105–107,

109, 110

link box, 262

link grammar, 34

linked automata, 114–172, see also au-

tomata, transition

alignment function, 2, 264, 268

298

alignment probability, 124, 127–

130, 135, 149–151, 157, 259

alignment table, 117–119, 123–

124, 127, 129, 135–138, 141,

143–147, 149, 151, 157, 169,

191, 194, 197, 200, 201, 203,

236, 252, 260–264

discontinuous capable (DC),

261–263, 266

probability, 127–129, 148–151

simple, 123–124, 128, 141, 144,

145, 260–262, 266, 274

extensions, 191–279

inverting, 124, 256, 264, 265

merging, 4, 123, 137, 138, 166–

168, 191, 192, 192–205, 205,

207, 208, 218, 220, 225, 226,

230–232, 234, 235, 239, 240,

243, 251, 270

do-construction-merge, 202

do-trans-system-merge, 203

fsa-merge-okay, 197

probability, 124–136

reversing, 165, 186, 256, 264, 271,

272, 274

size, 123, 155, 163, 166, 184, 189,

191–194, 201, 202, 204, 207,

208, 214, 227, 231, 236, 243–

246, 257, 274, 278

source automaton, 120

target automaton, 120

training, 137–140

build-translation-system,

138

translation, 141–161

translation stages, 129, 141–146,

148–151, 153–156, 226, 227,

237, 248, 257–260, 267, 271

Lisp, 73, 81, 91, 140, 153

log-likelihood, 78

logarithm/log-domain, 127, 129, 157

long-distance dependency, 67, 273

longest-most-probable match, 270,

275

LSLR, see lexical selection and re-

ordering

machine learning, 37, 61, 185

machine translation

difficulty, 11–21

empirical, 11, 22–68, 69, 115, 162,

243, 247, 276, 277

evaluation, 173–190

automatic, 175, 177, 179, 181,

183–185, 189

human, 173–179, 184

non-performative aspects, 182,

184, 189

string-based, 185, 186

example-based MT, see example-

based machine translation

finite-state, 2, 3, 27, 36–60, 114,

116, 117, 162, 163, 165, 167,

168, 170–172, 276, 277

history, 4–11

statistical, 3, 11, 27–36, 37, 41, 49,

50, 64, 67, 88, 114, 116, 141,

162–164, 170, 171

machine-aided translation, 13

magic button, 93

markers, 66, 221

mask, see transition: empty

299

matching, see example-based machine

translation

maximum likelihood estimation, 89

memorandum, see Weaver memoran-

dum

merge congruity, 199, 200

merging, see linked automata, au-

tomata, transducer

METEO, 9

mismatches, 17–21

morphological analysis, 6, 21

MT, see machine translation

MTE, see machine translation: evalu-

ation

n-best, 40, 44, 87, 144, 147, 155

noisy channel model, 29

nondeterministic, see automata: de-

terministic

normalization, 31, 125, 126, 128, 129,

134, 136, 151, 201

noun, 221, 222, 239, 247

null alignment, see alignment

NULL word, 33, 43

Numbers, 81, 87

Oak Ridge Laboratory, 9

ordering, see word order

PACE, 24

parallel texts/corpora, see corpora

parse-parse-match, 40

parse-tree-to-string, 36

parsing, see increased-coverage tech-

niques: partial source pars-

ing, increased-coverage tech-

niques: partial target parsing,

automata: recognition

part-of-speech, 4, 26, 59, 64, 178, 184,

222, 225, 242, 247–252, 264

tagger, 247, 248, 273

partial source parsing, see increased-

coverage techniques

partial target parsing, see increased-

coverage techniques

penalties, 79, 85, 86

Perkins Engines, 24

perplexity, 96, 178

phenogrammatical structure, 37, 162,

169

phrasal boundary, 66, 221

polysemy, 247–249, 252

POS, see part-of-speech

precision, 96, 101, 102, 108

probability, see linked automata, au-

tomata, transition

pronoun, 17, 19, 90, 94, 254

recall, 96, 101, 102, 108

recognition, see automata

recombination, see example-based ma-

chine translation

regular expression, 224, 272

regular language, 48, 119

Reina-Valera, 72

rift, 222, 223, 273

rule-based, 61, 62

Russian, 6, 9, 175, 176

SA, see simple-accuracy

sas-triple, 82, 83–85, 87

scalability, 123, 163, 166, 167, 182,

184, 189, 217, 237, 278

search space, 34, 81, 87, 143, 144, 166,

195, 214, 216, 237, 248, 261–

263, 278

300

seeding process, 81–85

segmentation, 221–223, 273

model, 222, 273

point, 222, 223

semantic information/structure, 3, 21,

23, 65, 95, 119, 178, 179, 222,

246, 256, 277

semantic mapping/transfer, 23

sentence alignment, see alignment

sequence closure, 260, 261, 262

SFST, see transducer: stochastic

simple table, see linked automata:

alignment table

simple-accuracy, 188, 189, 250, 264,

265

SITG, see stochastic inversion trans-

duction grammar

size, 80, 110, 153, 155, 166, 184, 189,

192, 208, 210, 236, 278, see

also linked automata

alignment window, 80, 81, 83

reduction, 47, 48, 50, 163, 191,

193, 194, 201, 202, 204, 231,

257

size and accuracy, 243, 243–246, 274

smoothing techniques, 34, 35, 43, 67

SMT, see machine translation: statis-

tical

source automaton, see linked au-

tomata

source language, 10, 15, 21, 22, 28, 29,

30, 53, 55, 57, 63, 67, 69, 71,

75, 77, 118, 120, 138, 142, 143,

164, 165, 224, 242, 248, 271,

272, 276

source language model, 28, 29, 118,

120, 122, 143, 162, 164, 166,

224, 264, 276, see also linked

automata: source automaton

source transition sequence, 128, 129,

142–144, 146, 152, 153, 156,

157, 200, 259–262, 267

source-word-store, 82, 84, 125, 146,

152, 153, 155–157, 159–161,

208, 224, 225, 228, 236, 258,

259

Spanish, 17, 19, 44, 48, 54, 71, 72,

93–95, 111, 140, 186, 189, 218,

231–233, 244, 248, 253, 254,

264, 271, 272, 274, 280

SST, see transducer: subsequential

start-state, see automata

statistical machine translation, see

machine translation

stochastic inversion transduction

grammar, 38–40

stone soup folktale, 120, 277

string-to-string mapping, 36

STS, see source transition sequence

sublanguage, 13, 24

subsequential transducer, see trans-

ducer

substitution, 109, 186–188

substring closure, 145, 146, 147, 259,

261, 263, 266

suggested ordering heuristic, 226, 229,

269, 270

Swedish, 102

SWS, see source-word-store

syntactic ambiguity, 14, 16, 18

syntactic mapping/transfer, 10, 23

301

syntactic structure/information, 3, 6,

21, 36–38, 41, 50–52, 54, 55,

58, 66, 69, 119, 166, 168–170,

172, 179, 221, 246, 277

Systran, 10, 12, 13, 25, 182

TA, see translation-accuracy

table, see linked automata: alignment

table

tagging, see part-of-speech

target automaton, see linked au-

tomata

target language, 10, 15, 16, 18, 22, 28,

29, 43, 53, 55–57, 67, 69–71,

75, 77, 118, 120, 138, 143, 164,

165, 177, 228, 242, 248, 268,

276

target language model, 28, 29, 43, 55,

59, 67, 118–120, 122, 129, 130,

151, 153, 162, 164, 169, 171,

177, 181, 207, 220, 223, 227,

228, 259, 264, 271, see also

linked automata: target au-

tomaton

target transition sequence, 128–130,

146, 200, 248

TAUM, 9

tectogrammatical structure, 37, 170

template, 65, 66, 74

training, see also linked automata:

