
MT Summit VIII
Santiago de Compostela (Spain), 18 - 22 September 2001

A Taste of MALT

Ulrike Bernardi, Petra Gieselmann, Steve McLaughlin

SAIL Labs GmbH
Balanstrasse 57
81541 Munich

Germany
ulrike.bernardi@sail-labs.de, petra.gieselmann@sail-labs.de, steve.mclaughlin@sail-labs.de

Abstract
Globalisation is bringing translation and multilingual information processing to areas where it was previously unknown or relatively
unimportant. Today, translation is not only important for reaching global audiences, it is becoming an indispensable component inside
other systems and workflows. MALT (Modular Architecture for Linguistic Tools) represents a fresh approach to a relatively new
problem; how to provide translation capabilities plus any other vital linguistic tools and components inside a common framework,
possibly together with other external applications. MALT’s modular structure and multi-tier architecture simplify integration into
complex workflow scenarios, and the functional separation in the MALT interface permits new components to be added extremely
quickly. The applications and components running under MALT can be accessed locally, in a network environment or as engines of a
distributed client-server system such as DTS.

Keywords
Integration, Distributed Architecture, Modularity, CORBA, Java

Introduction: The Need for a New Concept
Globalisation is undoubtedly changing the face of
business. And one of the main problems globalisation
brings with it is how surmount the very real language
barriers which divide the peoples of the world. What
should have been obvious from the very beginning is now
finally being widely recognised - English will never be
universally accepted as the sole vehicle of international
communication. And rightly so - for hundreds of political,
cultural and educational reasons. The only way forward
for global players is to be capable of understanding
information and providing content in all the native
languages of the targeted countries.

The upshot of all this is that language is now an important
element in applications where it was previously
unimportant. Translation is and always will be a goal in
itself, and is an important line of business. But translation
and translation-related activities (such as multilingual
information retrieval) now play a secondary but vital role
in an ever-widening range of other commercial activities.
It is obvious that this is very different to the way
translation and linguistic tools have been used up to now.

The classical problem, large enough in itself, was how to
get documents into a particular dedicated processing
system and how to get the results out. Now the nature of
the problem has changed. The new challenge is to build
translation and linguistic processing capacity into many
different types of workflow. Texts are no longer coming
to the translation system - the translation system is coming
to the texts!

Piecemeal and one-off integration of linguistic tools into
applications is not the correct approach to this new
problem. We need a universal solution - one that can be

used for a multitude of tasks ranging from classical
Machine Translation and Translation Memory systems
right through to applications which need linguistics in a
supporting role. This is where MALT (Modular
Architecture for Linguistic Tools) comes in.
Essentially, MALT represents the framework in which
tools and applications can be combined together in order
to build simple or complex workflows. The following
scenarios will give some idea of the flexibility and
potential of MALT.

MALT Scenarios

Scenario 1: Toolbox for Translators and/or MT
Developers
First of all, let's take a look at the classical scenario: a
translator who, like all other translators, needs to carry out
a large number of tasks in a short amount of time, and
wants to get as much help as possible from appropriate
tools. Imagine that she wants to translate a completely
new manual. Of course, she has access to a Machine
Translation (MT) engine for draft translations, and access
to Translation Memory (TM). Here, she would certainly
appreciate an analysis tool which could tell her whether
MT or TM (or a combination of both) would be
appropriate for the task in hand.

As well as conventional aids such as a Lexicon Editor, she
might also need a tool to extract lexicon entries out of a
text corpus, a spelling checker, and maybe even a
controlled language tool. And other components which
make sure that there are no text passages in different
languages or check whether the terminology is used
consistently would certainly help automate post-
translation Quality Assurance work. Our translator may
need any of these tools, and does not want to switch from
one application to another; that’s the reason why she

mailto:ulrike.bernardi@sail-labs.de
mailto:petra.gieselmann@sail-labs.de
mailto:steve.mclaughlin@sail-labs.de

wants to use all these tools within an integrated
framework like MALT (see Figure 1).

