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Abstract

The purpose of this work is to investigate the
use of machine learning approaches for confi-
dence estimation within a statistical machine
translation application. Specifically, we at-
tempt to learn probabilities of correctness for
various model predictions, based on the native
probabilites (i.e. the probabilites given by the
original model) and on features of the current
context. Our experiments were conducted us-
ing three original translation models and two
types of neural nets (single-layer and multi-
layer perceptrons) for the confidence estima-
tion task.

1 Introduction

Most statistical models used in natural language appli-
cations are capable in principle of generating probability
estimates for their outputs. However, in practice, these
estimates are often quite poor and are usually interpreted
simply as scores that are monotonic with probabilities.
There are many contexts where good estimates of true
probabilities are desirable:

• in a decision-theoretic setting, posterior probabili-
ties are required in order to choose the lowest-cost
output for a given input.

• when a collection of different models is available for
some problem, output probabilities provide a princi-
pled and convenient way of combining them; and

• when multiplying conditional probabilities to com-
pute joint distributions, the accuracy of the result
is crucially dependent on the stability of the con-
ditional estimates across different contexts—this is
important for applications like speech recognition
and machine translation that perform searches over

a large space of output sentences, represented as se-
quences of words.

Given a statistical model that produces a probabilistic
score, a straightforward way of obtaining a true probabil-
ity is to use the score as input to another model whose
output is interpreted as the desired probability. The idea
is that the second model can learn how to transform the
base model’s score by observing its performance on new
text, possibly in conjunction with other features. This ap-
proach, which is known as confidence estimation (CE), is
widely used in speech recognition (Guillevic et al., 2002;
Moreno et al., 2001; Sanchis et al., 2003; Stolcke et al.,
1997) but is virtually unknown in other areas of natural
language progessing (NLP).1

The alternatives to confidence estimation are tradi-
tional smoothing techniques such as backing off to sim-
pler models and cross validation, along with careful
marginalization and scaling where applicable to obtain
the desired posterior probabilities. There is some evi-
dence (Wessel et al., 2001) that this approach can give
results that are at least as good as those obtainable with
an external CE model. However, CE as we present it here
is not incompatible with traditional techniques, and has
several practical advantages. First, it can easily incorpo-
rate specialized features that are highly indicative of how
well the base model will perform on a given input, but
that may be of little use for the task of choosing the out-
put. Since such features may be inconvenient to include
in the base model, CE represents a kind of modulariza-
tion, particularly as it may be possible to reuse some fea-
tures for many different problems. Another advantage is
that a CE layer is usually much smaller and easier to train
than the baseline model; this means that it can be used
to rapidly adapt a system’s performance to new domains.
Finally, CE typically concentrates on only the top few hy-

1A recent exception is Manmatha and Sever (2002), who de-
scribe a form of confidence estimation for combining the results
of different query engines in information retrieval.



potheses output by the baseline model, which is an easier
task than estimating a complete distribution. This is es-
pecially true when the hypotheses of interest are drawn
from a joint distribution that may be impossible in prac-
tice to enumerate.

In this paper we describe an application of confidence
estimation to an interactive target-text prediction task in
a translation setting, using two different types of neural
nets: single-layer perceptron (SLPs) and multi-layer per-
ceptrons (MLPs) with 20 hidden units.

The main issues that we investigate here are:

• the benefit that can be gained by using confidence
estimates, in discrimination power and/or over-all
application quality as computed by a simulation that
estimates the benefit to the user;

• the use of different machine learning (ML) tech-
niques for CE;

• the relevance of various confidence features; and

• model combinations: we experiment with various
model combination schemes based on the CE layer
in order to improve the over-all prediction accuracy
of the application.

Among the more interesting results we will present are
the comparisons between the discrimination capacity of
the native probabilities and the probabilities of correct-
ness produced by the CE layer. Depending on the un-
derlying SMT model, we obtained a relative improve-
ment in correct rejection rate (CR) ranging from3.90%
to 33.09% at a fixed0.80 correct acceptance rate (CA)
for prediction lengths of up to four words. We also mea-
sured relative improvements of approximately 10% in es-
timated benefit to the user with our application.

