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Abstract
The paper describes a novel approach to Multi-Engine Machine Translation. We

build statistical models of performance of translations and use them to guide us in
combining and selecting from outputs from multiple MT engines. We empirically
demonstrate that the MEMT system based on the models outperforms any of its com-
ponent engine.

1 Introduction

As an increasing number of vendors are putting their
MT systems on the market, an interesting question
to ask is ‘Is it possible to somehow combine them
to get an MT system that beats every one of them?’
This is a question we will address in the paper.

A quick survey of prior research on multi-
engine machine translation (MEMT) shows that
none ever addressed a question of using black
box MT systems, which are what commer-
cial systems usually are, to get an MEMT
system. Frederking and Nirenburg (1994) devel-
oped a MEMT architecture which operates by
combining outputs from three different engines
based on the knowledge it has about inner
workings of each of the component engines.
Brown and Frederking (1995) is a continuation of
Frederking and Nirenburg (1994) with an addition
of a ngram-based mechanism for a candidate selec-
tion.

With this approach, however, one has to pay a
high price when he or she wants to add a new en-
gine or replace an existing one by something else:
one needs to redesign a scoring mechanism so that it
can compare scores from a newly added engine with
those from existing ones.

In the paper, we take a novel approach to the prob-
lem of MEMT. Rather than devising an ad-hoc way
of selecting from among candidate translations, we
plan to build a generic statistical model of the re-
liability or performance of translations and let that

model guide us in selecting the best candidate. An-
other feature of our approach is that we do not make
any reference to an internal structure of MT engines.
We exploit whatever information is available in the
input/output of MT systems.

2 MEMT and Evaluation Measures

2.1 Using Black Box MTs

Typically the MEMT works by combining and se-
lecting from among outputs of multiple MT en-
gines. In the paper, we will be working with four
commercially available, black box MT systems (call
them ‘Ai’,‘Lo’, ‘At‘, ‘Ib’). This is a marked dif-
ference from previous work on MEMT (Frederk-
ing and Nirenburg, 1994; Brown and Frederking,
1995; Hogan and Frederking, 1998), as they typi-
cally allow the MEMT to exploit information on in-
ner workings of its component MT engines. While
the availability of information on specifics of com-
ponent engines may be crucial for improving esti-
mates of the quality of the engines’ outputs, its use
severely limits the generality and scope of an ap-
proach that a given MEMT represents. This is why
we pursue a different avenue here.

In an approach with black box MTs, all that is
available to us is whatever information we may
glean from a source text and its translation in a tar-
get language. Since none of the functionalities of the
MEMT depends on properties specific to its compo-
nent engines, in principle we should be able to work
with any number of MTs of any type.



In addition, we will be concerned with a particular
MEMT model where translation proceeds on a sen-
tence by sentence basis. Thus the MEMT here col-
lects and chooses among candidatesentencetransla-
tions from each engine.

2.2 The problem with BLEU

Given that the job of MEMT is to choose among
sentence translations generated by different MT sys-
tems, one way of evaluating its performance is by
asking how frequently it finds the best translation
available from the relevant MT systems. But this
requires us to somehow articulate the notion of the
‘best translation.’

Obviously, we could define the best translation to
be one that gives the highest score inBLEU (Papineni
et al., 2002).1 However, one problem with using
BLEU on a sentence-for-sentence basis is that trans-
lations often end up with zero because model trans-
lations they refer to do not contain n-grams of a par-
ticular length. This would make impossible a com-
parison and selection among possible translations.

Consider the following.

reference Thank you

translation Thank you very much

BLEU gives you 0 for the pair above withN = 3.
Our way out of this is to back off to a somewhat

imprecise yet robust metric for evaluating transla-
tions. For a reference translationr and a machine-
generated translationt, we definem-precisionas:
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which is nothing more than Papineni et al. (2002)’s
modified n-gram precisionapplied to a pair of a sin-
gle reference and the associated translation.Si
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whereN is the maximal length of n-grams,c the length of a
candidate translation andr the length of a reference translation.
Pi represents precision of n-grams of lengthi, i.e. the extent of
overlaps between a reference and a translation as measured by
n-grams of lengthi.

Table 1: The average performance inBLEU of the
systems over 22 blocks of EJP-99.

Ai Lo At Ib OpMEMT
0.2784 0.1674 0.1488 0.1559 0.3214

denotes a set ofi-grams int. C(v, t) indicates the
count ofv in t. The m-precision of the previous ex-
ample is1

2 + 1
3 + 0 (N = 3).

