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Abstract

Recent work on training of log-linear interpolation mod-
els for statistical machine translation reported perfor-
mance improvements by optimizing parameters with re-
spect to translation quality, rather than to likelihood ori-
ented criteria. This work presents an alternative and
more direct training procedure for log-linear interpola-
tion models. In addition, we point out the subtle inter-
action between log-linear models and the beam search
algorithm. Experimental results are reported on two
Chinese-English evaluation sets, C-Star 2003 and Nist
2003, by using a statistical phrase-based model derived
from Model 4. By optimizing parameters with respect to
the BLUE score, performance relative improvements by
9.6% and 2.8% were achieved, respectively.

1. Introduction

Log-linear interpolation models, which can be formally
derived within the maximum entropy framework [1],
have been only recently applied to statistical machine
translation (SMT) [2]. In addition, and similarly to what
proposed for speech recognition [3], optimization of in-
terpolation parameters can directly address translation
quality, rather than the usual maximum likelihood crite-
rion [4].

This paper goes along the direction of [4], and pro-
poses an alternative and more direct training procedure,
but computationally more intensive. Moreover, a subtle
relationship between the parameter optimization and the
beam search algorithm is pointed out, which might have
an important impact on the choice of optimal parameters.

2. Log-Linear Model for SMT

Given a source stringf and a target stringe, the frame-
work of maximum entropy [5] provides a mean to directly
address the posterior probabilityPr(e | f). By introduc-
ing the hiddenalignmentvariablea, the usual SMT opti-
mization criterion is expressed by:

e∗ = arg max
e

∑
a

Pr(e,a | f)

≈ arg max
e,a

Pr(e,a | f) (1)

The conditional distributionPr(e,a | f) is deter-
mined through suitable real valued features functions
hi(e, f ,a), i = 1 . . . M , and takes the parametric form:

pλ(e,a | f) =
exp{∑i λihi(e, f ,a)}∑
e,a exp{∑i λihi(e, f ,a)} (2)

The maximum entropy criterion suggests to com-
pute valuesλi, which maximize the log-likelihood over
a training sampleT :

λ∗ = arg max
λ

∑

(e,f ,a)∈T

log pλ(e,a | f) (3)

An interesting log-linear model results if the follow-
ing feature functions derived from Model 4 [6] are used:

h1(e, f ,a) = log Pr(e)
h2(e, f ,a) = log Pr(φ | e)
h3(e, f ,a) = log Pr(τ | e, φ)
h4(e, f ,a) = log Pr(π | e, φ, τ ),

which explainf and a for e in terms of fertilitiesφ,
tabletsτ and permutationsπ. In fact, after simple manip-
ulations, the usual decoding criterion for Model 4 results,
with the addition of four scaling factors:

e∗ ≈ arg max
e,a

Q(e,a; λ) (4)

= arg max
e,a

Pr(e)λ1 · Pr(φ | e)λ2 ·

Pr(τ | e,φ)λ3 · Pr(π | e, φ, τ )λ4 (5)

To tackle the optimization problem of eq. (5), a
search algorithm can be devised which incrementally ex-
tends partial translation hypotheses(ẽ, ã) of the source
string, until an optimal complete translation is found. A
translation is said partial if its corresponding alignment
ã does not cover all positions inf . The complexity of
the search algorithm mainly depends on the number of
possible translations and of target positions to be consid-
ered for each source word. To avoid exponential com-
plexity, constraints on both factors are generally intro-
duced. Moreover, the so-called pruning of hypotheses
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is deployed, too. Hence, at each step (or target string
length), only abeamwith the most “promising” hypothe-
ses is considered for extension. The following are two
very popular pruning methods, which are usually applied
to partial translations of the same length and/or covering
the same source positions:

• threshold pruning: partial hypotheses(ẽ, ã) whose
score Q(·) is smaller than the (local) optimum
scoreQ∗ times a given factorT , i.e.

Q(ẽ, ã; λ)
Q∗ < T , (6)

are eliminated;

• histogram pruning: hypotheses not among the top
N best scoring ones are pruned.