In the following section we briefly describe the text
prediction application we are aiming to improve. Next we
outline the CE approach and the evaluation methods we
applied. Finally, we report the results obtained in our ex-
periments and conclude with suggestions for future work.

2 Text Prediction for Translators

The application we are concerned with in this paper is an
interactive text prediction tool for translators. The sys-
tem observes a translator in the process of typing a target
text and, after every character typed, has the opportunity
to display a suggestion about what will come next, based
on the source sentence under translation and the prefix of
its translation that has already been typed. The transla-
tor may incorporate suggestions into the text if they are
helpful, or simply ignore them and keep typing.

Suggestions may range in length from 0 characters to
the end of the target sentence; it is up to the system to

decide how much text to predict in a given context, bal-
ancing the greater potential benefit of longer predictions
against a greater likelihood of being wrong, and a higher
cost to the user (in terms of distraction and editing) if they
are wrong or only partially right.

Our solution to the problem of how much text to pre-
dict is based on a decision-theoretic framework in which
we attempt to find the prediction that maximizes the ex-
pected benefit to the translator in the current context (Fos-
ter et al., 2002b). Formally, we seek:

x̂ = argmax
x

B(x|h, s), (1)

where x is a prediction about what will followh in
the translation of a source sentences, and B(x|h, s)
is the expected benefit in terms of typing time saved.
As described in (Foster et al., 2002b),B(x̂m|h, s) =∑l

k=0 p(k|x,h, s)B(x|h, s, k) depends on two main
quantities: the probabilityp(k|x,h, s) that exactlyk
characters from the beginning ofx are correct, and
the benefitB(x|h, s, k) to the translator if this is the
case. B(x|h, s, k) is estimated from a model of user
behaviour—based on data collected in user trials of the
tool—that captures the cost of reading a prediction and
performing any necessary editing, as well as the some-
what random nature of people’s decisions to accept. Pre-
diction probabilitiesp(k|x,h, s) are derived from a statis-
tical translation model forp(w|h, s), the probability that
some wordw will follow the target texth in the transla-
tion of a source sentences.

Because optimizing (1) directly is expensive, we use
a heuristic search procedure to approximatex̂. For each
length m from 1 to a fixed maximum ofM (4 in this
paper), we perform a Viterbi-like beam search with the
translation model to find the sequence of wordsŵm =
w1, . . . , wm most likely to follow h. For each such se-
quence, we form a corresponding character sequencex̂m

and evaluate its benefitB(x̂m,h, s). The final output is
the prediction̂xm with maximum benefit, or nothing if
all benefit estimates are negative.

To evaluate the system, we simulate a translator’s ac-
tions on a given source text, using an existing transla-
tion as the text the translator wishes to type, and the user
model to determine his or her responses to predictions
and to estimate the resulting benefit. Further details are
given in (Foster et al., 2002b).

2.1 Translation Models

We experimented with three different translation models
for p(w|h, s). All have the property of being fast enough
to support real-time searches for predictions of up to 5
words.

The first model, referred to as Maxent1 below, is a log-
linear combination of a trigram language model with a



maximum entropy translation component that is an ana-
log of the IBM translation model 2 (Brown et al., 1993).
This model is described in (Foster, 2000). Its major weak-
ness is that it does not keep track of which words in the
current source sentence have already been translated, and
hence it is prone to repeating previous suggestions. The
second model, called Maxent2 below, is similar to Max-
ent1 but with the addition of extra parameters to limit this
behaviour (Foster et al., 2002a).

The final model, called Bayes below, is also described
in (Foster et al., 2002a). It is a noisy-channel combination
of a trigram language model and an IBM model 2 for the
source text given target text. This model has roughly the
same theoretical predictive capability as Maxent2, but un-
like the Maxent models it is not discriminatively trained,
and hence its native probability estimates tend to be much
worse than theirs.