2.3 Is More Better?

Define the optimal MEMT or OpMEMT, as we
might call it, as a system that operates by choos-
ing, among outputs from MT systems, one that gives
the best m-precision, for each translation. Note that
the OpMEMT provides a practical upper bound for
performance inBLEU for MEMTs, as an increase in
m-precision generally translates into an increase in
BLEU. (We may take a note that the first term of
the exponential in Equation 1 is proportional to m-
precision.)

Now the question we need to ask is, “Does the
OpMEMT perform better than any one of the MTs
which comprise it?” If it does not, then the whole
enterprise of MEMT will not merit a serious consid-
eration.

To answer the question, we ran some experiments
using two data sets from separate domains. One
is a parallel corpus derived from a phrase book
for English letter writing in business (Takubo and
Hashimoto, 1999). We call the corpus “EJP-99” for
the sake of convenience throughout the paper. EJP-
99 consists of the total of 10,965 pairs of English
sentences and associated Japanese translations. We
divided the corpus into 22 blocks of sentences of
roughly equal size (each containing about 500 sen-
tences), and ran each MT system on each of the
22 blocks, measuring its performance withBLEU.
Another data set, which we will refer to as “CPC-
02,” is part of a huge bilingual corpus consisting
of 150,000 semi-automatically aligned pairs of En-
glish and Japanese sentences from a newspaper do-
main (Utiyama and Isahara, 2002). CPC-02 contains
8,307 most closely aligned pairs of them.

Table 1 gives the average performance inBLEU

over EJP-99 of the four commercial MT systems
and the OpMEMT whereBLEU takes into account



Table 2: Kendall’s rank correlation betweenBLEU

and m-precision for each MT (N = 3). The cor-
relation is tested onBLEU and m-precision values
of the 22 blocks of EJP-99. A figure in the paren-
theses indicates ap-value. Also, ‘**’ indicates that
the associated estimate is statistically significant at
p < 0.01.

Ai Lo At Ib
τ 0.7446∗∗ 0.7446∗∗ 0.7662∗∗ 0.8442∗∗

ngrams of up to 3 words in length, i.e.,N = 3. (We
assume thatN = 3 throughout the rest of the paper.
In particular, we may refer toBLEU asBLEU(3) as a
way of making the policy explicit.)

We find in Table 1 that the OpMEMT outper-
forms, by a respectable margin, any of the four sys-
tems which together form the MEMT. The results
make a strong case for the feasibility of MEMT.

Further Table 2 demonstrates that m-precision
strongly correlates withBLEU, justifying the use of
m-precision in place ofBLEU for evaluating transla-
tion performance.

3 Predictive Models of Performance

Given that the idea of MEMT is in principle feasible,
then the question we need to turn to is, how do we
go about actually building one? Our idea is, instead
of asking an oracle which translation to pick as in
OpMEMT, we call on some statistical model to de-
cide which one is worth a pick. The model’s job is to
decide a best pick among MT outputs based on a pre-
diction it makes about how accurate the outputs are.
Below, we will consider two kinds of such model: an
ngram-based model and an alignment based model.

3.1 The Fluency Based Model (FLM)

For an English sentencee, and its Japanese transla-
tion j(e) by some MT system, we define the perfor-
mance (or quality) ofj(e) by:

FLM(e, j(e)) = log P (j(e)),

where for a sequence of wordswm = w1, . . . , wm,

P (wm) =
m∏

i

P (wi | wi−N+1 · · ·wi−1)

In the FLM, we assume that the translation quality
of j(e) depends only on its ngram based fluency.

Throughout the paper, we will be working with
the 4-gram based language model (i.e.,N = 4), as
other choices ofN led to somewhat poorer results in
a preliminary testing with the model.

3.2 The Alignment Based Model (ALM)

What we call the “Alignment Based Model”
(or ALM for short) here heavily draws upon
statistical translation models developed by
Brown et al. (1993) (which are popularly dubbed
‘IBM models’). Recall that given a pair of sen-
tences, one in a source language and the other in a
target language, the models are able to tell you the
probability that a sentence in the target language is
a translation of a sentence in the source language.
Notice that one could turn them into performance
models for MTs because it is possible and legiti-
mate to ask them, ‘What is the probability that a
particular output from an MT system, could have
generated a sentence which one likes to translate
into the target language?’ Put simply, given a pair
of sentences,e and a machine generated translation
of e (call it j), one could use the IBM models to
find out how likely it is thatj could have generated
e and use that information to determine the quality
of the translation.