And what about the MT developer: He also needs a suite
of tools and components; an MT engine, tools for
developing lexicons and grammars, a term extraction tool,
a tool for evaluating the analysis and translation, a
database with test samples and real texts, different
lexicons for concordance, lookup, synonyms etc. Maybe
he even needs an MT engine from another language pair
and the corresponding lexicons and grammars for
comparison and standardisation of procedures. It is
especially important that he can change grammar rules or
lexicon entries and test them immediately without
changing programs or needing to restart the whole system.

A framework such as MALT gives the developer all the
required tools and the necessary flexibility (see Figure 2).

Scenario 2. Toolbox for Multilingual Content
Technology

The Content Technology scenario is one that is becoming
increasingly familiar.
In this scenario, our user is an ”information broker” in any
of a hundred roles; industrial analyst, paralegal,
investigator, IT support worker etc. etc. Information,
knowledge about it, and access time to it represent money
and competitive advantage in very real terms, and our user
needs to utilize powerful technology to find answers to his
questions as rapidly as possible. The challenge to our user
lies in the gigantic amount and diversity of information to
be searched. As early as mid-1999, there were more than
800 million pages on the Internet. Looking for a certain
piece of information easily turns into trying to find a
needle in a haystack.

Content Technology (CT) automates the process of
assembling, indexing, extracting, cataloguing, retrieving
and even summarizing the information. Traditionally CT

offers a serious of technologies to support these goals.
Which combination of these technologies our user will
actually employ, will depend on the task in hand.
He can use Information Retrieval tools to find relevant
documents and extract relevant data from them (see
Figure 3). Directory Services and Document Clustering
can be used to categorize documents according to a given
ontology and to search those directories which best match
a particular query.
He could use Information Extraction tools to find
objects and attributes and prepare them for structured
processing, or generate text from structured data in
different languages.
Or he could use an Intelligent Dialogue System which
links his queries to answers (prepared manually or using
extraction tools) and Natural Language generation tools.
Maybe he needs to automatically scan incoming texts and
needs to know if certain patterns, templates or topics
appear in the information stream. For this he would need
Filter&Notify technology.

For multimodal information sources, he might well need
Audio and video mining tools, or audio and video
transcription tools.

Although these are clearly separate technologies, the same
components (tokenizer, lemmatizer, namer, pattern
matcher, language identifier, topic identifier,
document classifier, summarizer, query expansion and
answer generation modules etc.) are used in different
systems and applications. Our user may even want to call
and use some of these components individually, requiring
a modular system architecture.
If our information broker needs to consult information
sources in more than one language, multilingual and
crosslingual CT extensions are necessary (document and
query translation, term substitution and multilingual
text generation).

Our ”information brokers” require access to any or all of
these CT tools, and needs a primary system which has the
flexibility to be configured on a daily basis according to

Figure 1: MALT Toolbox for Translators (Configuration Study)

the current needs in a given scenario. This is the strength
of a system like MALT.

Other Scenarios
There are any number of other scenarios where
multilingualism is involved and/or huge volumes of
information have to be dealt with, and where a wide
variety of linguistic and non-linguistic tools could usefully
be employed within a common framework and common
workflows and without needing to leave the user’s normal
working environment. They all call for the open
architecture and modular approach that MALT provides.

Inside MALT
How is MALT able to deal with all these different
scenarios? The MALT concept has four guiding
principles:
• Modularity: MALT is a framework for the

integration of diverse components and tools
• Distributed architecture: Components can be

accessed locally or in a network environment
• Functional separation: The MALT interface is

divided into functionally separated areas
• Configurability on demand

These guiding principles are reflected in the general and
component architectures and in the GUI design.

General Architecture
The MALT Framework hosts two main components: the
Document Administration System (DAS) and the
Operation Area (OA). The Operation area may contain
components such as a File System Browser, a machine
translation component (MT), a translation memory
component (TM), an information retrieval tool, or even
completely different applications.

The components in the Operation Area are GUI
components. These access Business Objects (BOs) like
the Machine Translation Object (in this case an MT
engine) which do the actual processing work. The MALT
system is configurable in different ways to provide access
to MT or any other Business Object:

• Local solution: One or more engines are installed on
the same computer as MALT.