2.2 Computing Smoothed Conditional Probabilities

In order to calculate the character-based probabili-
ties p(k|x,h, s) required for estimating expected ben-
efit, we need to know the conditional probabilities
p(w|w1, . . . , wi−1,h, s) that some wordw will follow
w1, . . . , wi−1 in the context(h, s). These are derived
from correctness estimates obtained from our confidence-
estimation layer as follows. As explained below, es-
timates from the CE layer are in the formp(C =
1|ŵm,h, s), whereŵm is the most probable prediction
of length m according to the base translation model.
Define a smoothed joint distribution over predictions of
lengthm as:

ps(wm|h, s) =
{

p(C = 1|ŵm,h, s), wm = ŵm

p(wm|h, s)/zm, else
(2)

wherep(wm|h, s) =
∏m

i=1 p(wi|w1, . . . , wi−1,h, s) is
calculated from the conditional probabilities given by the
base model; and

zm =
1− p(ŵm|h, s)

1− p(C = 1|ŵm,h, s)

is a normalization factor. Then the required smoothed
conditional probabilities are estimated from the smoothed
joint distributions in a straightforward way:

ps(w|w1, . . . , wi−1,h, s) =
ps(w1, . . . , wi−1, w|h, s)
ps(w1, . . . , wi−1|h, s)

,

wherep(w1, . . . , wi−1|h, s) ≡ 1 wheni = 1.

3 Confidence Estimation with Neural Nets

Our approach for CE consists in training neural nets to es-
timate the conditional probability of correctnessp(C =
1|ŵm,h, s, {w1

m, . . . ,wn
m}), whereŵm = w1

m is the

most probable prediction of lengthm from a n-best set
of alternative predictions according to the base model. In
our experiments the prediction lengthm varies between
1 and 4 and n is at most5. As the n-best predictions
{w1

m, . . . ,wn
m} are themselves a function of the context,

we will simply note the conditional probability of cor-
rectness byp(C = 1|ŵm,h, s).

We experimented with two types of neural nets: single-
layer perceptrons (SLPs) and multi-layer perceptrons
(MLPs) with 20 hidden units. For both, we used a
softmax activation function and gradient descent train-
ing with a negative log-likelihood error function. Given
suitably-behaved class-conditional feature distributions,
this setup is guaranteed to yield estimates of the true pos-
terior probabilitiesp(C = 1|ŵm,h, s) (Bishop, 1995).

3.1 Single Layer Neural Nets and Maximum
Entropy Models

It is interesting to note the relation between the SLP and
maximum entropy models. For the problem of estimating
p(y|x) for a set of classesy over a space of input vectors
x, a single-layer neural net with “softmax” outputs takes
the form:

p(y|x) = exp(~αy · x + b)/Z(x)

where~αy is a vector of weights for classy, b is a bias
term, andZ(x) is a normalization factor, the sum over
all classes of the numerator. A maximum entropy model
is a generalization of this in which an arbitrary feature
function fy(x) is used to transform the input space as a
function ofy:

p(y|x) = exp(~α · fy(x))/Z(x).

Both models are trained by maximum likelihood meth-
ods. GivenC classes, the maximum entropy model can
simulate a SLP by dividing its weight vector intoC
blocks, each the size ofx, then usingfy(x) to pick out
theyth block:

fy(x) = (01, . . . ,0y−1,x,0y+1, . . . ,0C , 1),

where each0i is a vector of0’s and the final 1 yields a
bias term.

The advantage of maximum-entropy models is that
their features can depend on the target class. For natural-
language applications where target classes correspond to
words, this produces an economical and powerful repre-
sentation. However, for CE, where the output is binary
(correct or incorrect), this capacity is less interesting. In
fact, there is no a priori reason to use a different set of
features for correct outputs or incorrect ones, so the nat-
ural form of a maxent model for this problem is identical
to a SLP (modulo a bias term). Therefore the experiments
we describe below can be seen as a comparison between
maxent models and neural nets with a hidden layer.



