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Abstract

This paper presents a technique for discover-
ing translationally equivalent texts. It is com-
prised of the application of a matching algo-
rithm at two different levels of analysis and a
well-founded similarity score. This approach
can be applied to any multilingual corpus us-
ing any kind of translation lexicon; it is there-
fore adaptable to varying levels of multilingual
resource availability. Experimental results are
shown on two tasks: a search for matching
thirty-word segments in a corpus where some
segments are mutual translations, and classifi-
cation of candidate pairs of web pages that may
or may not be translations of each other. The
latter results compare competitively with pre-
vious, document-structure-based approaches to
the same problem.

1 Introduction

As in most areas of natural language process-
ing, recent approaches to machine translation
have turned increasingly to statistical modeling
of the phenomenon (translation models) (Berger
et al., 1994). Such models are learned auto-
matically from data, typically parallel corpora:
texts in two or more languages that are mutual
translations. As computational resources have
become more powerful and less expensive, the
task of training translation models has become
feasible (Al-Onaizan et al., 1999), as has the
task of translating (or “decoding”) text using
such models (Germann et al., 2001). However,
the success of the statistical approach to trans-
lation (and also to other multilingual applica-
tions that utilize parallel text) hangs crucially
on the quality, quantity, and diversity of data
used in parameter estimation.

If translation is a generative process, then one
might consider its reverse process of recognition:

Given two documents, might it be determined
fully automatically whether they are transla-
tions of each other?

The ability to detect translations of a doc-
ument has numerous applications. The most
obvious is as a means to build a parallel corpus
from a set of multilingual documents that con-
tains some translation pairs. Examples include
mining the World-Wide Web for parallel text
(Resnik, 1999; Nie et al., 1999; Ma and Liber-
man, 1999) and building parallel corpora from
comparable corpora such as multilingual collec-
tions of news reports. Another use of trans-
lation detection might be as an aid in align-
ment tasks at any level. For example, consider
the task of aligning NP chunks (and perhaps
also the extra-NP material) in an NP-bracketed
parallel corpus; a chunk-level similarity score
(Fluhr et al., 2000) built from a word-level
model could be incorporated into a framework
that involves bootstrapping more complex mod-
els of translation from simpler ones (Berger et
al., 1994). Finally, reliable cross-lingual dupli-
cate detection might improve performance in n-
best multilingual information retrieval systems;
at the same time, by detecting the existence of a
translation in a multilingual corpus, the cost of
translating a document of interest is eliminated.

I present here an algorithm for classifying
document pairs as either translationally equiv-
alent or not, which can be built upon any
kind of word-to-word translation lexicon (au-
tomatically learned or hand-crafted). I pro-
pose a score of translational similarity, then
describe an evaluation task involving a con-
strained search for texts (of arbitrary size) that
are translation pairs, in a noisy space, and
present precision/recall results. Finally, I show
that this algorithm performs competitively with
the approach of Resnik (1999), in which only
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Maria does n’t like fruit

Maria n’ aime pas de fruits

X:

Y:

NULLNULL
NULL

Figure 1: An example of two texts with links shown.

structural information (HTML-markup) is used
to detect translation pairs, though the new algo-
rithm does not require structural information.

2 Quantifying Similarity

This section shows how to compute a cross-
lingual similarity score, tsim, for two texts.1
Suppose parallel texts are generated according
to Melamed’s (2000) symmetric word-to-word
model (Model A). Let a link be a pair (x, y)
where x is a word in language L1 and y is a
word in L2. Within a link, one of the words
may be NULL, but not both. The model con-
sists of a bilingual dictionary that gives a prob-
ability distribution over all possible link types.
In the generative process, a sequence of inde-
pendent link tokens is generated according to
that distribution.

The links are not observed; only the lexical
(non-NULL) words in each language are ob-
served. The texts whose similarity score is to be
computed, X and Y , correspond to the mono-
lingual lexical projections of the links. For the
purposes of this discussion, the texts are viewed
as unordered bags of words; scrambling of the
link tokens in the two texts is not modeled.
An example is illustrated in Figure 1; there are
seven link tokens shown, five of which are lexi-
cal in X (the English side) and six of which are
lexical in Y (the French side).