training

data, 3, 26, 46, 47, 49, 59, 121,

125, 127, 170, 182, 183, 189,

194, 195, 203, 209, 218, 231,

233, 238, 239, 243–245, 249,

263–267, 275

process, 31, 32, 34, 40, 56, 66, 71,

81, 115, 124, 137–140, 202

transducer

cascade, 42, 43, 58, 59

composition, 34, 41–44, 55, 57, 59,

164, 169

head, 50–54, 54, 55, 58, 116, 165,

166, 168

merging, 46, 53, 166, 168

stochastic, 56, 57

subsequential, 44–50, 54, 66, 116,

117, 165–169, 172, 193

OSTIA, 46

OSTIA-DR, 47

state emission function, 45

transition, 121

activation, 119, 122, 129, 130, 134,

141, 143, 146, 148, 149, 151,

153–156, 192, 195, 204, 218,

224–227, 235–237, 248, 249,

257, 259, 265, 266, 268, 269,

272–274

begin state, 121

empty, 125, 127, 134–136, 148,

151, 155, 157–161, 227, 228,

271

mask, 159–161, 227

probability, 134–136

probability hash, 160, 161, 227

end state, 121

epsilon, 121, 148

function, 210, 212, 213

label, 121

merging, see linked automata, au-

tomata

302

probability, 121, 125–127, 129–

134, 136, 148, 149

translation, see machine translation,

linked automata, decoding

translation integrity, 195, 197–200,

231

translation probability, 33, 130

translation stage, see linked automata

translation-accuracy, 187, 188, 189,

243–246, 250, 264, 265, 274,

275, 280

transposition, 187, 188

transposition-edit-distance, 187, 188

tree

decision, 177, 178

prefix, 46

search, 211

2-3, 211

red-black, 211

syntactic, 36, 39, 50–52, 55, 56, 64,

66, 166, 168, 178

trigram, 34, 35, 43, 59, 178

TTS, see target transition sequence

Turkish, 186

uniform, 111, 159

uniform distribution, 128

uniform structure, 50, 162

United States, 6, 8–10, 174

unknown word fall-through, see

increased-coverage techniques

USSR (Soviet Union), 6, 9

Vaquois pyramid, 61

verb, 55, 90, 95, 239, 247, 254, 256

Verbmobil, 12, 58, 182

verse (as sentence), 71–73, 91, 209

wa-edit-agreement, 109, 112, 113

WAA (word alignment agreement),

106, 108–113

WAE, see alignment: word alignment

evaluation

Weaver memorandum, 5, 6

weighted head transducer, see trans-

ducer

weighting, 41, 43, 50, 51, 53, 59, 85,

86, 96, 100, 103–110, 117, 129,

130, 134, 136, 151, 164, 166,

187, 223

word alignment, see alignment

word alignment agreement, see WAA

word classes, 34, 223, 248, 249, 252

word order, 2, 7, 23, 39, 48, 51, 57, 59,

66, 71, 77, 80, 117–119, 122,

123, 164, 165, 170, 172, 186,

195, 207, 220, 225, 226, 229,

254, 257, 269, 276

word-for-word translation, 63, 148,

191, 217, 220, 227

word-to-word mapping, 23, 162

Wright Patterson AFB, 9

303

Author Index

Aho, Alfred V., 81

Ahrenberg, Lars, 75, 93, 95, 99–102,

108, 110

Akiba, Yasuhiro, 177, 187

Al-Onaizan, Yaser, 29, 31–35, 41–44,

88, 114, 116, 164, 182

Alshawi, Hiyan, 50, 51, 53–55, 57, 59,

114, 166–168, 185–188

Amengual, Juan Carlos, 44, 46–49, 57,

114, 126, 165, 166

Arnold, D., 5, 9, 10, 15–18, 24, 69, 174

Balkan, L., 5, 9, 10, 15–18, 24, 69, 174

Bangalore, Srinivas, 50, 51, 53–59,

114, 166–168, 185–188

Baum, L.E., 32

Bened́ı, José Miguel, 44, 165

Berger, Adam L., 28, 30, 31, 33, 34,

116, 222, 223

Booth, A. Donald, 5, 6

Brants, Thorsten, 248

Brew, Chris, 178

Brockett, Chris, 178

Brown, Peter F., 5, 28, 30–34, 41, 43,

50, 75, 88, 98, 99, 114, 116,

162, 183, 256

Brown, Ralf D., 65, 66

Buchsbaum, Adam, 50

Carroll, John B., 8, 9, 174

Casacuberta, Francisco, 44, 165, 257

Castaño, Asunción, 44, 165

Castellanos, Antonio, 44, 46–49, 57,

114, 126, 165, 166

Chen, Stanley F., 73

Church, Kenneth W., 28, 73

Corston-Oliver, Simon, 178

Curin, Jan, 88, 182