Formally, we could represent the alignment based
model of performance in the following manner. We
write j(e) to mean thatj is a translation ofe by some
MT system.

ALM(e, j(e)) = log P (j(e) | e)
≈ log P (j(e))P (e | j(e)) (2)

Assume in addition that:

P (e | j(e)) =
∑
a

P (e,a | j(e)) (3)

‘a’ denotes some alignment betweene andj, i.e., a
table of associations between words inj and those
in e. For instance, we may have an association
j1 j2 j3 → e5, which means that some sequence of
wordsj1 throughj3 is associated with or translated
into a single worde5. The above equation says that
the probability of observinge given j(e) is the sum
of the probabilities of observinge given j(e) under
every possible alignment betweene andj.



Also of some note is that we could in fact re-
gard the ALM as embodying two features generally
agreed to be most relevant for evaluating MTs: fi-
delity and fluency (White, 2001).2 This could be
easily seen if we rewrite Equation 2 as:

FLM(e, j(e)) + log P (e | j(e)). (4)

Notice that the first term in Equation 4 is the N-gram
based performance model discussed earlier, the sec-
ond term represents an alignment model, which
measures in probabilistic terms how well a source
text associates itself with its translation.

It is worth noting that there is another effort in the
literature to provide a quantitative characterization
of fidelity. Rajman and Hartley (2001) introduces
what they call theD-scoreto measure how much of
a semantic content of the source text is preserved in
its translation.3

IBM Models The ALM uses IBM Model 1 to esti-
mate the alignment probabilityP (e | j(e)). The IBM
Model 1 is one of the translation models developed
in Brown et al. (1993), which also include Model 2
and 3.

To give a rough picture of Model 1 and 2, Model 1
operates on a simplistic assumption that each word
in e is equally likely to associated with any one of
words in j, whereas Model 2 assumes that some
words ine are more (or less) likely to be associated
with particular words inj than other words that ap-
pear ine.

Model 3 is an refinement over the IBM Model 1
and 2 and differs from the latter two in the way it
decomposes the probabilityP (e | j(e)). Model 3 is
motivated by the observation that some words in En-
glish could give rise to translations in French where
each English word corresponds to a group of differ-
ent French words. Arguably, the observation could

2Fidelity here refers to the extent to which meaning in the
source text is conveyed to its translation. Fluency concerns the
well-formedness of MT outputs. Both form part of the DARPA
MT evaluation metrics (White, 2001).

3They work on the premise that a similarity matrix among
source texts should be similar to that for their translation coun-
terparts. A similarity matrix here is thought of as a matrix of
cosine based similarity values found among texts. To find out
a d-score of a source texts and its translationτ(s), one builds
a vector of similarity scores fors and every one of texts in the
source language and also that forτ(s) for each corresponding
translation, then calculates a cosine value for the vector for the
source text and that for the translation.

hold for any pair of languages, not just English and
French.

The difference among Model 1 to 3 boils down to
the way each model defines the probabilityP (e,a |
j(e)). Details aside, it can be thought of as the prod-
uct of the probability ofei being alexical transla-
tion of j(e)k and the probability that the positioni in
e is aligned with the positionk in j(e) under some
alignmenta, whereei stands for thei-th word in e
andj(e)k for k-th word in j(e). Models 1 to 3 fur-
nish from impoverished to improved variations of
the alignment probability.

3.3 Learning with Support Vector Regression

One of the problems with the ALM and FLM is that
they do not take into account the reliability of an
MT engine. It is reasonable to believe that some MT
systems could be inherently more prone to errors
and outputs they produce tend to be of less quality
then those from other systems, regardless of the out-
puts’ fluency or translation probability. As we might
recall, the ALM and FLM make predictions solely
based on how well-formed MT outputs are and how
well they align with the source texts; they do not take
it into consideration that outputs from a particular
system could be inherently less reliable than those
from others.

One way of dealing with the issue, which we
pursue below, is to train a regression model on m-
precision scores obtained by each MT system and
use that model to correct estimates produced by the
ALM and FLM. (Recall that the use ofBLEU in a
sentence-by-sentence evaluation often results in a
translation scoring zero, making impossible a com-
parison of translation performance across MT sys-
tems, which motivated us to look to m-precision in-
stead.) With regression, we would be able to correct
the translation probability/fluency of a given output
according to the reliability of an MT system that
generates it.

