
AGILE – A System for Multilingual Generation of Technical Instructions

Anthony Hartley1, Donia Scott1, John Bateman2, Danail Dochev3
1Information Technology Research Institute – University of Brighton

 [donia.scott, tony.hartley]@itri.brighton.ac.uk
2Faculty of linguistics and literature (FB10)– University of Bremen

bateman@uni-bremen.de
3Institute of Information Technologies – Bulgarian Academy of Sciences

dochev@iinf.bas.bg

Abstract
This paper presents a multilingual Natural Language Generation system that produces technical instruction texts in Bulgarian, Czech
and Russian. It generates several types of texts, common for software manuals, in two styles. We illustrate the system’s functionality
with examples of its input and output behaviour. We discuss the criteria and procedures adopted for evaluating the system and
summarise their results. The system embodies novel approaches to providing multilingual documentation, ranging from the re-use of a
large-scale, broad coverage grammar of English in order to develop the lexico-grammatical resources necessary for the generation in
the three target languages, through to the adoption of a ‘knowledge editing’ approach to specifying the desired content of the texts to
be generated independently of the target languages in which those texts finally appear.

Keywords
Generation, multilinguality, styles, grammar re-use, evaluation

Introduction
The AGILE project (Automatic Generation of Instructions
in Languages of Eastern Europe) was a three-year project
(1998—2001) in which a prototype multilingual Natural
Language Generation (NLG) system was developed for
producing user manuals for CAD-CAM systems in
Bulgarian, Czech and Russian. The project involved the
Institute of Information Technologies—Bulgarian Academy
of Sciences, Charles University in Prague, the Russian
Research Institute for Artificial Intelligence, the University
of the Saarland and the ITRI at the University of Brighton
(coordinators). It built on the success of the previous
DRAFTER system, developed by the ITRI with support
from two commercial partners, Praetorius Ltd and Integral
Solutions Ltd. (Scott & Evans, 1998). DRAFTER stands for
“DRafting Assistant For TEchnical writers”, and enables the
production of draft software manuals in English and in
French. Within AGILE, this approach was investigated
further, considering a broader range of languages and more
sophisticated textual possibilities.

The prototype system developed within AGILE allows users
to specify the content of the instructions for carrying out
tasks in the CAD-CAM domain. This content is then
automatically expressed in each of the three target languages
in parallel. The approach of multilingual NLG thus contrasts
with the more conventional approach of (MT) in that the
starting point is not a source text in one language, but a non-
linguistic specification of the content to be expressed
(Hartley and Paris, 1997). This specification may draw on
one of the target languages, but need not: in our illustrations
in the present paper, for example, the AGILE user-interface
language was set to English in order to facilitate the
presentation. One practical advantage of applying such a
multilingual NLG system is therefore that end-users can
directly ‘author’ draft first versions of texts in languages that
they do not themselves speak.

The AGILE project also represented the first attempt ever at
a comprehensive computational account of Bulgarian, Czech

and Russian for the purpose of natural language
generation. These grammars are implemented in the
framework supported by the Komet-Penman
MultiLingual (KPML: Bateman, 1997) environment,
and may now be re-used and extended for generation in
other domains.

Working with AGILE – an overview
In this section, we give a closer view of the
functionality of the AGILE system by providing
examples both of the kinds of texts produced and of the
style of interaction required for providing the
information for generation.

The output of the AGILE document generator
Here are examples—in English, for generality of
illustration—of some of the different text types
generated by AGILE in the personal style.

Full Instructions
To draw an arc
First start the ARC command using one of these

methods:
 Windows: From the Arc flyout on the Draw

toolbar, choose 3 Points.
 DOS and UNIX: From the Draw menu

choose Arc. Then choose 3 Points.
Now specify three points of the arc.
 1. Specify the start point (of the arc). First

enter endp. Then select a line. The arc snaps
to the endpoint of the line.

 2. Specify the second point of the arc. First
enter poi. Then select a point. The arc snaps
to the point.

 3. Specify the endpoint of the arc.

mailto:dochev@iinf.bas.bg

As is often the case for NLG systems, AGILE has flexible
strategies for deciding whether to express a given ‘package’
of information in several sentences, as above, or in a single
sentence, as below. Note that such variation is not normally
considered a required functionality in the context of MT
systems, but is a natural target within an NLG system
because there the aim is always to produce the most
appropriate text given some particular communicative goals.

…
Now specify three points of the arc.
 1. Specify the start point of the arc by entering

endp and selecting a line so that the arc snaps to
the endpoint of the line.

…

Overviews
Overviews provide a summary of all the tasks that are
documented in the manual. AGILE can produce texts in
which they are more or less randomly ordered, as here:

The system enables you to create a multiline style, to
specify the properties of a multiline, to draw a
line and arc combination polyline, and to draw
an arc by specifying three points.