3. Minimum Error Training

In place of the criterion (3), [4] recently proposed to esti-
mate parameters by minimizing the number of translation
errors. We assume that a functionED(λ) is available,
which measures the translation errors made by running a
model defined by parameter valuesλ on a development
setD. Hence, parameters are searched by:

λ∗ = arg min
λ

ED(λ) (7)

Unlike the log-likelihood criterion (3), the objective func-
tion ED(·) might have many local minima. Hence, find-
ing an optimal solution can be very hard. In this work, we
use thesimplex method[7], an algorithm for multivari-
ate function minimization which requires relatively few
function evaluations. The same algorithm was already
applied for the same task in [8] and for training log-linear
language models in [1].

3.1. Interaction with Beam Search

The optimization process, besides tuning the parameters
of the statistical model, may also interfere with the beam
search. The reason is in the following property of the
scoring function (4):

Q(ẽ, ã;αλ) = Q(ẽ, ã;λ)α (8)

for any positive real numberα. As a consequence, the
threshold criterion (6) is affected by any change of the
parameter vectorλ which corresponds to a scaling trans-
formation. For instance, a contraction of the parameter
vector by a factorα = 0.5 would implicitly determine
the search to prune hypotheses according to the more re-
laxed constraint:

Q(ẽ, ã;λ)
Q∗

< T 2 (9)

Hence, we can expect that any optimization algorithm
would be easily attracted by parameter values which re-
lax the pruning threshold, and reduce the error rate at the
expense of more computations.

3.2. Simplex Initialization

To remove the impact of the pruning threshold, the sim-
plex method is started from a parameter configuration in-
ducing a loose threshold, so that any further widening of
it does not give tangible effect on performance. A poten-
tial problem of this approach could be its high computa-
tional cost. In our implementation, the optimization re-
mains feasible because the cost of search is also bounded
by the histogram pruning. Moreover, optimization of pa-
rameters is no more influenced by the beam search, given
that there is no relationship between the histogram prun-
ing and the parameters.

Another possibility could be to normalize the param-
eter vector (like in [2]), or to fix one important parameter
and let vary only the others.

4. Experiments

4.1. Baseline System

The core of the translation system is a statistical model,
based on the IBM Model 4 and extended to deal with
phrasesrather than with single words [9]. The corre-
sponding log-linear model is similar to that shown in
eq. (5) with the addition of two terms, which explicitly
scale the fertility and distortion probabilities of the null
word. Search is performed by a decoder based on dy-
namic programming. Both in training and testing, sen-
tences are pre-processed in order to reduce data sparse-
ness. Pre-processing includes: Chinese word segmen-
tation, separation of words from punctuation, handling
of acronyms and abbreviations, number extraction, case
normalization, etc.

In the following, we will refer to thebaselinesys-
tem when uniformparameters are assumed, which can be
possibly scaled up or down to modify the beam-search
pruning.

4.2. Data

We evaluated our approach on two Chinese-English
translation tasks: the Nist 2003 MT evaluation task1,
large-data case-insensitive conditions, and the C-Star
2003 evaluation campaign2. The first task concerns with
translation of new agencies, while the second task con-
cerns with basic traveling expressions [10]. Test sen-
tences are provided with 4 and 16 human translations, re-
spectively. Tables 1 and 2 report detailed statistics about
the used training and test data. For parameter optimiza-
tion, the Nist 2002 MT evaluation data and 1,000 sen-
tences extracted from the C-Star training data were used,
respectively.

It is worth noticing that the C-Star 2003 test set has
been used as development set for the IWSLT-2004 evalu-

1www.nist.gov/speech/tests/mt
2www.c-star.org
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Table 1: Statistics of training data.

Nist C-Star
vocabulary source 148K 12K

target 110K 11K
#words source 13.1M 434K

target 13.5M 45K
#sentence pairs 687K 48K
#phrase pairs 4.4M 381K

Table 2: Statistics of test data.

#sentences #words OOV rate
Nist 2003 919 27,254 1.89%
C-Star 2003 506 3,770 1.62%

ation campaign (see [9]).