The next step is to compute the probability of
the most probable sequence that could have ac-
counted for the two texts. All permutations of
a given link sequence will have the same prob-
ability (since the links are generated indepen-
dently), so the order of the sequence is not im-
portant. As noted by Melamed (2000), under
the assumption that the quality of a link col-
lection is the sum of the quality of the links,
then this problem of finding the best set of
links is equivalent to the maximum-weighted bi-
partite matching (MWBM) problem: Given a
weighted bipartite graph G = (V1 ∪ V2, E) with
|V1| = |V2| and edge weights ci,j(i ∈ V1, j ∈ V2),

1I use the term “text” to refer to a piece of text of
any length.

find a matching M ⊆ E such that each ver-
tex has at most one edge in M , and

∑
e∈M ci,j

is maximized. The fastest known MWBM al-
gorithm runs in O(ve + v2 log v) time (Ahuja
et al., 1993). Applied to this problem, that is
O(max(|X|, |Y |)3).

The similarity score should be high when
many of the link tokens in the best link col-
lection do not involve NULL tokens. Further,
it should normalize for text length. Specifically,
the score I use is:

tsim =
log Pr(two-word links in best matching)

log Pr(all links in best matching)
(1)

This score is an example of Lin’s (1998) math-
ematical definition of similarity, which is moti-
vated by information theory:

sim(X,Y ) =
log Pr(common(X,Y ))

log Pr(description(X,Y ))
(2)

where X and Y are any objects generated by a
probabilistic model.2

In this research, I seek to show how multiple
linguistic resources can be exploited together to
recognize translation. The measure in (1) is
simplified by assuming that all links in a given
translation lexicon are equiprobable. (In some
cases I use an automatically induced translation
lexicon that assigns probabilities to the entries,
but for generality the probabilities are ignored.)
This reduces the formula in (1) to

tsim =
# two-word links in best matching

# links in best matching
. (3)

Further, to compute tsim under the equiprob-
ability assumption, we need not compute the
MWBM, but only find the maximum cardi-
nality bipartite matching (MCBM), since all
potential links have the same weight. An

2Another approach, due to Jason Eisner (personal
communication) would be to use a log-likelihood ratio
of two hypotheses: joint vs. separate generation of the

two texts (log Pr(all links in the best sequence)
Pr(all words in X) Pr(all words in Y )

). In order

to make this value (which is the Viterbi approximation to
point-wise mutual information between the two texts) a
score suitable for comparison between different pairs of
texts, it must be normalized by length. With normal-
ization, this score is monotonic in Lin’s (1998) sim if a
uniform unigram model is assumed for the tokens in the
single-language models (the denominator terms).



O(e
√
v) (or O(|X| · |Y | ·

√
|X|+ |Y |) for this

purpose) algorithm exists for MCBM (Ahuja et
al., 1993). If the matching shown in Figure 1 is
the MCBM (for some translation lexicon), then
tsim(X,Y ) = 4

7 under the simplifying assump-
tion.

If Equation (3) is applied to pairs of docu-
ments in the same language, with a “transla-
tion lexicon” defined by the identity relation,
then tsim is a variant of resemblance (r), as de-
fined by Broder et al. (1997) for the problem of
monolingual duplicate detection:

r(X,Y ) =
|S(X) ∩ S(Y )|
|S(X) ∪ S(Y )|

(4)

where S(Z) is a shingling of the words in Z; a
shingling is the set of unique n-gram types in the
text for some fixed n (Damashek, 1995). Unlike
Broder et al.’s r, however, tsim is token-based,
incorporating word frequency. Specifically, the
intersection of two bags (rather than sets) of to-
kens contains the minimum count (over the in-
tersected bags) of each type; the union contains
the maximum counts, e.g.,

{a, a, a, b, b} ∩ {a, a, b, b, b} = {a, a, b, b}
{a, a, a, b, b} ∪ {a, a, b, b, b} = {a, a, a, b, b, b}

With the assumption of equiprobability, any
translation lexicon (or, importantly, union
thereof) containing a set of word-to-word en-
tries, can be used in computing tsim.

3 Finding Translations

Formally, the evaluation task I propose can be
described as follows: Extract all translation
pairs from a pool of 2n texts, where n of them
are known to be in language L1 and the other
n are known to be in L2. Each text can have
one or zero translations in the corpus; let the
number of true translation pairs be k.

The general technique for completing the task
is to first find the best matching of words in
text pairs (posed as a bipartite matching prob-
lem) in order to compute the tsim similarity
score. Next, to extract translation pairs of texts
from a corpus, find the best matching of texts
based on their pairwise tsim scores, which can
be posed as a “higher-level” MWBM problem:
by matching the texts using their pair-wise sim-
ilarity scores, a corpus of pairs of highly similar
texts is extracted from the pool.