Now a regression model of a particular inter-
est here is Support Vector regression, which works
pretty much like its enormously popular counter-
part, i.e., Support Vector classification, except that
we are going to work with real numbers for target
values and construct the margin, using Vapnik’sε-
insensitive loss function, which ignores errors less
than ε (known asprecision and depicted asE in
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Figure 1: Support Vector Regression

Fig.1) (Scḧolkopf et al., 1998). One drawback here
is thatε needs to be specified manually.

In Fig.1, the line running between the two bound-
ary lines represents a target functiony. In Support
Vector regression, one’s job is to find an optimal fit
to the data with a tube with the radius ofε.

Consider a linear regression

h(~x) = ~w · ~x + b,

with input data~x = (xi, . . . , xm) and the corre-
sponding weights~w = (wi, . . . , wm). ‘x ·y’ denotes
the inner product ofx andy. Support Vector regres-
sion determines parameters~w andb, in such a way
as to minimize, together with the model complexity,
the cost of the distance between the tube and points
falling outside of it.

It is straightforward to extend the ALM and FLM
with Support Vector regression, which consists of
plugging in either model as an input variable in the
regressor. This would give us the following two re-
gression models.

Regressive FLM (rFLM)

h(FLM(e, j)) = w · FLM(e, j) + b

Regressive ALM (rALM)

h(ALM(e, j)) = w ·ALM(e, j) + b

A variant of rALM is also possible, where the flu-
ency and alignment estimates are assigned to sepa-
rate parameters, and takes the following form.

Regressive ALM+ (rALM +)

h(~x) = ~w · ~x + b,

where~x = (log P (j), log P (e | j)).
Notice that unlike the ALM and FLM, the re-

gression models, once trained, will predict the m-
precision of MT outputs.

4 Evaluation

4.1 The Data sets

We ran several sets of experiments to find out how
the MEMT models fare on EJP-99 as well as on
CPC-02. We set up the experiments roughly the
same way we have for evaluating correlations be-
tween m-precision andBLEU (section 2.3). We di-
vided EJP-99 into 22, roughly equal-sized (500-
sentence long) blocks of sentences, and ran the usual
cross validation on them to get estimates of perfor-
mance of the models. As for CPC-02, we divided
them into 17 blocks of sentences, so that each of
them comes out about 500-sentence long. We had a
total of 10,965 pairs of English/Japanese sentences
for EJP-99, and 8,307 pairs of aligned sentences for
CPC-02.

Recall that we are dealing here with English to
Japanese translation and are going to evaluate per-
formance in terms of how well the translations the
MEMT models produce look like associated refer-
ence translations, which is whatBLEU tells us.

Also one thing to take note of is that although
the MEMT models choose among translation out-
puts from the engines based on m-precision,4 we can
safely measure the entirety of selections byBLEU,
which is what we do below.

4.2 Results and Discussion

Before delving into the details, let us briefly ac-
knowledge credits to software tools we took advan-
tage of. FLMs are built using a language mod-
eling tool kit known as ‘CMU-Cambridge-SLM
ToolKit.’ 5 We trained the FLM on a collection of
several Japanese news paper corpora, which is sepa-
rate from EJP-99 and from CPC-02, and contains the
total of 167,010 distinct words. Second, alignment
based models, i.e., ALMs, are built using GIZA, a
tool kit for statistical translation modeling.6 The
translation alignment part of ALMs, namely,P (e |
j(e)), is trained through cross validation. Finally, the
Support Vector regression makes use of a package
known as mySVM which is freely available.7

4Recall that the MEMT operates by selecting an MT output
ranking highest in whatever metric is used.

5svr-www.eng.cam.ac.uk/ prc14/toolkit.html
6www.clsp.jhu.edu/ws99/projects/mt/toolkit/index-old.html
7www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM



Table 3: Average performance of the MT systems on
EJP-99.

