

Prolog models of classical approaches to MT
Harold SOMERS

Centre for Computational Linguistics
UMIST, PO Box 88

Manchester M60 1QD, England
Harold.Somers@umist.ac.uk

Abstract
This paper describes a number of “toy” MT
systems written in Prolog, designed as
programming exercises and illustrations of
various approaches to MT. The systems include
a dumb word-for-word system, DCG-based
“transfer” system, an interlingua-based system
with an LFG-like interface structure, a first-
generation-like Russian-English system, an
interactive system, and an implementation based
on early example-based MT.

1.

2.

Introduction
There is something of a consensus in the recent
literature on “MT in the Classroom” that
distinguishes the teaching of MT to different
target students, notably Computer Science (CS)
and Computational Linguistics (CL) students vs.
trainee translators (cf. Kenny & Way, 2001;
Somers, 2001) among others. The present paper
discusses the development of “toy” systems (cf.
v. Hahn & Vertan, 2002), specifically written in
Prolog, developed with the aim of providing
relatively complex natural-language programs
for students of Prolog and, secondarily, to
provide demos of various approaches to MT. A
number of different of languages are illustrated,
usually for no other reason than variety. Some of
the systems described here were developed with
the help of students at UMIST.

An obvious and reasonable initial question
might be why working on model
implementations in Prolog might be useful, and
to what sort of student? Way (2002) describes
how his students undergo three years of training
in CL including programming in various
languages. he states that these students “may
find themselves in the position of implementing
changes to current systems, or indeed
developing new ones” (p. 54). He describes
exercises which involve Prolog programming
within a framework based on Eurotra’s E-
framework (Bech & Nygaard, 1988), and it

might be an interesting point of discussion for
both Way and the current author whether Prolog
is the most appropriate vehicle for this activity,
given its lack of status as a programming
language of choice for a real industrial
application. We will leave this discussion for
another time!

Similar approaches
The (relatively restricted) literature describing
teaching of MT aimed at CL and CS students
can be divided into those that use standard
programming languages, and those that have
developed more task-specific tools.

We have described Way’s (2002) approach
above. The students of v. Hahn & Vertan have
arguably an even more difficult task, as they are
left to devise on their own the basic architecture.
From their discussion it appears that the only
tools provided beforehand for the students is a
corpus of test sentences, and a full-form lexicon
in an XML-like formalism. No mention is made
of the choice of programming language.

Amores (2002) describes Xepisteme, a tool
for developing LFG-based MT systems. Amores
stresses that the transparency of the system
means that the user requires no programming
skills theough he admits that an appropriate
specification language must be learned, entailing
the “usual difficulty” (p. 65), and indeed the
examples of rules and so on that are shown
suggest that this specification language is
effectively a high-level task-specific
programming language. Nevertheless, the tool
also has a graphical interface that displays c- and
f-structures, and the illustration is reminiscent to
this author of the Metalshop tool that developers
of the Metal system had available in the 1980s,
as illustrated in Hutchins & Somers (1992:
264ff),and still available to users of the
commercial T1 system.

Sheremetyeva (2002) illustrates the use of the
“developer tools” part of the APTrans system. It
si not always clear from the paper how all the
tools are used, the impression is that the ideal
user will be a highly trained computational
linguist. But no programming skills as such
seem to be implied.

3. Systems that students can develop
3.1 A really dumb system

The simplest of MT models, if it can be called
that, is one which translates word-for-word. This
is very easy to implement in Prolog, which has
good list-handling facilities. In fact, it is
basically a one-predicate program (1)
accompanied by a lexicon.

translate([],[]).
translate([S1|SRest],[T1|Trest]) :-
 tx(S1,T1),
translate(Srest,Trest).
tx(cat,chat).
tx(dog,chien).
tx(the,le).
tx(chased,chassa). % etc.
tx(X,X).

(1) Word-for-word replacement model

Obviously, this program will result in crude
translations, but can serve as a starting point to
bring home to students how inadequate this
naïve approach is, in a way similar to the
method described by Pérez-Ortiz & Forcada
(2001), and can be used to invite students to
identify what needs to be added. Even with a
program of this simplicity, students can surprise
you. One student who was brave enough to
undertake translation between two foreign
languages (French and German) needed much
convincing that his rules mapping le onto der
and la onto die left something to be desired.

