
[ICUKL November 2002, Goa, India]

Utilization of the Visual Studio IDE for Integrating the UNL Development

Environment

Gunarso
Agency for the Assessment and Application of Technology (BPPT)

Indonesia
gunarso@aia.bppt.go.id

Abstract

UNL Center provides UNL developers with a set of tools to develop a specific language module
called UNL Development Set. This set contains the DeConverter and EnConverter software,
Word Dictionary Builder, Co-occurrence Relation Dictionary Builder, etc. Each tool needs some
inputs and gives a certain output, which are needed to be integrated and maintained continuously
during the development phase. Since the UNL Center do not provide the integrated development
environment, the utilization of the Visual Studio IDE, that provides a way to organize the tools
and related files, enabling an efficient, simple, and faster language module development.

1. Background

The UNL system consists of UNL Language
Servers, UNL Editors and UNL Viewers.
UNL language servers consist of a specific
module of specific language to make the
conversion task between this language into
UNL representation and vice-versa.

To create a new UNL language Server of
specific language, UNL Center provides
DeConverter and EnConverter software,
which is independent language, as well as
another facilitating tools. All of this
software, called UNL Development Set,
available to the UNL Developers who have
signed the UNL Development Set agreement
with UNDL Foundation. Although
developers can get the necessary tools for
creating a new language server, but the user
interface and development environment are
insufficient and unsatisfying. For example,
during the DeConverter rule tuning, it was
involving many input files like word
dictionary, UNL sentences, grammar rule,
and output file. The needs to open all those
files and modified it as necessary are high,
but the integrated development environment
is unsupported by the UNL Center.
Currently, developers are use the existing
editor in their PC to do the editing job, and

running the DeConverter or EnConverter as
needed on the other DOS prompt window.

For faster grammar rule development, it was
needed to have an integrated development
system, which consists of file editor,
application activator, and a way to manage
the overall files. This system is responsible
for the easier user interface and file
management.

Regarding this problems, we try to utilize the
Microsoft Visual Studio IDE (Integrated
Development Environment), that provides a
way to organize the files, tools, and highly
customizable, as an integrated development
environment for UNL System. With just
developing one simple tool for automatically
executing the DeConverter or EnConverter
that we called autounl, the grammar rule
development environment can be integrated
and run easily.

2. Visual Studio IDE

Visual Studio IDE is an integrated
development environment that is designed to
make a programmer’s life easier. It includes
tools and features for managing a project's
source code and configuration setting and for

visually designing its resources, an editor
programming language syntax, and even an
integrated debugger that can step through
code executing in a browser.

The Visual Studio is a fully integrated
development environment (IDE). From
within the Visual Studio IDE programmers
can do anything they could possibly want to
while developing a program. In the earlier of
programming, a programmer used to rely on
a collection of different tools. Each
programmer had a separate editor, a
compiler, a debugger, and other tools as
necessary. With an IDE, not only are these
tools collected into one environment but they
also are designed to work together in order to
improve the productivity of the programmer.

The Visual Studio Integrated Development
Environment (IDE) is organized into four
areas: the menu bar and a set of toolbars, the
project view window, the source code editor,
and the debug window.

The project view window gives programmer
an overview of all items in his project.
Programmer can look at his project through
three different views: the class view, the

resource view, and the class view. The file
view gives a list of all source files, header
files, and resource files in the project. The
class view provides a list of all classes in the

project with all functions in those classes. A
note has to be made that any change made in
file view will not be shown or available in
the class view until the project is rebuilt or
saved.

The debug window displays information
during the project building process. Here
programmer will see error and warning
messages, if there are any. The debug
window is also used when executing a
project in debug mode.

During the development, programmer work
on a single application as a project. A project
is a collection of files: source, headers,
resources, settings, and configuration
information. Visual Studio is designed to
enable work on all aspects of a single project
at once. Programmer creates a new
application by creating a new project. When
he wants to work on his application, he
opens the project rather than open each code
file independently.

The other advantage of the Visual Studio
IDE is highly customizable. Programmer
could easily add a new tool in the
environment, and then assign a button
through the toolbar customization, and put it
in the menu bar. Then programmer can run
the tool by simply clicking the related tool
button.