Model BLEU(3) System BLEU(3)

OpMEMT 0.3214 Ai 0.2784
rFLM 0.2799 Lo 0.1674
FLM 0.2535 At 0.1488
rALM + 0.2789 Ib 0.1559
rALM 0.2794
ALM− 0.2523
ALM 0.2696

Now let us look at results we got from the experi-
ments, which are listed in Table 3. We see that rFLM
takes a lead followed by rALM+ with FLM further
behind. ALM and ALM− are falling out of the race,
altogether. (ALM− is an ‘alignment only’ model,
makes use of the probabilityP (e | j(j)) alone.) No-
tice, however, subtle differences between rFLM and
Ai, the former slightly ahead of the latter.8 Also
we note effects of regression on performance. As
Table 3 shows, harnessing MEMTs with regression
usually leads to an improved performance: rFLM is
superior to FLM by over 2 percent points, and rALM
performs better than ALM by about 1 percent point.

Hogan and Frederking (1998) introduces a new
kind of yardstick for measuring the effectiveness of
MEMT systems. The rationale for this is that it is
often the case that the effectiveness of MEMT sys-
tems does not translate into performance of outputs
that they generate. We recall that withBLEU, one
measures performance of translations, not how of-
ten a given MEMT system picks the best transla-
tion among candidates. The problem is, even if a
MEMT is right about its choices more often than
its best component engine,BLEU may not tell that
the MEMT is performing better than the latter. This
happens becauseBLEU works with ablockof trans-
lations,9 and therefore is insensitive to small dif-
ferences in outputs of MT systems: if the MEMT
and its competing engine do not differ much in their
choices for translations on a particular block, as is
apparently the case here, what small contributions

8Though the differences are admittedly marginal, a statisti-
cal test (two-tailed t.test) do find that they are statistically sig-
nificant withp < 0.01.

9Recall that each measurement ofBLEU in our experiments
is based on a block of 500 sentences.

Table 4: Accuracy of predictions on EJP-99.

Model accuracy System accuracy
OpMEMT 1.0 Ai 0.4260
rFLM 0.4354 Lo 0.2123
FLM 0.4091 At 0.1691
rALM + 0.4324 Ib 0.1905
rALM 0.4348
ALM− 0.3710
ALM 0.4215

the MEMT makes is overshadowed by a large num-
ber of identical choices the two systems make on
that block and may not show itself inBLEU. This
is why we turn to Hogan and Frederking (1998).

Now what they suggest is the following.

d(τm) =
∑N

i δ(σim, max{σi1 · · ·σoM})
N

(5)

whereδ(i, j) is the Kronecker delta function, which
gives 1 if i = j and 0 otherwise. Hereτm repre-
sents some MEMT system,σim indicates whatever
a score is assigned to a translation generated byτm

for a sentencei, σi1, . . . , σiM denotes a list of scores
assigned to translations that systemsτi throughτM

generated.N is the number of sentences.
Equation 5 provides a straightforward way of cap-

turing precision of outputs of a MEMT system, and
moreover, gives a more accurate picture of perfor-
mance of a MEMT system thanBLEU. Now let us
see how things look with this new yardstick, which
we call “accuracy.” We takeσij to be an m-precision
predicted by a systemj for some translationi.

Table 4 gives performance in accuracy for each of
the systems. Notice that differences between rFLM
and Ai clearly stand out.

Let us move on to the CPC-02 task, where we
had the same setup as for EJP-99, except that the
data set is comprised of 8,307 sentences and is from
a newspaper domain. We divided the data into 17
about equal-sized blocks of sentences (each about
500-sentence long), and ran a 17-fold cross valida-
tion to evaluate performance of the systems. Table 5
lists the results. (The scores there are averaged over
17 folds.) We note here that Ai, a winner for EJP-99,
now lost in performance to At, which is performing
best on CPC-02.



Now how are the MEMT models doing on CPC-
02? As we find from Table 5, top performing
MEMT models are comparable in performance to
At: there is no statistically significant difference be-
tween FLM and At, for instance. Accuracy results in
Table 6 show also that top performing MEMT sys-
tems are in a tie with At.

So one may want to conclude from the results
from EJP-99 and CPC-02 that the MEMTs are do-
ing at least as good as the top performing MT sys-
tem, but not better, which obviously means a failure
for the MEMTs.

However, an entirely different picture of the
MEMTs emerges when one combines the results
from EJP-99 and CPC-02 and look at average per-
formance over the two data sets, which is given in
Table 7 and Table 8. Table 7 shows performance
in BLEU of the systems over the combined data set.
What we find there is a clear indication that rFLM, a
MEMT model, outperforms Ai, which tops the four
MT engines run on the combined data set. The dif-
ference in performance between rFLM and Ai is sta-
tistically significant (p < 0.01).