If k is known, then the text-matching problem
is a generalization of MWBM: Given a weighted
bipartite graph G = (V1∪V2, E) with |V1| = |V2|
and edge weights ci,j , find a matching M ⊆ E
of size k such that each vertex has at most one
edge in M , and

∑
e∈M ci,j is maximized. The set

of texts in L1 is V1, and the set of texts in L2 is
V2; the weights ci,j are the scores tsim(vi, vj). I
do not seek a solution to the generalized prob-
lem here; one way of approximating it is by tak-
ing the top k tsim-scored elements from the set
M (the MWBM).

If k is not known, it can be estimated (via
sampling and human evaluation); I take the ap-
proach of varying the estimate of k by applying
a threshold τ on the tsim scores, then comput-
ing precision and recall for those pairs in M
whose score is above τ (call this set Mτ ):

precτ =
|Mτ ∩ T |
|Mτ |

, recτ =
|Mτ ∩ T |

k
(5)

where T is the set of k true translation pairs.
Performance results are presented as (precision,
recall) pairs as τ is lowered.3

Melamed (2000) used a greedy approxi-
mation to MWBM called competitive link-
ing, which iteratively selects the edge with
the highest weight, links those two vertices,
then removes them from the graph. (Ties
are broken at random.) A heap-based im-
plementation of competitive linking runs in
O(max(|X|, |Y |) log max(|X|, |Y |)). In the first
experiment, I show a performance comparison
between MWBM and competitive linking.

4 Experiment: English-Chinese

This experiment used the Hong Kong Hansard
English-Chinese parallel corpus. The training
corpus is aligned at the sentence level, with seg-
ment lengths averaging fifteen words (in each
language). The test corpus is aligned at the two-
sentence level, with segment lengths averaging
thirty words. The first experiment involved ten-
fold cross-validation with (for each fold) a train-
ing corpus of 9,400 sentence pairs and a test
corpus of 1,000 two-sentence pairs. The corpus

3The selection of an appropriate τ will depend on
the application, the corpus, the lexicons, etc. In my
evaluation on WWW data, I use a small development
set to choose a threshold that maximizes one measure of
performance.



was randomly divided into folds, and no noise
was introduced (i.e., k = n).4

4.1 Translation Lexicon

The main translation lexicon of interest is a
union of three word-to-word translation lexicons
from different sources. I refer to this translation
lexicon as UTL.

The first component translation lexicon,
DICT, was made from the union of two
English-Chinese electronic dictionaries, specifi-
cally, those from Meng et al. (2000) and Levow
et al. (2000) (a total of 735,908 entries, many of
which are not one-to-one). To make the dictio-
nary exclusively one-to-one entries, each n-to-
m entry was processed by removing all function
words in either side of the entry (according to
a language-specific stoplist), then, if both sides
have one or two words (no more), adding all
word-pairs in the cross-product (otherwise the
entry is discarded).5 The resulting translation
lexicon contains 577,655 word pairs, 48,193 of
which contain two words that are present in the
corpus. This translation lexicon has the advan-
tage of broad coverage, though it does not gen-
erally contain names or domain-specific words,
which are likely to be informative, and does not
capture morphological variants.

The second translation lexicon, TMTL, is au-
tomatically generated by training a symmet-
ric word-to-word translation model (Model A,
(Melamed, 2000)) on the training corpus.6 All
word pairs with nonzero probability were added
to the translation lexicon (no smoothing or
thresholding was applied). On average (over ten
folds), this translation lexicon contained 6,282
entries. The TMTL translation lexicons are ex-
pected to capture words specific to the domain
(Hong Kong government transcripts), as well as
common inflections of words, though they will

4It is possible that random division gives a favorable
bias in the translation model translation lexicon by in-
creasing the probability that rare words that appear only
in certain portions of the corpus will be present in both
training and test data.

5The limit of two words per side is an arbitrary choice
intended to minimize the noise introduced by this pro-
cessing step.

6In parameter estimation, I used the aforementioned
MWBM algorithm (instead of Melamed’s (2000) com-
petitive linking), which is the maximum posterior ap-
proximation to EM. It is not clear, however, that this
change yields performance gains.

also contain noise.
The third translation lexicon, STR, is the

string identity lexicon: (x, y) is in the trans-
lation lexicon iff the string x is identical to
the string y. This translation lexicon captures
punctuation, numerals, alphanumeric strings
used to label sections, and English words in-
cluded as-is in the Chinese corpus. There were
3,083 such pairs of word types in the corpus.