3.2 A Prolog-like model: DCG-based transfer

Since we are programming in Prolog, an obvious
model is one which takes best advantage of the
most appropriate features of Prolog. That an MT
system implemented in Prolog does not
necessarily do this is well illustrated by
McCord’s (1989) LMT which includes code like
that shown in (2), which is evidently a sequence
of actions that could just as easily be
programmed in any procedural language.

Prolog provides the DCG formalism (Pereira
& Warren, 1980) which of course originally
developed out of work on MT (cf. Colmerauer &

nt(F,G,H,I,J,syn(Lab,B1,Mods),U,Z) :-
copylabel(nt(F,G),nt(F1,G1)),
bbrackets(B,U,V),
preconj(PC,Mods,Mods1,V,W),
ntbase(F1,G1,H,I,J,B,SynO,W,X),
ntconj(F1,G1,F,G,H,I,J,PC,SynO,
 syn(Lab,B1,Mods1),X,Y),
ebrackets(B1,Y,Z).

(2) Example from LMT (McCord, 1989:37)1

Roussel, 1993). Although a very flexible
formalism, it is usually associated with phrase-
structure grammars, and this is the approach for
our next model, also found in Gal et al.
(1991:181ff). All other things being equal,
DCGs can be run as parsers or generators, and
so a system which links two DCGs will be
reversible. This model consists of linking the
source- (SL) and target-language (TL) DCGs
with a transfer component which maps the SL
phrase-structure trees onto those appropriate to
be input to the TL grammar. The system is
reversible if “Prolog escapes” in the DCG are
used judiciously, for example for agreement and
subcategorization. (3a) shows the top-level
predicate, (3b) some example rules. (4) shows
the transfer “formalism”. Note that the DCG
rules must be distinguished (e.g. snp vs tnp),
but the structure is shared. The tnp rule shown
here illustrates one way to do agreement.

%(a)
translate(SText,TText) :-
 ss(Sstruc,Stext,[]),
 transfer(SStruc,TStruc),
 ts(TStruc,Ttext,[]).
%(b)
ss(s(NP,VP)) --> snp(NP), svp(VP).
tnp(np(Det,N,Adj)) -->
 tdet(Det), tn(N),tadj(Adj),
 {agree(Det,N,Adj)}.

(3) DCG-based transfer system.
The transfer component works top-down on

the tree-structure, applying the most specific
rules first, with a default of structure
preservation. The examples show complex
structural transfer for head-switching or
“idioms” , and TL word selection based on
category.

3.3 An LFG-like interlingua model

Another model that we present, again based on
DCGs but this time without the explicit transfer
phase, builds predicate–argument structures not

1 The Prolog syntax has been harmonized with the syntax
used elsewhere in this paper.

%(a)
transfer(vp(v(swim,SVF),
 pp(p(across),NPS)),
 vp(v(cruzar,TVF),
 np(NPT),adv(natando))) :-
 transfer(SVF,TVF),
 transfer(NPS,NPT).
%(b)
transfer(vp(v(get_up,SVF),adv(early)),
 vp(v(madrugar,TVF))) :-
 transfer(SVF,TVF).
%(c)
transfer(n(book),n(libro)).
transfer(v(book,SVF),n(reservar,TVF)) :-
 transfer(SVF,TVF).

(4) Transfer rules
The transfer rules illustrate (4a) swim across cruzar
natando,(4b) get up early madrugar, and (4c) book
translated as libro (noun) or reservar (verb).The structures
assume that verb features(SVF, TVF etc.) have been
percolated, and are also subject to transfer.

unlike LFG f-structures, taking advantage of
Prolog’s straightforward unification (Gal et al.,
1991:180). (5a) shows an NP rule that builds a
feature structure, and (5b) the kind of structure
that can be built. This is then transformed into a
TL structure via rules (5c) which map SL
attribute–value pairs which may be lexical or
otherwise.

4.