Accuracy of rFLM is also found to be signifi-
cantly higher than that of Ai, as shown in Table 8. It
is notable that regression based MEMT models are
doing fairly well compared to those without regres-
sion.

A respectable increase inBLEU as well as in ac-
curacy of the MEMT systems, rFLM in particular,
on the combined data results largely because the
MEMTs are good at producing performance com-
parable rather than superior to a best MT engine
available, which could vary from domain to domain.
Note that while Ai performs best on EJP-99, At per-
forms best on CPC-02. What is happening in Table 7
and 8 is that by feeding upon a best engine avail-
able for a particular domain it is working on, rFLM
produces on average a better performance across the
two domains than any of its component engines.

5 Conclusion

We opened the paper with the question ‘Is it possible
to get a MEMT system that beats every one of MT
systems that comprise it?’ Our answer to the ques-
tion should be yes: while rFLM performs marginally
superior to the four MT engines in EJP-99 and com-

Table 5: Average performance of the MT systems on
CPC-02. The scores are averaged over 17 blocks.

Model BLEU(3) System BLEU(3)

OpMEMT 0.2083 Ai 0.1471
rFLM 0.1706 Lo 0.1414
FLM 0.1708 At 0.1709
rALM + 0.1706 Ib 0.1365
rALM 0.1708
ALM− 0.1465
ALM 0.1567

Table 6: Accuracy of predictions for CPC-02.

Model accuracy System accuracy
OpMEMT 1.0 Ai 0.2386
rFLM 0.4190 Lo 0.1702
FLM 0.4222 At 0.4192
rALM + 0.4193 Ib 0.1699
rALM 0.4201
ALM− 0.2403
ALM 0.3178

Table 7: Average performance of the MT systems
over EJP-99 and CPC-02.

Model BLEU(3) System BLEU(3)

OpMEMT 0.2649 Ai 0.2128
rFLM 0.2253 Lo 0.1544
FLM 0.2122 At 0.1599
rALM + 0.2248 Ib 0.1462
rALM 0.2251
ALM− 0.1994
ALM 0.2132

Table 8: Accuracy of predictions averaged over EJP-
99 and CPC-02.

Model accuracy System accuracy
OpMEMT 1.0 Ai 0.3323
rFLM 0.4272 Lo 0.1913
FLM 0.4157 At 0.2942
rALM+ 0.4259 Ib 0.1802
rALM 0.4275
ALM- 0.3057
ALM 0.3697



Table 9: Effects onBLEU(3) of the alignment model
P (e | j(e)). The results are from EJP-99.

Model IBM Model 1 IBM Model 3
rALM + 0.2789 0.1679
rALM 0.2794 0.1662
ALM 0.2696 0.1614
ALM− 0.2523 0.1591

parably to a top performer in CPC-02, it beats each
of them over a combined data set by a significant
margin. This happens because rFLM is able to pick
whatever best engine is available for a given domain
and feeds upon it. The results in Table 7 and Ta-
ble 8 could be look at as showing that the best sys-
tem for one domain may not be best for another. A
careful look at properties of a domain might indeed
reveal some useful predictors of performance of an
MT system.

Curiously enough, in neither of the data sets, EJP-
99 and CPC-02, are the ALM and its variants per-
forming significantly better than less sophisticated
models like FLM and rFLM. This would mean that
information on alignments, i.e.,P (e | j(e)), has little
to contribute to predicting translation performance.

To find out more about the issue, we looked at
what happens if we use a more refined alignment
model like Model 3 in place of Model 1, which the
(r)ALMs are all based on.

Table 9 shows the results: we find a huge decline
in performance of ALM and ALM−, and also for
rALM and rALM+. We could think of several rea-
sons for this. One is that as Model 3 makes use of
more parameters than Model 1 (i.e. fertility), it may
require more training data than EJP-99 provides to
produce reliable estimates for them.

Another may have to do with the languages in-
volved: since Japanese is a language with no fixed
word order, this could have made it harder to get
good estimates for alignments than when working
with a fixed word-order language like German. Note
that using the alignment probabilitya(i | j, m, l),
as Model 3 does, is a good idea when both of the
languages involved exhibit a stable word order, but
perhaps not when one of them has a free word order.

In any case, the results from EJP-99 and CPC-02,
and also from Table 9 suggest that the effectiveness

of P (e | j(e)) for predicting performance is suspect
at best.
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