• Distributed solution: Engines can be accessed through
the network.

• Combined solution: The main engine (a frequently
used application) is installed locally. Engines used

Figure 2: MALT Toolbox for MT Developers (Configuration Study)

only occasionally are accessed through the network
and can thus be shared by multiple users.

• A sophisticated client server system such as DTS (see
below) can be integrated as an engine.

MALT and its engines communicate through CORBA
interfaces which bridge the programming ‘language gap’
between Java (used for MALT) and C++ (used for the
engines).

Component Architecture
All components are based upon a three-tier architecture
consisting of a GUI layer, a logic layer and a persistence
layer. The GUI layer is the user interface of the
component; it displays a window. The only thing it
‘knows’ is how to display data. Even logic rules like
”control X has to be disabled when checkbox Y is
checked” have been eliminated. The GUI layer forwards
requests like ”Event A has occurred” (in this case: ”option
Y has been changed to ‘true’”) to the logic layer.

The logic layer contains a set of Business Objects. These
provide the data to be shown and supervise the rules and
constraints to be followed. Thus when a BO receives
requests like ”option Y has been changed to ‘true’”, it
checks the logical constraints and reacts on them by
requesting the GUI component to disable control X. This
layer, however, has no knowledge at all about how to
display the data.

The persistent data can be stored in a file or a database
system. If the data were mirrored on a server machine it

would be possible to access user-specific information
from any machine.

De-coupling the GUI completely from the business logic
makes it easier to distribute the Business Objects over a
network. Each time the user requests a service from a GUI
object, the GUI object can load different BOs. The BOs
can exist on server machines anywhere in a network,
whereas the GUI objects are downloaded onto the client

machine. Another advantage of separating the GUI
completely from the business logic is that the complete
GUI can be ported much faster, from JAVA to MFC, for
example.

The MALT Framework
During startup the MALT Framework sets up a common
menu, a set of toolbars and a list of shortcuts for all
components. The Framework then arranges the windows
of the components and dispatches any command selected
from the main menu, the toolbars or the shortcuts. A
configuration file provides information about all the
components which are to be loaded. This configuration
file is a simple text file and can be easily adapted to cater
for new components and applications.

The Document Administration System and the Operation
Area have fixed relative positions within the Framework.
The configuration file contains a separate section for each
component, defines additional parameters such as the tab
within the Operation Area. On program startup the
framework tries to load all components listed in the
configuration file. A failure when loading an optional
component does not affect the rest of the system.
Therefore, the system can be easily configured in different
ways.

Document Administration System
The DAS is a browser-like hierarchy that contains folders
and documents. The user can add, delete and move
folders. For import from the Windows Explorer, folders
and documents can be inserted into the DAS using the

drag-and-drop function. There are different kinds of
documents, depending on the task to be carried out in
MALT. For MT, for example, users would import
documents in RTF, ASCII or HTML format for
translation. But they could also add lexicon files,
translation memory modules, grammar files etc. Each
Document type has a ”primary document”, which can be
understood as the source file of all related commands.
Dependent files and documents are called ”satellites”.

Figure 3: MALT Toolbox for Information Retrieval (Configuration Study)

Satellites are created by executing a command on the
primary document. An MT translation, for example,
creates a target document and perhaps a Glossary or an
Unknown Words list as satellites of the original source
document.

Importing Documents into the DAS
The user builds up the DAS by importing files or folders
from the File Browser component in the Operation Area
or from external programs like Windows Explorer. If the
user drops an individual file onto a folder of the DAS, the
DAS tries to create a new document of the type that
corresponds to the respective root folder. As users may
drop any file type onto any folder, the DAS must be able
to identify the file type. If the user drops a file system
folder onto the DAS, this has the same effect as if all files
in this folder, including subdirectories, had been dropped
separately. The folder’s directory structure is recreated
below the node. However, only those documents and files
that can be processed by a component in the MALT are
actually imported.

Users are free to build up their own folder hierarchy. To
provide maximum flexibility, the documents are
maintained within a pool. Each display object keeps a
reference to one of the pool objects. A pool document
may be referenced more than once within the document
administration tree.

