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Abstract
The reliable detection of sentence boundaries in running text is one of the first important steps in preparing an input document for
translation. Although this is often neglected, it is necessary to obtain a translation with a high degree of quality. In this paper, we
present a comparison of different paradigms for the detection of sentence boundaries in written text. We compare three different
approaches: Directly encoding the knowledge in a program, a rule-based system relying on regular expressions to describe boundaries,
and a statistical maximum-entropy learning algorithm to obtain knowledge about boundaries. Using the statistical system, we obtain a
recall of 98.14%, classifying boundaries of six types, and using a training corpus of under 10,000 sentences.
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Introduction
The division of running input text into sentences that can
be translated in isolation is one of the first important steps
for any natural language processing system. In particular,
any machine translation system needs reliable information
about sentences that present a coherent syntactic portion
of text to be analyzed.

Consider the following examples of text:

(1) Is K.H. Smith here?

(2) I bought the apples, pears, lemons, etc. Did you eat
them?

Two types of problems occur frequently: splitting a single
sentence into fragments and falsely conjoining two
separate sentences into a single segment. In both cases,
our current MT system (L&H Power Translator Pro 7
English-to-French) attempts to parse the ungrammatical
input, resulting in poor translation quality.

The first sentence translates as 

(3) Est K.H. Smith ici?

The sentence is split into two on the unknown
abbreviation, K.H. The translator parses <Is K.H.> as one
unit, and <Smith here?> as another. If the input to Power
Translator is a similar sentence without an abbreviation,
the output is correct French: 

(4) Est-ce que Kevin Smith est ici?

Example (2) above shows the other problem, when two
separate sentences are incorrectly conjoined into a single
segment.  Common abbreviations are kept in a table that
the MT engine consults when attempting to disambiguate
sentence boundaries. However, because the period is
included within the tokenized abbreviation, the parser

fails to recognize a sentence boundary when that
abbreviation occurs at the end of a sentence.

Power Translator joins the two segments and attempts to
translate them together:

(5) Est-ce que j’ai acheté les pommes, poires, citrons,
etc. est-ce que vous les avez mangés?

Both sentences are translated as a single question, because
of the question mark at the end of the second. If one
removes the ambiguous sentence boundary, etc., the MT
engine produces a correct parse of both segments:

(6) J’ai acheté les pommes, poires, citrons, etc.! Est-ce
que vous les avez mangés?

These two simple examples shall suffice to demonstrate
the importance of correct sentence boundary detection.
However, there is only a relatively small body of
published research about this topic, partly because it is
considered a side issue for many research systems that
assume the input already is divided into sentences, partly
because it is often considered a mundane task that can be
reasonably carried out with the application of a few
regular expressions.

Our experience is with translation of texts of a high
variety of sources and sorts, including HTML pages, e-
mail, inline chat clients and Microsoft Word documents.
This experience suggests that the quality of sentence
boundary disambiguation, and the evaluation of different
approaches, deserves more attention. In this paper, we
present three different paradigms for this task:

• The direct incorporation of knowledge about
boundaries into a translation system, without
reference to any higher level of description,

• The representation of sentences using regular
expressions, which divide a text, and



• The application of machine learning techniques
(in particular, a maximum-entropy approach) to
the task in question.

In comparing the systems, we are mostly interested in
high recall. Each boundary occurring in a text should be
recognized. High precision (assigning only true
boundaries) is also important, but we do not regard it as
essential. The experience with our MT systems suggests
that a system produces translations of higher quality when
facing a sentence that has been divided into fragments as
compared to translations of segments that contain more
than one sentence.

Additionally, we regard development time for a model as
an important factor. Reducing development time reduces
the cost of developing and improving commercial
translation systems. We are in favor of models that only
need a relatively short time to implement and maintain.

The Direct Model
The MT system we are currently using (the Barcelona
engine as part of the Power Translator product) uses a
hard-coded routine to detect sentence boundaries. The
algorithm is inspired by regular expression techniques;
however, no higher level modeling of the relevant
knowledge has been employed. All processing is
implemented directly. It uses an abbreviation lexicon to
improve the accuracy of its operation. The development
time for the system was between one and two person-
months, resulting in monolithic code with some special
handling for idiosyncratic marking in individual
languages. Though efficient and reasonably accurate (see
below for results), this kind of implementation poses a
maintenance problem: Each change in behavior means
modifying the engine code, a cost-intensive and error-
prone process. The extension of the system to another
language in practice often means revisiting all of the
segmentation code, yielding the same investment as for
the initial language in the worst case. Moreover, for each
change, two persons have to be involved, a linguist to
describe the realities, and an engineer to encode them into
the program.

Rule-Based Disambiguation
In order to alleviate the problems mentioned for the direct
implementation, the decision was made to separate the
description of sentence boundaries and the processing
needed for their recognition. For this prototype, a
grammar describing sentence boundary detection has been
written. We use regular expressions to represent the
properties of sentences. For instance, the rule

(7) Sentence -> All Word PERIOD PUNCT PERIOD;

describes a sentence consisting of a number of words,
followed by a period, an unspecified punctuation
character and another period. This rule would then be able
to capture ellipsis and other combinations like .”. Regular
expressions over characters are used to describe particular
entities within a sentence. For instance, 

(8) '[\-_A-za-z0-9.]+\.{dom}' WEBADDRESS;

is one of the ways we use to describe Internet addresses.