3.2 Confidence Features

The features we use can be divided into three families:
ones designed to capture the intrinsic difficulty of the
source sentences (for any NLP task); ones intended to
reflect how hards is to translate in general, and ones in-
tended to reflect how hards is for the current model to
translate. For the first two families, we used two sets of
values: static ones that depend ons; and dynamic ones
that depend on only those words ins that are deemed
to be still untranslated, as determined by an IBM2 word
alignment betweens andh. The features are:

• family 1: trigram perplexity, minimum trigram word
probability, average word frequency, average word
length, and number of words;

• family 2: average number of translations per source
word (according to an independent IBM1), average
IBM1 source word entropy, number of source tokens
still to be translated, number of unknown source to-
kens, ratio of linked to unlinked source words within
the aligned region of the source sentence, and length
of the current target-text prefix; and

• family 3: average number of search hypotheses
pruned (ie outside the beam) per time step, final
search lattice size, active vocabulary size (number
of target words considered in the search), number of
nbest hypotheses, rank of current hypothesis, prob-
ability ratio of best hypothesis to sum of top 5 hy-
potheses, and base model probability of current pre-
diction.

4 Evaluation

Evaluation is performed using test sets of translation pre-
dictions, each tagged as correct or incorrect. A translation
predictionwm is tagged as correct if and only if an iden-
tical word sequence is found in the reference translation,
properly aligned. This reflects our application, where we
attempt to match what a particular translator has in mind,
not simply produce any correct translation. We use two
types of evaluation methods: ROC curves and a user sim-
ulation as described above.

4.1 ROC curves

Consider a set of tokensti ∈ D from given domainD.
Each tokenti is labelled with a tagC(ti) = 1 if it is
considered correct orC(ti) = 0 if it is false. Consider a
functions : D → [a, b] that associates aconfidence score
s(t) ∈ [a, b] to any tokenti ∈ D. s is not necessarily a
probability, it can range over any real interval[a, b].

Given arejection thresholdθ ∈ [a, b], any tokenti ∈
D is rejectedif s(ti) < θ and it isacceptedotherwise.
Thecorrect acceptence rateCA(θ) of a thresholdθ over

D is the rate of correct tokensti ∈ D with s(ti) ≥ θ.
That is:

CA(θ) =
|{ti ∈ D | C(ti) = 1 ∧ s(ti) ≥ θ}|

|{ti ∈ D | C(ti) = 1}| . (3)

Similarly, thecorrect rejection rateCR(θ) is the rate
of false tokensti such thats(ti) < θ:

CR(θ) =
|{ti ∈ D | C(ti) = 0 ∧ s(ti) < θ}|

|{ti ∈ D | C(ti) = 0}| . (4)

As θ ranges over [a, b], the value pairs
(CA(θ),CR(θ)) ∈ [0, 1] × [0, 1] define a curve,
called theROC curveof s over D. The discrimination
capacity of s is given by its capacity to distinguish
correct from false tokens. Consequently, a perfect ROC
curve would describe the square(0, 1), (1, 1), (1, 0).
This is the case whenever there exists a threshold
θ ∈ [a, b] that separates all correct tokens inD from
all the false ones, meaning that the score ranges of
correct, respectively false, tokens don’t overlap. The
worst case scenario, describing a scoring function that
is completely irrelevent for correct/false discrimination,
corresponds to the diagonal(0, 1), (1, 0). Note that the
inverse of the ideal ROC curve, the plot overlapping the
axes(1, 0), (0, 0), (1, 0) is equivalent to its inverse from
a discrimination capacity point of view: it suffices to
invert the rejection algorithm by accepting all tokens that
have a score inferior to the rejection threshold.

In our setting, the tokens are thêwm translation predic-
tions and the score function is the conditional probability
p(C = 1|ŵm,h, s).

In order to easily compare the discrimination capacity
of various scoring functions we use a raw measure, the
integralof the ROC curve, or IROC. A perfect ROC curve
will have anIROC = 1.0 (respectively0.0 in the inverse
case). The worst case scenario corresponds to an IROC
of 0.5. We also compare various scoring functions by
fixing an operational point atCA = 0.80 and observing
the correspondingCR values.