When the user selects a DAS document and presses the
right mouse button, a context menu opens that contains all
commands available for the selected document. Some
commands are available only when a certain satellite
actually exists. For example, the translation of a document
can obviously only be viewed after the translation has
carried out. Otherwise, the corresponding command is
greyed out and disabled. When MALT is started, the
system reads the configuration file in order to be able to
offer all the commands that can be used with the currently
loaded modules.

The Operation Area (OA)
The Operation Area is loaded into the framework as a
mandatory component. It hosts a variable number of
optional GUI components that serve as editors, viewers or
other types of components for the entities that are
maintained by the DAS. The components that can be
included in the Operation area are defined in the system
configuration file. All components mentioned above are
GUI components connecting to Business Objects that
actually perform the different types of tasks. Each GUI
component is represented as a tab folder and it can be
opened by clicking on the tab.
The following components would be typically included in
the OA:

• File System Browser: Allows the user to browse
through the file system of the current computer
including network connections. To move a file from
here to the Document Administration System on the
left of the screen, the drag-and-drop function is used.

• Parameter Settings: The user selects the settings for
the individual jobs. For MT this such would be
language direction, stylistic preferences, etc. For
information retrieval, the parameter settings would be
completely different.

• Job Queue: The Job Queue holds jobs of any kind
for later processing. Priorities can be assigned to each
individual job.

• The Document Viewer: MALT also contains a
viewer for the displaying documents in formats such
as HTML, RTF, and TXT.

• Lexicon Editor: Used to add terms to lexica in MT
or other applications.

• ScratchPad: Translation area of the OA. Used for
fast, ad hoc translations of text entered by the user
and for testing new lexicon entries or grammar rules.

Adding Components
As we have learned, MALT is a framework for the
integration of both linguistic and non-linguistic tools.
What’s more, MALT is the ideal platform for the creation
of multi-vendor systems. Sail Labs plans to fully integrate
the majority of its own tools into MALT. This integration
work, and indeed the integration of components from
other vendors, can take place on various levels.

The top level offers full integration into the Operations
Area, i.e. full interaction with the application is available
within MALT. Sail Labs’ Lexicon Editor or Memory
Alignment tool would be an example of this type of
integration.

A second level of integration offers the possibility of
steering components or applications from within the
Operations Area (but without full interactive support), and
the viewing of results within the OA. An example of this
could be setting parameters (source files, language,
objects etc.) to control an information extraction tool and
the subsequent possibility to monitor the data found.

At the third level, there is the possibility of calling
applications or components from MALT that process

Figure 4: Context Menus in the DAS

DAS objects but are otherwise self-contained external
programs. Examples of these could be tools or programs
from other vendors where either no APIs are available or
where it would be superfluous or overly complex to fully
integrate their interfaces into the Operation Area.

The number of components that can be integrated into the
Operation Area is practically unrestricted. To integrate a
new component into the MALT, a developer has to carry
out the following steps:
• Update the ”optional components” section of the

MALT configuration file.
• Implement the Ipage Context interface located in the

GUI package. This requires:
♦ a Java component class that is hosted by the

Operation Area
♦ a title to be used for the tab in the Operation Area
♦ entries for the main application menu
♦ entries for the DAS pop-up menu

The Ipage interface is used to call the components for
initialisation and de-initialisation, changing the display
language and changing the container where the
component is hosted.

DTS under MALT
Business Objects can also be added to MALT as engines
running under DTS. DTS, also developed by the Core
Components group at Sail Labs, is a loosely coupled
distributed environment based on CORBA architecture
and using a model analogous to JavaSpaces. DTS is a
modular, high-performance and state-of-the-art delivery
system providing any type of service within Intranets or
the Internet.

Please contact Sail Labs for more information on MALT
or DTS.

Bibliographical References
Core Component Department Sail Labs (2001). MALT

1.0: Detailed Functional Specification. Munich
Technology Office Sail Labs (2001). DTS: Distributed

Tasks and Services. Munich