Alternatively, the tasks can also be grouped according to the
objects the user can act upon—e.g. ‘multiline’—or the
actions the user can perform—e.g. ‘draw’.

The system enables you to create a multiline style,
and to specify the properties of a multiline. You
may also draw a line and arc combination
polyline, and an arc by specifying three points.

Functional Descriptions
These describe the functionality of user interface commands
such as buttons in toolbars or dialog boxes. The descriptions
can be organised according to the command identity as here:

The Polyline button on the Polyline flyout from the
Draw toolbar (under Windows) starts the PLINE
command.
The Polyline button on the Draw menu (under DOS
and UNIX) starts the PLINE command.

Or the descriptions can be expressed in terms of the action
the user must perform.

Selecting Add in the Element Properties dialog box
adds an element.
Choosing OK in the Element Properties dialog box
saves the style of the multiline element and exits the
Element Properties dialog box.

Again, which alternative is selected can be decided flexibly
depending on the particular goals of the system when
presenting the information provided for generation.

The input to the AGILE document generator
The person—usually a CAD-CAM system designer—
who is providing the information to be expressed in the
target instruction manual creates ‘models’ of individual
user tasks. The task model is built up recursively in
structures that mirror the GOAL + METHOD structure
of software instructions. These are displayed to the user
in the form of nested boxes (Figure 1). Clicking on a
slot in a box brings up a menu of available fillers—
actions or objects, depending on the nature of the slot.
Currently, English, Bulgarian, Czech or Russian may be
chosen as interface language: i.e., the language in which
slots and their possible fillers are identified to the user.

In order to build a task model describing the procedure
of drawing a line by defining its start and end points,
for example, the GOAL is draw and the METHOD is
specify end points. To specify this, the author will select
draw from the choices offered as fillers for the goal
shown (abbreviated) in Figure 1.

Figure 1. Specifying the GOAL action

Next, the author must specify what is to be drawn
(Figure 2). Slots remaining that must be filled before a
sufficiently complete specification has been input are
signalled by a red label. The context-sensitive menu that
appears will display only the names of those objects that
are appropriate fillers for the specified goal—i.e., in the
present case, those that can be drawn using the CAD-
CAM application, e.g. arc and polyline, but not UNIX
or menu.

Figure 2. Specifying the GOAL object

Figure 3 shows the task model on the point of
completion. The author has fully specified the GOAL
and the first STEP in the METHOD—defining the start

point. The action of the second step—define—has also been
specified and all that remains is to select the object—end
point.

Figure 3. Choosing a value to complete the model

Selection of text type and style

Once the task model has been completed and saved, the
author can choose in which languages and styles to have its
content expressed (Figure 4). The ‘Overview’ option applies
only when the author chooses to generate the documentation
for several tasks at the same time, e.g. to produce a section
or chapter of a manual. In these conditions, the table of
contents is generated automatically.

Figure 4. Selecting languages, text types and styles

Display of the output
The documents generated include HTML markup that is
appropriate for the text structure of the texts produced and
can accordingly be displayed in standard browsers (Figure
5). A separate window is opened for each output language.

The pane on the left contains the list of contents,
represented by hyperlinks to the corresponding sections
of the manual displayed in the pane on the right. The
documents can be saved and edited further as required.

Figure 5. Generated text in Bulgarian.

Planning texts of different types and styles
Our analysis of the corpora of instructional texts for
each language (see below) revealed marked differences
between languages when expressing the same content.
One of the advantages of multilingual NLG over MT is
that the style of the output text can be made fully
appropriate to the target language, with no interference
from structures more appropriate to some other (source)
language. In the AGILE project, we aimed to produce
texts that are sensitive to the stylistic requirements of
not only the output language, but also the various
sections of the manual. For example, the full
instructions section can be generated in either a personal
or impersonal style. In the former, the reader (software
user) is addressed directly; in the latter, the tone is more
formal.

A text planner, or Text Structuring Module (TSM), is
responsible for constructing a text plan that matches the
genre and style features selected by the ‘author’ to the
information that she has specified via the graphical
interface; the plan structures the information
accordingly. A sentence planner interprets the text plan
to create plans for sentences. By generating a sequence
of sentence plans, and having a lexico-grammar
generate each one as it comes, AGILE produces the
entire text that expresses the content specified by the
user.

The TSM’s approach to discourse structuring combines
elements of Halliday's Systemic Functional Grammar
(SFG: Halliday, 1985), Mann and Thompson's
Rhetorical Structure Theory (RST: Mann & Thompson,
(1988), and the Prague Functional Generative
Description (FGD) (Sgall et al. 1986). Importantly for
the three Slavic languages represented in AGILE, the
TSM is able to appropriately manipulate textual
(information) structure which can then be expressed
through contextually appropriate word order. The

synthesis of the three approaches resulted in a design that
adds value over and above the contributions made by each
individual approach.