5 Experimental Set-up

The data for our experiments originates from the Hansard
English-French parallel corpus. In order to generate the
train and test sets, we use 1.3 million (900000 for train-
ing and 400000 for testing purposes) translation predic-
tions for each fixed prediction length of one, two, three
and four words, summing to a total of 5.2 million pre-
diction examples. Each original SMT model experiment
was combined with two different CE model architectures:
MLPs with one hidden layer containing 20 hidden units
and SLP (sometimes also referred to as MLPs with 0 hid-
den units). Moreover, for each (native model, CE model
architecture)-pair, we train five separate CE models: one



Bayes:m = 1, . . . , 4, CA = 0.80
Model IROC CR
native probability 0.8019 0.6604
SLP 0.8357 0.7211
MLP 0.8679 0.7728

Table 1: Comparison of discrimination capacity between
the Bayes prediction model probability and the CE of the
corresponding SLP and MLP on predictions of up to four
words

for each fixed prediction length of one, two, three or four
words, and an additional model for variable prediction
lengths of up to four words.2

6 ROC Evaluations

In this section we report the ROC evaluation results. The
user-model evaluation results are presented in the follow-
ing section.

6.1 CE and Native SMT Probabilites

The first question we wish to address is whether we can
improve the correct/false discrimination capacity by us-
ing the propability of correctness estimated by the CE
model instead of the native probabilites.

For each SMT model we compare the ROC plots,
IROC and CA/CR values obtained by the native proba-
bility and the estimated probability of correctness output
by the corresponding SLPs (also noted as mlp-0-hu) and
the 20 hidden units MLPs on the one-to-four word pre-
diction task.

Results obtained for various length predictions of up
to four words using the Bayes models are summarized in
figure (1)and in table 1 below, and are encouraging. At a
fixed CA of0.80 we obtain CR increases from0.6604 for
the native probability to0.7211 for the SLP and0.7728
for the MLP. The over-all gain is also evident from the
the relative improvements in IROC obtained by the SLP
and MLP models over the native probability, that are re-
spectively17.06% and33.31%. These results are quite
significant.

Note that the improvements obtained in the fixed-
length 4-word-prediction tasks with the Bayes model (fig-
ure (2) and table 2) model are even larger: the relative
improvements on IROC are32.36% and50.07% for the
SLP and the MLP, respectively.

However, the results obtained in the Maxent models
are much less positive: the SLP CR actually drops, while
the MLP CR only increases slightly to a4.80% relative

2Training and testing of the neural nets was done us-
ing the open-source Torch toolkit ((Collobert et al., 2002),
http://www.torch.ch/), which provides efficient C++ implemen-
tations of many ML algorithms.

Figure 1: Bayes:m = 1, . . . , 4
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Bayes:m = 4, CA = 0.80
Model IROC CR
native probability 0.7281 0.4998
SLP 0.8161 0.6602
MLP 0.8560 0.7503

Table 2: Comparison of discrimination capacity between
the Bayes prediction model probability and the CE of the
corresponding SLP and MLP on fixed-length predictions
of four words

Figure 2: Bayes:m = 4
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Maxent1:m = 1, . . . , 4, CA = 0.80
Model IROC CR
native probability 0.8581 0.7467
SLP 0.8401 0.7142
MLP 0.8636 0.7561

Table 3: Comparison of discrimination capacity between
the Maxent1 prediction model probability and the CE of
the corresponding SLP and MLP on predictions of up to
four words

Maxent2:m = 1, . . . , 4, CA = 0.80
Model IROC CR
native probability 0.8595 0.7479
SLP 0.8352 0.6973
MLP 0.8638 0.7599

Table 4: Comparison of discrimination capacity between
the Maxent2 prediction model probability and the CE of
the corresponding SLP and MLP on predictions of up to
four words

improvement in the CR rate for the Maxent1 model ( ta-
ble 3) and only3.9% for the Maxent2 model ( table 4).
The results obtained with the two Maxent models are very
similar. We therefore only draw the ROC curve for the
Maxent2 model (figure (3).