4.3. Performance Evaluation

Minimum error training was based on two well estab-
lished MT objective quality measures, that adequately
correlate with human subjective evaluations: namely the
BLEU [11] and NIST3 scores. Moreover, in order to com-
pute time requirements independently from the hardware
platform and CPU load, the number of hypotheses gen-
erated by the search algorithm was assumed as a reliable
measure.

5. Results

Best achieved performance for each task are reported in
Table 3 and Table 4. In both cases consistent performance
improvements were achieved with respect to baseline sys-
tems with comparable search complexity. On the Nist
2003 evaluation set, the BLEU score improved by 2.8%
relative, while the NIST score by 1.7% relative. More
significant gains were achieved on the C-Star task: 9.6%
relative improvement on the BLEU score and 1.8% on the
NIST score.

Interestingly, for the C-Star task, a slightly better
NIST score was obtained by optimizing parameters with
respect to the BLEU score (see Table 4). In general, opti-
mizing the NIST score results much harder than optimiz-
ing the BLEU score.

A comparison considering many beam-search work-
ing points is shown, for the C-Star 2003 task, in Figure 1.
The two plotted curves represent performance of the
baseline (using uniform parameters) and the log-linear
model with parameters optimizing the BLEU score. In
both cases, different working points of the search algo-
rithm were obtained by linearly scaling the parameter

3www.nist.gov/speech/tests/mt

Table 3: Best translation results on the Nist 2003 task
with different parameter settings: optimizing BLEU, op-
timizing NIST, and uniform.

Criterion BLEU NIST # hyp
BLEU 0.1854 7.2882 116M
NIST 0.1840 7.3362 115M
Baseline 0.1803 7.2115 116M

Table 4: Best translation results on the C-Star 2003 task
with different parameter settings: optimizing BLEU, op-
timizing NIST, and uniform.

Criterion BLEU NIST # hyp
BLEU 0.4614 8.4945 14.9M
NIST 0.4581 8.4675 14.9M
Baseline 0.4208 8.3169 14.8M

vector. Figure 2 is the analogous of Figure 1, but refers
to parameters optimal with respect to the NIST score.

At equal computational costs, we observe perfor-
mance gains between 7-10% on the BLEU score, and
1-2% on the NIST score, when optimized parameters are
used instead of uniform ones. These achievements are
significant, since parameter optimization on the test set
allows for an improvement of 12.8% and 3.7%, respec-
tively, which are fair approximations of the best achiev-
able scores on that test set.

In addition, we notice that best BLEU performance
obtained by the baseline (best score of the baseline in
Figure 1) is reached by the minimum error trained sys-
tem with almost 50% less search cost.

6. Previous Work and Discussion

The estimation of the translation probabilityPr(e | f)
in the framework of maximum entropy was suggested by
[2]. In [4], parameter estimation of a log-linear transla-
tion model was done by optimizing the error rate instead
of the likelihood. Error minimization relied on the avail-
ability of a set ofn-best candidate translations for each
input sentence, produced by the search algorithm. Dur-
ing training, optimal parameters were searched through
the Powell’s algorithm [7]. Since then-best list can sig-
nificantly change by modifying the parameters, the pro-
cedure is iterated until then-best list remains stable. The
author claims that, in practice, 5-7 iteration are enough
for convergence.

Unlike that in [4], our optimization method exploits
all possible solutions of the search algorithm and does
not limit the search ton-best lists. As a consequence,
our procedure is computationally more expensive. Each
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Figure 1: BLEU score as function of the number of gen-
erated hypotheses.
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Figure 2: NIST score as function of the number of gener-
ated hypotheses.

iteration of the simplex algorithm requires translating the
full development set. Practically, each iteration on the
Nist 2003 development data takes about 7 minutes with
12 CPUs, while a solution is found in about 100 steps.

Although we measured consistent and stable im-
provements with two different MT scores and along many
different beam-search configurations, our performance
gains are significantly lower than those shown in [4].
Nevertheless, as pointed out in [8], the simplex “method
has the advantage that it is not limited to the model scal-
ing factors as the method described in” [4], but it also
allows to optimize parameters of the models to be inter-
polated. Then, a direct comparison of the two approaches
would be desirable: with this goal in mind, we are cur-
rently developing optimization methods exploiting n-best
lists.
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