4.2 Filtering
Chen and Nie (2000) note that text pairs that
are highly disparate in length are unlikely to
be translations. In order to avoid computing
tsim scores for all pairs in the cross-product, I
eliminated all segment pairs whose lengths are
outliers in a linear regression model estimated
from the training corpus. Earlier experiments
(on a different corpus) showed that, if a (1−p)-
confidence interval is used, the size of the search
space reduces exponentially as p increases, while
the number of correct translation pairs that do
not pass the filter is only linear in p (i.e., the
filter gives high recall and high precision). For
these experiments, p = 0.05; this value was se-
lected based on the results presented in Smith
(2001).

4.3 Results
When the length filter was applied to the
1,000,000 possible pairs in the cross-product,
47.9% of the pairs were eliminated, while 94.5%
of the correct pairs were kept, on average (over
ten folds). tsim was computed for each pair
that passed the filter, then each matching al-
gorithm (MWBM and competitive linking) was
applied. As discussed above, a threshold can
then be applied to the matching to select the
pairs about whose translational equivalence the
score is most confident. Precision and recall
plots are shown in Figure 2a. Each line corre-
sponds to a (translation lexicon, matching algo-
rithm) pair, showing average precision and re-
call over the ten folds as the threshold varies.
The plots should be read from left to right, with
recall increasing as the threshold is lowered.

When many resources are used, the technique
is highly adept at selecting the translation pairs.
TMTL alone outperforms DICT alone, proba-
bly due to its coverage of domain-specific terms.
The competitive linking algorithm lags behind
MWBM in most cases, though its performance



was slightly better in the case of TMTL. In
the case of UTL, for recall up to 0.8251, the
thresholded MWBM matching had significantly
higher precision than the thresholded competi-
tive linking matching at a comparable level of
recall (based on a Sign Test over the ten cross-
validation folds, p < 0.01).

Table 1 shows the maximum performance
(by F -score) for each translation lexicon under
MWBM and competitive linking.

4.4 Effects of Noise

Next, I performed an experiment to test the
technique’s robustness to noise. In this case,
the test corpus contained 300 known transla-
tion pairs (again, two-sentence texts). From 0
to 2700 additional English texts and the same
number of Chinese texts were added. These
“noise” texts were from the same corpus and
were guaranteed not to be aligned with each
other.7 The length filter eliminated 48.6% of the
9,000,000 possible pairs in the cross-product,
keeping 95.7% of the true pairs. The filtered
pairs were tsim-scored using UTL, then the
MWBM was computed. Precision and recall
are plotted for various levels of noise in Fig-
ure 2b.8 Only in the highest-noise condition
( kn = 0.1) do we observe a situation where a
sufficiently strict threshold cannot be used to
guarantee an extracted corpus of (nearly) ar-
bitrarily high precision. For example, if 90%
precision is required, 88.3%, 60.3%, and 43.7%
recall can be guaranteed when k

n is 1, 0.5, and
0.25, respectively.

These experiments show that with a strict
threshold this technique is capable of produc-
ing a highly precise matching of parallel text
from a noisy corpus, though attainable recall
levels drop as noise is added. Performance can
be boosted by incorporating additional bilingual
resources. Finally, even a fast, greedy approxi-

7In general, robustness to noise will depend on the
source of the noise and how much the noise looks like
the true translations. Hence the results presented here
may be better or worse than those achieved in specific
applications to which this technique might be applied,
depending on those factors, filtering, etc.

8Experiments were carried out for the TMTL and
DICT translation lexicons, and also under competitive
linking. Space does not permit a full discussion, though
it is worth mentioning that, as in the noiseless experi-
ment, UTL outperformed the others, likewise MWBM
outperformed competitive linking.