del Val, Joan Miquel, 165, 257

Della Pietra, Stephen A., 5, 28, 30–34,

41, 43, 50, 75, 88, 98, 99, 114,

116, 162, 183, 222, 223, 256

Della Pietra, Vincent J., 5, 28, 30–34,

41, 43, 50, 75, 88, 98, 99, 114,

116, 162, 183, 222, 223, 256

Domashnev, Constantine, 63, 64

Douglas, Shona, 50, 51, 53–55, 57, 59,

114, 166–168, 185–188

Dunning, Ted, 78

Fabregat, Ferran, 165, 257

Gale, William A., 28, 73

Galiano, Isabel, 44

Gamon, Michael, 178

Garćıa, Pedro, 44, 46

Gawron, Jean Mark, 13–15, 18, 19

Germann, Ulrich, 35

Gillett, John R., 28, 30, 31, 33, 34, 116

Gold, E. Mark, 25

Grannes, Dean J., 63, 64

Grefenstette, Gregory, 66

Gross, Alex, 1, 12

Hamp, Eric. P., 8, 9, 174

Hannan, Marie-Louise, 95

Hays, David G., 8, 9, 174

Hein, Anna S̊agvall, 75, 93, 95, 99–

102, 108, 110

Hockett, Charles F., 8, 9, 174

304

Hovy, Eduard, 182

Humphreys, R. Lee, 5, 9, 10, 15–18,

24, 69, 174

Hutchins, W. John, 4–10, 12, 25

Imamura, Kenji, 177, 187

Jahr, Michael, 35, 88, 182

Jiménez, Victor Manuel, 44, 46–49,

57, 114, 126, 165, 166

Johnston, Michael, 81, 152

Jones, Daniel, 65

Kallmeyer, Laura, 256

Kay, Martin, 11–15, 18, 19, 21, 114

King, Margaret, 173, 175, 176

Knight, Kevin, 24, 28, 29, 31–36, 41–

44, 88, 114, 116, 164, 170, 182

Kruskal, Joseph, 64, 186

Lafferty, John D., 28, 30, 31, 33, 34,

88, 116, 182

Leusch, Gregor, 177

Llorens, David, 44, 46–49, 57, 114,

126, 165, 166

Locke, William N., 5, 6

Macklovitch, Elliott, 95

Manning, Christopher D., 157

Marcu, Daniel, 35, 67

Marzal, Andrés, 44, 165

McTait, Kevin, 61

Meijer, S., 5, 9, 10, 15–18, 24, 69, 174

Melamed, I. Dan, 26, 75, 88, 90, 91,

95, 99, 106, 108, 111, 177, 182,

183

Melby, Alan, 13

Mel’čuk, Igor A., 9, 55

Mercer, Robert L., 5, 28, 30–34, 41,

43, 50, 75, 88, 98, 99, 114, 116,

162, 183, 256

Merkel, Magnus, 75, 93, 95, 99–102,

108, 110

Müller, Stefan, 255

Nagao, Makoto, 62

Ney, Hermann, 35, 58, 59, 67, 88, 95,

99, 100, 111, 164, 177, 223

Niessen, Sonja, 35, 177

Nirenburg, Sergei, 63, 64

Norvig, Peter, 13–15, 18, 19

Och, Franz Josef, 35, 88, 95, 99, 100,

111, 177

O’Connell, A., Theresa, 176

Oettinger, Anthony G., 8, 9, 174

Oncina, José, 44, 46, 47

Pastor, Moisés, 44, 165, 257

Pereira, Fernando C. N., 37, 119

Perlis, Alan, 8, 9, 174

Picó, David, 165, 257

Pierce, John R., 8, 9, 174

Prat, Federico, 44, 165

Printz, Harry, 28, 30, 31, 33, 34, 116

Purdy, David, 88, 182

Reeder, Florence, 177, 179

Rhodes, Ida, 242

Riccardi, Giuseppe, 54–58, 114, 167,

168, 187, 188

Roche, Emmanuel, 45

Rosetta, M.T., 15

Sadler, L., 5, 9, 10, 15–18, 24, 69, 174

Sanchis, Alberto, 165, 257

Sato, Satoshi, 62

305

Sawaf, Hassan, 35

Schabes, Yves, 45

Schiehlen, Michael, 253, 256

Schütze, Hinrich, 157

Shannon, Claude E., 29

Smith, Noah A., 88, 182

Somers, Harold L., 6, 10, 22, 25, 60,

61, 64, 67

Sumita, Eiichiro, 177, 187

Thompson, Henry S., 178

Tiedemann, Jörg, 75, 93, 95, 99–102,

108, 110

Tillmann, Christof, 35

Tomás, Jesús, 165, 257

Ullman, Jeffrey D., 81

Ureš, Luboš, 28, 30, 31, 33, 34, 116

Vanni, Michelle, 177, 179

Varó, Miguel Angel, 44, 47

Vasconcellos, Muriel, 6

Veale, Tony, 62, 66, 67, 221

Vidal, Enrique, 44, 46–49, 57, 114,

126, 165, 166, 257

Vilar, Juan Miguel, 44, 46–49, 57, 114,

126, 165, 166

Vogel, Stephan, 35, 58, 59, 67, 164,

223

Way, Andy, 62, 66, 67, 221

Weaver, Warren, 5, 6, 28

White, John S., 173, 176, 179, 180

Wilks, Yorick, 13

Wright, Rebecca N., 37, 119

Wu, Dekai, 38, 40, 164

Yamada, Kenji, 35, 36, 170

Yarowsky, David, 88, 182

Yngve, Victor H., 7, 20, 21, 37, 119,

191

306