It is interesting to note that the native model predic-
tion accuracy didn’t affect the discrimination capacity of
the corresponding probability of correctness of the CE
models. This result is illustrated in table below, where
%C = 1 is the percentage of correct predictions. Even
though the Bayes’ model accuracy and IROC is signifi-
cantly lower then the Maxent model’s, the CE IROC val-
ues are almost identical.

6.2 Relevance of Confidence Features

We investigated the relevance of different confidence fea-
tures by using the IROC values of single-feature models
for the 1–4 word prediction task, with both Maxent1 and
Bayes base models.

The group of features that performs best over both
models are the model- and search-dependent features de-
scribed above, followed by the features that capture the
intrinsic difficulty of the source sentence and the target-
prefix. Least valuable are the remaining features that
capture translation difficulty. The single most significant
feature is native probability, followed by the probability
ratio of the best hypothesis, and the prediction length.
Somewhat unsurprisingly, the weaker Bayes models are
much more sensitive to longer translations than the Max-
ent models.

Figure 3: Maxent2:m = 1, . . . , 4
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Discrimination vs. prediction length: Maxent2
Prediction %C=1 IROC native IROC CE
lengthm probability MLP
m = 1 44.78 0.7926 0.7986
m = 2 23.30 0.8074 0.8121
m = 3 13.12 0.8261 0.8245
m = 4 7.74 0.8517 0.8567
m = 1, ..., 4 22.23 0.8595 0.8638

Table 5: Impact of prediction length on discrimination
capacity and accuracy for the Maxent2 prediction model

6.3 Dealing with predictions of various lengths

We compared different approaches for dealing with vari-
ous length predictions: we trained four separate MLPs for
fixed length predictions of one through four words; and a
single MLP over predictions of varying lengths. Results
are given in table 5 and figure (4)

7 Model Combination

In this section we describe how various model combi-
nations schemes affect prediction accuracy. We use the
Bayes and the Maxent2 prediction models: we try to ex-
ploit the fact that these two models, being fundamentally
different, tend to be complementary in some of their re-
sponses. The CE models we use are the corresponding
MLPs, as they clearly outperform the SLPs. The results
presented in table 6 are reported on the variable-length
prediction task for up to four words.

The combination schemes are the following: we run
the two prediction models in parallel and choose one of
the proposed prediction hypotheses according to the fol-
lowing voting criteria:

• Maximum CE vote: choose the prediction with the
highest CE;



Figure 4: Maxent2:m = 1,m = 2,m = 3,m = 4,m =
1, . . . , 4
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Model Combination Prediction Accuracy
Prediction model combination Accuracy
Bayes alone 8.77
Maxent alone 22.23
Max native probability vote combination 17.49
Max CE vote combination 23.86
Optimal combination 27.79

Table 6: Prediction accuracy of the Bayes and Maxent2
model compared with combined model accuracy

• Maximum native probability vote: choose the pre-
diction with the highest native probability.

As a baseline comparison, we use the accuracy of the
individual native prediction models. Then we compute
the maximum gain we can expect with an optimal model
combination strategy, obtained by running an ”oracle”
that always picks the right answer.

The results are very positive: the maximum CE voting
scheme obtains a29.31% of the maximum possible ac-
curacy gain over the better of the two indiviual models
(Maxent2). Moreover, if we choose the maximum native
probability vote, the overall accuracy actually drops sig-
nificantly. These results are a strong motivation for our
post-prediction confidence estimation approach: by train-
ing an additional CE layer using the same confidence fea-
tures and training data for different underlying prediction
models we obtain more uniform estimates of the proba-
bility of correctness.