In relation with UNL development
environment, we try to utilize the Visual
Studio IDE in creating workspaces as a one
single UNL development project that is
contains the DeConverter or EnConverter
input and output files. UNL developer can
edit all input files such as grammar rules,
UNL representation, word dictionary, and
co-occurrence dictionary using the source
code editor. Likewise, the output file can be
browse using the source code editor. As for
the Deconverter or EnConverter itself, we
customize it as a tool and then assign a
button and put it in the menu bar. The UNL
developer can run the Deconverter or
EnConverter by simply clicking the
associated button. By utilizing this IDE, the
developer can improve the grammar rule
productivity.

3. Embedding UNL tools in the Visual

Studio IDE

UNL Development Set tools consist of
DeConverter and EnConverter software,
word Dictionary Builder, Co-Occurrence
relation dictionary builder, and other tools.
These tools are being executed from the DOS
prompt command by entering the program
name and its input and output arguments.
The input and output files are edited
separately using the existing editor.

The philosophy of UNL Integrated
Development Environment is embedding the
UNL Development set into the Visual Studio
IDE toolbar menu, and utilizes the source
code editor to edit the input files, so we can
take the advantage of the Visual Studio IDE.
Thus, firstly we must automate the execution
process before we attach it into the
environment.

DeConverter and EnConverter normally
executed through the DOS prompt window.
When it was executed, a window will appear
and user must click the run button that exists
in the DeConverter or EnConverter window.
This process is annoying and wasting the
developer time in developing the grammar
rule. To safe the development time, we
create a special tool in purpose to click the
button automatically during the execution of
DeConverter or EnConverter software. This
tool, which we called autounl, will execute
the DeConverter or EnConverter along with
its input and output files according to the
autounl configuration file named
autounl.cfg. Autounl will read the necessary
input files from the configuration file and
pass it to the DeConverter and automatically
click the runDeco button, and finally pass
the result into the related output file.

The typical autounl configuration file
consists of the application name that will be
executed, root directory of this application,
inputs and output files, and button series that
will be clicked automatically by autounl.
Following is the example of the autounl.cfg
file:

#--- SAMPLE CONFIG -----------------------
Root Directory: C:\UNL_DATA\
Application: DeCoL27.exe iuw.dic idgrul.txt ?[4|unlnews3.txt] out_tdh.trc
-c crid.dic -l ?[3|4] -s ?[1|1] -n ?[2|1]

Run As: 4
Max Wait: 120
Dialog Title: DECOL27
Application Title: DeConverter
#--------- Key --------------------------------
Click Button Name: Setting
Wait Window: ,,Setting
Wait: 100
Click Button ID On Dialog: 03F9, Setting
Wait Window: ,,Open
Click Button Name On Dialog: &Open, Open
Click Button Name On Dialog: OK, Setting
Wait: 100
Click Button Name: DeConvert

The above configuration means, when the
autounl is run, it will call the DeCol27.exe
that will take the iuw.dic, idgrul.txt, and
crid.dic as input files, and assign filename
out_tdh.trc as output file. Furthermore,
autounl will click the buttons that are
specified in the configuration file.

According to the behavior of rule developer
when adjusting the rule, that they will
process a sentence one by one, or a group of
sentence together in the highest trace level,
and then process all corpora at one in zero
trace level. We facilitate the user to input
those variables as autounl arguments. There
are four arguments for autounl and each
argument has a default values. Those
arguments consecutively are as follows:
1. Starting Sentence to be deconverted.

Default value is 1.
2. Number of sentences to be deconverted.

Default value is 1
3. Tracing level. Default value is 4
4. UNL document file that will be

processed.
Using this scheme, autounl can be run
without argument or up to four arguments as
needed. If the developer want to process and
trace a certain sentence in the default UNL
document, then he should input the sentence
number as argument. If he wants to process
sentence number 7 until 9 with default trace
level (4), he only input two arguments 7 and
3 (three sentences starting from sentence
number 7).

Now, we are ready to add the autounl into
Visual IDE environment as a new tool. This
can be done by clicking the Tools menu and
then choose Customize sub menu. The
customize window will appear as shown in
the figure 2.