Developing unified grammars for Bulgarian,
Czech and Russian

We developed new computational grammars for each of the
languages targeted. The approach was to re-use a large-
scale, broad coverage English grammar (the Nigel grammar)
in order to construct grammars of a similar scale for
Bulgarian, Czech and Russian. Whereas the production of
new language resources on the basis of existing grammars
has been carried out previously (cf. Rayner et al., 2000),
new within AGILE was the fact that the languages
addressed are not closely related typologically to the source
language. The theoretical motivation for this approach was
originally set out in Bateman et al. (1991), where a
particular form of functional typology was proposed as an
effective means of re-using grammatical (and other)
descriptions across a range of languages broader than that
allowed by structural typological approaches. This also
supported a novel grammar development strategy within
AGILE in which the individual partners each worked
independently on inherently multilingual ‘core areas’ which
were subsequently combined within a single multilingual
grammatical resource.

The priorities for grammar development were set by a
corpus-based contrastive analysis of (non-translated)
instructional texts in the target languages; this resulted first
in the creation of sub-language grammars for the domain.
However, a primary goal of the AGILE project was to
develop re-usable lexico-grammatical resources that are
suitable for multilingual generation in Bulgarian, Czech and
Russian in other domains as well. For this we needed a
framework that would be accessible to the partners in terms
of the linguistic concepts used, adaptable to the project
languages, and interfaceable with other components of the
complete application. It was these considerations that led us
to adopt the KPML tactical generator and development
environment (Komet-Penman Multilingual: Bateman, 1997).
As well as showing some commonalties with the Eastern
European tradition of functional linguistics, KPML is
especially geared towards the development of multilingual
grammars and implements the notion of functional typology
mentioned above in order to offer various ways of sharing
the computational description of an existing grammar with
new languages that are added to the system.

The three target languages of AGILE naturally share many
features by virtue of their common Slavic origins, but it is
also striking that, when viewed functionally, they
additionally share very many features with the original
source English grammar. All four grammars (the English
and the newly developed Bulgarian, Czech and Russian)
then exhibit considerable overlap without committing to
identity where it would be inappropriate. If we consider, for
example, the equivalents generated for the sentence Enter
the ‘Draw’ command and click on the ‘OK’ button to start
the program, we find that the overall structure is very
similar in the corresponding Bulgarian, Czech and Russian
sentences but there are also significant differences: whereas
Russian and Bulgarian both use a dependent clause to
express the ‘purpose’ element, Czech uses instead a

prepositional phrase. Moreover, there are finer
differences between the Russian and Bulgarian: the
Russian adopts a non-finite clause construction in the
dependent clause, whereas the corresponding Bulgarian
clause is finite. An extract from corresponding
grammatical structures as generated is given in Figure
6.

More generally, the unified grammars handle
similarities and differences across their languages such
as:
- free word order in target languages, governed by

the same principles, although differing slightly in
surface realization;

- same basic choices of aspect in target languages
with slight variation in textual instantiations;

- specific agreement phenomena at clause and
nominal group level;

- some specifics of spatio-temporal prepositional
phrases in Slavic languages (distinguishing two
types of locations according to the number of
dimensions instead of three in English; realization
in Bulgarian by choice of preposition, and in
Czech and Russian also by case);

- possibility for subject dropping in Czech and
Bulgarian declarative clauses etc.

All of these areas represent traditional problems for MT
approaches. The multilingual generation account places
their description within the expected variation found
across the grammatical systems of distinct languages.
The effectiveness of this procedure, both for grammar
description and for distributed development, has
provided considerable further support of the
effectiveness of the functional typological approach to
resource development as supported by KPML.

Evaluating the AGILE system
Compared with Natural Language Understanding, rather
little work has been done on evaluation in Natural
Language Generation, particularly of end-to-end
systems that go all the way from content specification to
text generation. Here our previous experience of
evaluating DRAFTER was helpful. For AGILE, we
designed an evaluation scenario which addressed: the
usability of the integrated system for creating and
editing text specification models; and two dimensions
of text quality—the grammaticality of the output texts
and their acceptability as a first draft of a user manual.

The results of our evaluation showed that, with training,
users are able to write documentation for the
CAD/CAM domain in their own language with the aid
of AGILE and that the quality of output texts is
sufficiently good for their inclusion into drafts of high-
quality manuals. This was true for all three localised
versions and for all the subjects tested.

Usability
The evaluators were, at each site, IT specialists rather
than authors or linguists. The evaluation was preceded
by training in the underlying concepts and in the use of
the system. The training was supported by a Conceptual
Tutorial, introducing basic concepts of authoring
documents in AGILE, and a Training Manual, defining

C

BULGARIAN
Figure 6: Extract of generated grammatical structure for Bulgarian, Czech and Russian within
the AGILE domain.