The processing needed to match a complete grammar of
regular expressions is basically of the lex/yacc style.
Although theoretically capable of recognizing context-
free languages, in practice the descriptions are only
regular.

Compared to the direct model, this kind of representation
has the obvious advantage that linguistic knowledge is
encoded in a declarative way, making it relatively easy to
change the behavior of the model, and to add further
languages. Adding a language only requires the
development of a new grammar, still a considerable
effort, but much easier than reviewing and partially
rewriting the code for the direct model. Plus, this kind of
model increases the efficiency of linguists by allowing
them to write the grammar, independent of any coding an
engineer would implement in the MT engine under the
direct model. The initial investment for the development
of this system was slightly higher than for the
aforementioned method, approximately 3 person-months,
adding new languages should be considerably faster.

The Maximum-Entropy Model
The third method we employ views the problem of
identifying sentence boundaries as a statistical
classification problem. Potential boundaries may be
classified as actual boundaries according to features of the
context in which they appear. Reynar and Ratnaparkhi
(1997) show that Maximum Entropy Models may be
employed to classify sentence boundaries with high
accuracy.

The fundamental principal behind Maximum Entropy
Modeling is that the likelihood of a certain class, in our
case sentence boundaries, appearing in a given context
can be estimated by the probability distribution with
maximal entropy subject to certain constraints. The
Maximum Entropy Model considers only specific
evidence of sentence boundaries in the text. This evidence
represents prior linguistic knowledge about contextual
features of text that may indicate a sentence boundary and
are determined by the experimenter.  Since the model
only considers the distribution of these explicitly
identified features, all other features of the text are
assigned a uniform distribution. Thus, the model is
"maximally" uncertain about features of text for which it
does not have prior knowledge.

We essentially reproduce the model described by Reynar
and Ratnaparkhi (1997). The model evaluates the context
of each candidate sentence boundary via several linear
functions each of which indicates whether or not a given
context has a particular feature. The model is constrained
in such a way that the expectation of each feature in any
context is the same as the observed expectation of that
feature in the training data.
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This constraint is implemented by weighting the value of
each feature. The model has the form:
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where c is the context in question, l ∈ {boundary, non-
boundary}, and a is the weight of each feature, f.

The weights are the unknown parameters of the model
and must be discovered during training. We employ the
Generalized Iterative Scaling (GIS) algorithm by Darroch
and Ratcliff (1972), which finds the distribution of the
form above with maximal entropy under our constraints.
See Ratnaparkhi (1997) for a complete description of the
algorithm.

Calculating the expectation of the features is
computationally expensive since each feature must be
evaluated several times. The task must be performed for
each iteration and hundreds of iterations may be required
before the weights have satisfactorily converged.
However, since the values of features are constant for
each context, we took the opportunity to store these
values in a cache and simply retrieve them during
successive iterations. We found that this decreased
training time several fold. In general, we found that
training time is more strongly dependent on the number of
features and the granularity of weight convergence than
on the size of the corpus.

We identified 15 simple features such as whether the
candidate contains a period or question mark, whether the
candidate is on a list of abbreviations extracted from our
corpora, capitalization, etc. We considered only the words
immediately preceding and following the candidate. The
experience of Reynar and Ratnaparkhi (1997) suggests
that considering a broader context does not improve the
model's performance.

The accuracy of the model in identifying sentence
boundaries relies on the quality of the prior linguistic
knowledge embedded in the system. We selected features
though experimentation. When the model failed to
classify sentence boundaries, we attempted to identify
contextual evidence that the model may need to consider.
Then we re-trained the model with the additional feature
and gauged the affect.

The features that we considered were typically very
simple to identify without requiring any sort of grammar
or elaborate regular expression. Though certain features
initially appear to conflict, their frequencies in the corpora
constrain the model’s expectations of them. For example,
consider these two features:

• Words containing sentence boundaries will have
no characters following the boundary mark.

• A period followed by a quotation mark indicates
a sentence boundary.

We found that if the model hasn't been adequately trained
or if the training data didn't contain substantial evidence
for feature 2, it would rarely classify periods followed by
quotation marks as boundaries. However, with more
training data or by choosing a smaller granularity of
weight convergence, the model would more consistently
make correct classifications.

The development of this method was relatively quick: We
developed an annotation tool in approximately two
person-weeks. The training algorithm, together with the
features that we used, took another person-week to
develop. The annotation of the training and test data also
took approximately one person-week.

Related work
Palmer and Hearst (1997) describe a system using the
syntactic context of a potential sentence boundary to
classify the boundary. The boundary and the parts of
speech of a number of context words (six words on each
side) are fed to a neural network that determines the
function of the boundary character. They report an
accuracy between 98.5% and 98.9% on Wall Street
Journal (WSJ) data, depending on the size of the training
and test data. Their system requires the data to be tagged
with parts of speech, which poses a circularity problem,
as POS taggers usually require prior segmentation.
Mikheev (2000) solves this problem by performing
segmentation during POS tagging, further enhanced by a
method for the disambiguation of proper nouns.