Tr. lex. Algorithm τ precτ recτ Fτ

UTL MWBM 0.20000 0.908 0.836 0.871

CL 0.22078 0.917 0.805 0.857

DICT MWBM 0.10638 0.776 0.647 0.706

CL 0.12121 0.770 0.590 0.668

TMTL MWBM 0.00971 0.841 0.711 0.771

CL 0.00909 0.854 0.711 0.776

Table 1: Comparison of translation lexicons and
matching algorithms at their maximal F -scores.
Note that thresholds, and tsim scores in general, are
comparable only for a given translation lexicon. The
STR translation lexicon offered a boost only when
used to supplement TMTL ∪ DICT; when added to
each alone it had little or no effect.

top 300 pairs maximum F

n prec rec τ precτ recτ Fτ

300 0.904 0.883 0.16667 0.925 0.863 0.893

400 0.813 0.813 0.25641 0.897 0.787 0.838

500 0.770 0.770 0.28000 0.881 0.717 0.791

600 0.727 0.727 0.28000 0.782 0.707 0.743

900 0.663 0.663 0.32142 0.829 0.600 0.696

1200 0.630 0.630 0.32142 0.733 0.593 0.656

3000 0.483 0.483 0.35849 0.617 0.440 0.514

Table 2: Precision and recall when the top k (300)
pairs are taken (i.e., k is known; in the case of n =
300, the matching contained only 293 pairs), and at
maximal F -scores for various levels of noise.

mation to the best matching can be useful.

5 Experiment: English-French

An important application of translation recog-
nition is the construction of parallel text cor-
pora. One source of raw text in this task is
the World-Wide Web, for which several paral-
lel text search systems currently exist (Resnik,
1999; Nie et al., 1999; Ma and Liberman, 1999).
These systems propose candidate pairs of pages,
which are then classified as either translation-
ally equivalent or not. The STRAND system
(Resnik, 1999), for example, uses structural
markup information from the pages, without
looking at their content, to attempt to align
them.

If the tsim technique can provide a classi-
fier that rivals or complements the structural
one, using as it does an entirely orthogonal set
of features, then perhaps a combined classifier
could provide even greater reliability. In addi-
tion, custom-quality parallel corpora could be
generated from comparable corpora that lack
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Figure 2: (a.) Precision and recall with no noise. This plot shows precision and recall averaged over all
ten folds. Each point corresponds to a threshold value; the threshold becomes less strict from left to right.
Shown are curves for each of UTL, TMTL, and DICT under both algorithms (MWBM, CL); the maximum
F scores are marked (see Table 1). (b.) Precision-recall curves at varying levels of noise. k = 300 in
all cases; the circles and dashed line show precision and recall for the top 300 pairs in the matching (i.e., if k
were known, it would not make sense to use a lower threshold, so the only reasonable thresholds are to the
left), and the squares and dotted line show precision and recall at each condition’s maximum F -score—the
values are shown in Table 2. (Note that the curves “stop” before reaching a point where recall is 1.0, since
a point is eventually reached where no more matches are possible (because of filtering).)

structural features. This experiment also shows
that tsim is scalable to larger texts.

5.1 Translation Lexicon
In this experiment, the language pair is English-
French. Multiple sources for the translation lex-
icon are used in a manner similar to Section 4.1.

• An English-French dictionary (a total of
34,808 entries, 4,021 of which are not one-to-
one).9 It contains morphological variants but
does not include character accents. Each n-to-
m entry was processed by stoplisting and then
extracting all word-pairs in the remaining cross-
product as in section 4.1. Result: 39,348 word
pairs, 9,045 of which contain two words present
in the corpora.
• A word-to-word translation model (Melamed,
2000) trained on a verse-aligned Bible using
MWBM (15,548 verses, averaging 25.5 English
words, 23.4 French words after tokenization).
Result: 13,762 word pairs.
• English-French cognate pairs, identified us-
ing the method of Tiedemann (1999). Space
does not permit a full description of the tech-
nique; I simply note that cognates were iden-
tified by thresholding on a specially-trained

9This dictionary was generated using a dictionary de-
rived from one available at http://www.freedict.com.

string-similarity score based on language-
specific character-to-character weights.10 Re-
sult: 35,513 word pairs. An additional set of
11,264 exact string matches were added. These
entries are quite noisy.

The union of these translation lexicons consists
of 68,003 unique word pairs. The experiment
used only this union translation lexicon.

5.2 Results

In order to compare tsim with structural simi-
larity scoring, I applied it to 325 English-French
web-document pairs. These were the same pairs
for which human evaluations were carried out by
Resnik (1999).11 Note that this is not a match-
ing task; the documents are presented as candi-
date pairs, and there is no competition among
pages for matches in the other language. At dif-
ferent thresholds, a κ score of agreement (with
each of Resnik’s (1999) two judges and their

10Tiedemann trained these weights using a list of
known cognates; I use a noisy list of weighted translation
pairs (specifically, TMTL) Hence the resources required
to extract cognates in this way are no different from those
required for the translation model.