Choose Tools menu in the Customize
window, and then type the application name
in the menu contents. Put the autounl.exe
executable file in the Command form and
autounl configuration file in the Arguments
form as shown in the figure 2. Tick Prompt
for arguments, so the user can input the
needed arguments for the autounl.exe.

At this point, we should bring this tool into
the main visual IDE menu. This can be done
by choosing the Commands menu in the
Customize window. Select Tools from
Category menu. This selection will bring
out tool buttons (hammer icon and a number
that relating to the existing tools) in the view
as shown in the figure 3. Click and drag the
related autounl tool into the Visual IDE main
menu. We can change the button appearance
by clicking the right mouse over the tool icon
in the main menu and selecting Button
Appearance. Buttons selection will appear
and we can choose the desired button as the
DeConverter button. Now we can run the
DeConverter or by simply clicking the
associated button in the menu bar.

Likewise, we can embed the EnConverter
and the word dictionary builder into the
Visual IDE environment, and place it in the
menu bar. So, all UNL tools have been
embedded into the IDE tool bar as it was
shown in the figure 4.

4. Running UNL tools and organizing files
in the IDE

Once we have embedded the UNL
applications into the environment, we can
run it by clicking the associated button.
However, we still need a way to manage a
set of input and output files in the UNL
development environment. To do this, we
can utilize the workspace and project scheme
as if we are creating a programming project
in C++ or J++.

To create DeConverter workspace, first run
the Microsoft Visual C++ or J++ that we
have customized for UNL development, then
select New from file menu. This will display
the New window. Select workspace menu
from New window and specify the
workspace name and location. The new
workspace will appear in the workspace area.
To insert new rule development project, click
the new workspace using the right mouse

button and select Add New Project to
Workspace …. New window will appear
again, and select Utility Project for the type
of the project, then specify the name of the
project. A project has created in the new
workspace. Furthermore, we should insert all
UNL development files like rule, word
dictionary, UNL sentences, and output files,
into the project. From this point, we have
finish in creating a UNL development project
and ready to run DeConverter and adjust the
DeConverter rule. This setting can be used
again if we want to work on the same project

by opening the same workspace. We just
open the workspace once, rather than open
each UNL file independently.

The view of the Visual Studio IDE after we
creating a project is shown in the figure 4. In
the project files area, we can see all UNL
development files that we have inserted into
the project. When we want to edit a certain
file, we just click it and the content will
appear in the editor window. We can edit it

as if we write a program in C++. One area,
the debug window is unused. This window is
actually used to display message during
compiling the source code of a specific
project in C++ or another programming
language.

To run the DeConverter we can click
RunDeco button. When the deconvertion
process is finish, the result can be view in the
editor window by clicking the associated
output file in the project files window. We
can analyze the result and determine if
something incorrect. Furthermore, we can
edit the grammar rule file by clicking it from
the project view window, save it, and run the
DeConverter to check the modification
result. This process was done repeatedly until
we got the best deconvertion result of the
UNL sentences. All processes are run and
organize in a single environment, the Visual
Studio IDE.

To facilitate the rule developer with the
graphical view of the UNL representation,
we can embed the UNL Viewer Software
that have been developed by Indonesian
Language Center, into the IDE. The process
is same with the autounl embedding process.
This graphical viewer can help in analyzing
UNL sentences during the rule debugging
and rule developer can determine the existing
errors faster

6. Conclusion

The Visual Studio IDE is highly
customizable, and we can utilize it to
integrate the UNL tools for the grammar rule
development. This means that we do not
necessary to develop a special integrated
system for the grammar rule development.

The grammar rules developer can organize
all files in a single environment and run the
UNL tools easily. Using this IDE, the UNL
rule development productivity can increase
significantly.

7. References

Cohn, M., Rutten, J., and Jory, J., Using the
Developer Studio, Web Programming with
Visual J++™, Sams.net Publishing,
Indianapolis, 1997

UNU/IAS/UNL Center, DeConverter
Specifications Version 2.5, UNU/IAS,
Tokyo, 2000.

Uchida Hirochi, Zhu Meiying, Tarcisio Della
Senta, The UNL, A Gift for a Millenium,
UNU/IAS, Tokyo, 1999.