Grefenstette and Tapanainen (1994) use regular
expressions augmented with linguistic knowledge about
abbreviations (their formation and a lexicon of frequent
abbreviations) to detect boundaries; they achieve a
sentence recognition rate of 99.07% for sentences that end
with a period.

The maximum-entropy model we are using for the
comparison in this paper is due to Reynar and
Ratnaparkhi (1997). Using context information geared
towards financial newspaper text and a training corpus of
about 40,000 sentences, they achieve an accuracy of
98.8% on WSJ data (the corresponding, more general
model delivers an accuracy of 98.0%).

Experiments and Results
We collected a small corpus of 96 documents from
various web sites. These documents contain a total of
10365 sentences, which were manually annotated with
sentence boundaries. The characters used as boundary
indicators are period, question mark, exclamation mark,
colon, semicolon, and the closing parenthesis. We held
out 11 randomly selected documents, containing 861
boundaries and 215 non-boundaries for testing. The
remainder with 9504 boundaries and 3048 non-boundaries
was used as training material. Markup in the training data
was removed, but it was not further preprocessed or
cleaned in any way, e.g. to resolve spelling errors or
formatting issues. Table 1 shows the results of analyzing



the source documents. We report results both for the
training and the test set. For the maximum-entropy system
(Entr) we can thus estimate the degree of degradation
when processing unseen text. For the other systems, the
results should be comparable, as they were developed
before the selection of the corpus. The table shows the
number of correctly annotated boundaries (Ok), the
number of insertions (Ins) and deletions (Del), as well as
precision (Prec), recall (Rec) and the F-measure (F) with
α = 0.5. The systems are: Dir) the direct method, Rul) the
rule-based system, and Entr) the maximum-entropy
model. Since both the direct and rule-based system were
designed to insert sentence boundaries in running text not
only at the special sentence boundary markers we chose,
but also elsewhere (for instance, at line-breaking
characters), we also give results that reflect only the
boundaries that occur at the markers. These results are
given as systems Dir*) and Rul*), respectively.1 The
system marked ***) represents a baseline performance,
assuming that every potential sentence boundary character
indeed marks a sentence boundary.

  Ok Ins Del Prec Rec F

 *** 9504 3048 0 75.72 100.00 86.18
Dir 6504 239 956 96.46 87.18 91.51
Dir* 6504 134 956 97.98 87.18 92.27
Rul 8982 1806 522 83.26 94.51 88.53Tr

ai
ni

ng

Rul* 8982 417 522 95.56 94.51 95.03
 Ent 9406 210 98 97.82 98.97 98.39

 *** 861 215 0 80.00 100.00 88.88

 Dir 747 19 114 97.52 86.76 91.83
Dir* 747 8 114 98.94 86.76 92.45
Rul 826 164 35 83.43 95.93 89.25Te

st

Rul* 826 37 35 95.71 95.93 95.82

 Ent 845 12 16 98.60 98.14 98.37
Table 1: Disambiguation results for various system
configurations. Column and row headings are explained
in the text.

The results for the directly comparable systems Dir*),
Rul*), and Entr) show that the rule-based system is
superior to the direct implementation; the statistical model
is superior to both non-statistical systems. We achieve an
overall recall of 98.14% as the best result on the test set.
With a corresponding accuracy of 97.39%, the
performance of the model we trained is comparable to the
portable system Reynar and Ratnaparkhi used, given the
fact that our training corpus consisted of 9500 sentences.
However, we use a larger set of potential boundary
characters.

Conclusion
We have presented a comparison of three different
approaches to sentence boundary disambiguation: a direct
method, a rule-based system, and a statistically trained

                                                
1 Due to a technical problem, the systems Dir) and Dir*) could
not process the complete training set. The figures given here
reflect results with 7460 sentences.

model. Judging from the recognition results alone, the
maximum-entropy system offers the best overall
performance, yielding a recall of 98.14%, disambiguating
six different potential boundary characters, and using a
training data set with under 10,000 sentences. But even if
the differences in accuracy were not significant, the
trained system offers considerable advantages over the
other approaches.

The development time for a new language is very short,
initial results can be obtained within a few days by
securing a small corpus of documents from the web and
annotating them. Moreover, the selection and addition of
features is straightforward using the perl-module
approach for their implementation we have chosen.

The maximum-entropy system also has the advantage of
being adaptive. During the development of other
knowledge sources for translation (e.g. syntactic
grammars), we need to constantly analyze sample
sentences. These sentences are derived from further
corpora we obtain. As the analysis proceeds, these
disambiguated sentences can be used to augment the
training data for the estimation of the model parameters.

In the future, we will experiment with an extended set of
sentence boundary characters. Especially line breaks are
of interest to us, since plain text documents often use
them to partition documents. Additionally, the processing
of quotes is important to segment embedded quotations
correctly.
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