11One additional pair was thrown out because it con-
tained compressed data; it is assumed that pair would
not pass a language identification filter.



intersection) may be computed for comparison
with Resnik’s STRAND system, along with re-
call and precision against a gold standard (for
which I use the intersection of the judges—the
set of examples where the judges agreed). Note
that recall in this experiment is relative to the
candidate set proposed by the STRAND search
module, not the WWW or even the set of pages
encountered in the search.

The estimate of tsim (MWBM on the words
in the document pair) is not computationally
feasible for very large documents and transla-
tion lexicons. In preliminary comparisons, I
found that representing long documents by as
few as their first 500 words results in excel-
lent performance on the κ measure. This al-
lows O(1) estimation of tsim for two documents:
look only at the first (fixed) n words of each
document. Further, the competitive linking al-
gorithm appears to be as reliable as MWBM.
The results reported here approximated tsim in
using competitive linking on the first 500 words.

Of the 325 pairs, 32 were randomly selected
as a development set. Maximizing κ on this set
yielded a value of τ = 0.15.12 κ scores against
each judge and their intersection were then com-
puted at that threshold on the test set (the re-
maining 293 pairs). These are compared to κ
scores of the STRAND system, on the same test
set, in Table 3. In every case, the tsim classifier
agreed more strongly with the human evalua-
tions.

At τ = 0.15, precision was 0.680 and re-
call was 0.921, F = 0.782 (on the same
set, STRAND structural classification achieved
0.963 precision and 0.684 recall, F = 0.800).
Figure 3 shows κ, precision, and recall plotted
against τ .

6 Future Directions

The success of this approach suggests a way to
construct parallel corpora from any large, seg-
mented comparable corpus: start with a trans-
lation model estimated on a small, high-quality
parallel text, and a core dictionary; then extract
document pairs with high similarity (tsim) and
add them to the parallel corpus. Next, esti-
mate word-level translational equivalence em-
pirically from the enlarged corpus and update

12One could select such a threshold to maximize any
objective function over the development set.

Comparison N Pr(Agree) κ

J1, J2 245 0.98 0.96

J1, STRAND 250 0.88 0.70

J2, STRAND 284 0.88 0.69

J1 ∩ J2, STRAND 241 0.90 0.75

J1, tsim(τ = 0.15) 249 0.92 0.83

J2, tsim(τ = 0.15) 283 0.92 0.82

J1 ∩ J2, tsim(τ = 0.15) 240 0.93 0.85

Table 3: Comparison with STRAND. The test set is
294 of the 326 pairs in Resnik’s (1999) test set. The
STRAND κ scores are similar to those published by
Resnik (1999). The 32 development pairs were used
to select the 0.15 threshold. N is the number of
examples for which judgement-comparison was pos-
sible in each case (human judges were sometimes
undecided; those cases are ignored in computing κ).

STRAND:  best κ
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Figure 3: Performance measures as functions of the
threshold τ : the κ agreement score with the two
judges’ intersection, precision, and recall. All mea-
sures are on the test set. The κ score obtained by
STRAND is shown as well.

the translation lexicon; extract documents iter-
atively. The experiments presented here show
that, even in highly noisy search spaces, tsim
can be used with a threshold to extract a high-
precision parallel corpus at moderate recall.

It is worth noting that the STRAND classi-
fier and the tsim classifier disagreed 15% of the
time on the test set. A simple combination by
disjunction (i.e., “(X,Y ) is a translation pair if
either classifier says so”) yields precision 0.768,
recall 0.961, F = 0.854, and κ (with the judges’
intersection) at 0.878. In future work, more so-
phisticated combinations of the two classifiers
might integrate the advantages of both.



7 Conclusion

I have proposed a language-independent ap-
proach to the detection of translational equiva-
lence in texts of any size that works at various
bilingual resource levels. Fast, effective approx-
imations have also been described, suggesting
scalability to very large corpora. Notably, tsim
is adaptable to any probabilistic model of trans-
lational equivalence, because it is an instance
of a model-independent definition of similarity.
The core of the technique is the computation
of optimal matchings at two levels: between
words, to generate the tsim score, and between
texts, to detect translation pairs.

I have demonstrated the performance of
this technique on English-Chinese and English-
French.13 It is capable of pulling parallel texts
out of a large multilingual collection, and it
rivals the performance of structure-based ap-
proaches to pair classification (Resnik, 1999),
having better κ agreement with human judges.
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