8 User-Model Evaluations

As described in section 2, we evaluated the prediction
system as a whole by simulating the actions of a trans-
lator on a given source text and measuring the gain

model base mults SLP MLP best
Bayes 3.2 6.5 6.4 6.4 11.8
ME1 16.6 16.5 18.1 18.3 23.5
ME2 17.4 17.4 19.0 19.3 24.3

Table 7: Percentage of typing time saved for various CE
configurations.

with a user model. In order to abstract away from ap-
proximations made in deriving character-based proba-
bilities p(k|x,h, s) used in the benefit calculation from
word-based probabilities, we employed a specialized user
model. In contrast to the realistic model described in
(Foster et al., 2002b), this assumes that users accept pre-
dictions only at the beginnings of words, and only when
they are correct in their entirety. To reduce variation fur-
ther, it also assumes that the user always accepts a correct
prediction as soon as it is suggested. Thus the model’s
estimates of benefit to the user may be slightly over-
optimistic: the limited opportunities for accepting and
editing must be balanced against the user’s inhumanly
perfect decision-making. However, its main purpose is
not realism but simply to allow for a fair comparison be-
tween the base and the CE models.

Simulations with all three translation models were per-
formed using a 500-sentence test text. At each prediction
point, the benefits associated with best predictions of 1–4
words in length were compared to decide which (if any)
to propose. The results, in terms of percentages of typing
time saved, are shown in table 8:basecorresponds to the
base model;multsto length-specific probability multipli-
ers tuned to optimize benefit on a held-out corpus;SLP
andMLP to CE estimates; andbestto using an oracle to
pick the length that maximizes benefit.

Although the CE layer provides no gain over the much
simpler probability-multiplier approach for the Bayes
model, the gain for both maxent models is substantial,
around 10% in relative terms and 25% of the theoretical
maximum gain (over the base model) with the MLP and
slightly lower with the SLP.

9 Conclusion

The results obtained in this paper can be summarized in
the following set of questions and answers:

• Can the probabilities of correctness estimated by
the CE layer exceed the native probablities in dis-
crimination capacity? Depending on the underlying
SMT model, we obtained a relative improvement in
correct rejection rate (CR) ranging from3.90% to
33.09% at a fixed0.80 (CA) correct acceptance rate
for prediction lengths varying between1 and4.

• Can we improve the overall performance of the un-



derlying SMT application using confidence estima-
tion? In simulated results, we found a significant
gain (10% relative) in benefit to a translator due to
the use of a CE layer in two of three translation mod-
els tested.

• Can prediction accuracy of the application be im-
proved using prediction model combinations? A
maximum CE voting scheme yields a29.31% ac-
curacy improvement of the maximum possible ac-
curacy gain. A similar voting scheme using native
probabilies significantly decreases the accuracy of
the model combination.

• How does the prediction accuracy of the native mod-
els influence the CE accuracy? Prediction accuracy
didn’t prove to be a significant factor in determining
the discrimination capacity of the confidence esti-
mate.

• How does CE accuracy change with various ML ap-
proches? A multi-layer perceptron (MLP) with 20
hidden units significantly outperformed one with 0
hidden units (equivalent to a maxent model for this
application).

• Confidence feature selection: which confidence fea-
tures are more useful and how does their discrimi-
nation capacity vary with different contexts and dif-
ferent native SMT models? Confidence features
based on the original model and the n-best predic-
tion turned out to be the most relevant group of fea-
tured, folowed by features that capture the intrinsic
difficulty of the source text and finally translation-
difficulty-specific features. We also observed inter-
esting variations in relevance as the original models
changed.

Future work will include the search for more relevant
confidence features, such as features based on consenus
over word-lattices ((Mangu et al., 2000)), past perfor-
mance, the use of more appropriate correct/false tagging
methods and experiments with different machine learning
techniques. Finally, we would like to investigate whether
confidence estimation can be used to improve the model
prediction accuray, either by using re-scoring techniques
or using the confidence estimates during search (decod-
ing).

References

Christopher M. Bishop. 1995.Neural Networks for Pat-
tern Recognition. Oxford.

Peter F. Brown, Stephen A. Della Pietra, Vincent Della J.
Pietra, and Robert L. Mercer. 1993. The mathematics

of Machine Translation: Parameter estimation.Com-
putational Linguistics, 19(2):263–312, June.

R. Collobert, S. Bengio, and J. Mariéthoz. 2002. Torch:
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