RUSSIAN

ZECH

methods for specification of a fragment of a manual in near
to real authoring conditions. The testing session comprised
five exercises with a time limit. The evaluators edited and
created both simple and complex models for individual
CAD-CAM tasks, and composed sets of models for related
tasks. Partially built models were sent from one site to
another for completion.

The knowledge editing interface was judged to be rather
clumsy however. Detailed analysis of the task models
produced by the evaluators showed that the most of them
were correctly structured. But in some cases evaluators had
wrongly created multiple instances of a concept instead of
multiple pointers to a single instance.

Acceptability
The evaluators were native speakers of the language they
judged, and experienced in writing and/or translating
software documentation. Following methods used to
evaluate machine translation systems, they were asked to
rate the quality of the output on a four-point scale—
Excellent, Good, Poor, Terrible. They also rated the Full
Instructions relative to human-authored reference texts.

The texts generated by AGILE in all three languages were
judged to be of comparable quality to similar texts found in
good commercial manuals. Functional Descriptions, Full
Instructions and Quick References were judged Good to
Excellent, while Overviews, were rated Poor to Good.

Grammaticality
For each of the three languages, we obtained judgments
from two native speakers trained in the linguistic description
of their own language. In order to keep the content constant
across the three languages, the six judges evaluated texts
originated from the same composite task model. Their
evaluations covered all of the running-text types, using 16
error categories. For Bulgarian and Russian, these text types
were made available in two stylistic variants: Personal and
Impersonal. Since Czech has two ways of expressing
personal style, the Czech judges evaluated three variants:
Personal Indicative, Personal Explicit and Impersonal
Explicit.

Almost no grammatical errors were identified by the judges,
other than errors classified as ones of word order, a well-
known difficulty in Eastern European languages. Even then,
some were thought to be stylistic rather than syntactic.

Coverage
We employed a method of grammar development that was
both instance-oriented and system-oriented. Instance-
oriented means basing development on a corpus of texts
from the target sublanguage. System-oriented means
building the computational grammar with a view to the
language system as a whole so as to encourage re-use. We
therefore assessed the extent to which the multilingual
resources developed within the project cover those
grammatical constructions found at four increasingly general
levels (Figure 7): the texts extracted from CAD/CAM
manuals that served as a ‘target’ for the AGILE prototype;
software manuals in general; other instructions; and general
language. In the figure, grey-shading suggests additionally
the range of coverage; the target texts are completely

covered, software manuals in general less completely,
and so on.

Although there are obviously still significant gaps in
coverage for a general grammar (negation, for
example), the resources developed within AGILE still
present a substantial first-approximation to a general
generation capability that can simplify the construction
of further systems in both related and new domains.

Figure 7: Coverage of lexico-grammatical resources

Finally, we should note that the use (and accordingly
the relevance of providing an implementation) of
certain constructions was also sometimes impeded by
the inability to represent their semantics in the Domain
Model, which for AGILE is an ontology of concepts
from the CAD-CAM domain. As always in NLG,
improvements in the adopted knowledge representation
can be expected to improve the range and quality of the
texts that may be produced.

Acknowledgements
The work described in the paper has been supported by
EC INCO-COPERNICUS project PL961104 AGILE
“Automatic generation of Instructions in Languages of
Eastern Europe”. The authors express their gratitude to
all the participants in the AGILE project, upon whose
work this paper reports.

References
Bateman, J.A., Matthiessen, C.M.I.M., Nanri, K. and

Zeng, L. (1991). The re-use of linguistic resources
across languages in multilingual generation
components. In: IJCAI‘91, pp. 966—971.

Bateman J.A. (1997). Enabling technology for
multilingual natural language generation: the KPML
development environment. Journal of Natural
Language Engineering, 3(1), 15—55.

Halliday, M.A.K. (1985). An Introduction to Functional
Grammar. Edward Arnold, London.

Hartley, A. and Paris, C. (1997) Multilingual document
production. Machine Translation 12(1-2), 109-129.

Mann, W.C. and Thompson, S.A. (1988). Rhetorical
Structure Theory: Toward a Functional Theory of
Text Organization. Text 8, 243--281.

Scott, D. and Evans, R. (1998). Multilingual Document
Management without Translation. ELSNEWS: The
newsletter of the European Network in Language and
Speech 7, 2—3.

Rayner, M., Carter, D., Bouillon, P., Digilakis, V. and
Wirén, M. (2000). The spoken language translator.
Cambridge University Press.

Sgall, P., Hajičová, E. and Panevová, J. (1986). The
meaning of the sentence in its pragmatic aspects.
Reidel.

Target
texts

General
languageInstructions

Software
manuals