Return to Georgetown
The remaining systems to be described are more
for demo purposes. The first2 was developed
more for fun and illustration than as a model of
how to do MT in Prolog. I wanted to replicate
the “first generation” design as described in
sources such as Hutchins & Somers (1992:72),
in which translation consists of morphological
analysis, bilingual dictionary look-up and then
“local reordering” which is a not particularly
systematic attempt at handling structural and
other divergences between the two languages.
True to the spirit of the first generation, I
decided to handle Russian–English, and, not
knowing much Russian decided to work through
that old stand-by Teach Yourself Russian
(Fourman, 1943). The system covers the first 15
lessons, and has a vocabulary of 820 words.

The translation process begins with
morphological analysis of the Russian input
which, like in the original, is in transcription.
This in turn introduces problems of ambiguous
letter sequences which would evaporate if input

2 Nicknamed the “Georgetwon system”, due to my inability
to type that word correctly.

%(a)
% NP -> det n
% ↑.num=↓ ↑=↓
% ↑.det=↓ ↑=↓
np(np(Det,N),Fnp) --> det(Det,Fdet),

{unify([],[num:Num,det:Fdet],F1),
 extract(Fdet,num:Num)},
 n(N,Fn), {unify(F1,Fn,Fnp)}.
%(b)
[pred:eat(subj,opt(obj),
 tense:past,
 num:plur,
 subj:[pred:boy,
 num:sing,
 det:[num:sing]],
 obj: [pred:cake,
 num:plur,
 det:[num:plur]]
]
%(c)
xlex([pred:boy],[pred:ragazzo,gen:masc])
.
xlex(det:[num:X],det:[num:X,gen:Y]).
xlex(eat,mangiare).

(5) LFG-like interlingua system.
The rule in (5a) assumes a predicate unify/3 which
succeeds if its third argument is a unification of its first
two, and extract/2 which finds the given attribute–
value pair from a feature structure. (5b) shows the
structure for The boy ate the cakes, and (5c) some rules for
Italian, in which a feature for gender is introduced. The TL
grammar will unify the NP structure and pick up the
appropriate gender for the determiner. Notice that
xlex/2 rules can specify feature structures, attribute–
value pairs or atoms.

was in Cyrillic.3 Russian morphology is quite
rich, and the analysis creates a “word record”
which indicates the position in the sentence, the
word and underlying stem, and any grammatical
information picked up from either the dictionary
or the morphology.

The word is then looked up in the dictionary,
which generally pairs the Russian and English
words one-to-one. Sometimes however the
dictionary lists alternatives, in which case an
explicit lexical disambiguation procedure is
triggered. Otherwise, ambiguities can have been
introduced by the morphological component.
This procedure, very much (it is hoped) in the
spirit of the first-generation systems, can look at
the details associated with any word to the right
or left of the word to be disambiguated, or
within a specific window. The system does not
build any structure as such, so we have to rely
on rules like the ones exemplified in (6).

3 I did develop a version of the system that allowed input in
Cyrillic.

(6) a. говорить speak if any word (later)
in the sentence begins with a capital
letter; else say

b. клуб cloud if there is a preposition
up to three words before it, and the
sentence contains the verb fly; else
club.

c. моеи genitive of моя ‘my’ if
followed by a genitive noun; else
imperative of мыть ‘wash’

d. the adjective endings -им and -ым can
indicate instrumental singular
masculine or neuter, or dative plural
any gender: look for a preceding
preposition which governs one or other
case, or look for a following noun of
the appropriate gender and case.

The “restructuring” phase is similarly fairly
ad hoc in nature, and includes rules such as
those illustrated in (7). Some are quite general,
others specifically mention lexical items.

(7) a. The neuter nominative singular short
form of an adjective is an adverb if the
verb is not be

b. If there is no verb, translate у +
N1(acc) N2(nom) as N1(nom) + have
+ N2(acc)

c. If there is no verb, insert be after the
first pronoun, or before an adverb, or
as the 2nd word.

d. Insert indefinite article on singular
subject, unless verb is inverted.

e. искать + acc look for
f. insert with if instrumental is not

preceded by preposition

A final pass handles some trivial aspects of
English morphology.

The system works well in the sense that it
accurately reproduces the kind of translation
quality that you might expect with this approach
– see (8) for some examples (English output
only). Many sentences are translated quite well.
Many more are understandable but slightly odd,
and there is a pervading Russian-ness about the
output (read the examples with a cod Russian
accent). And some are just gibberish. I am sorry
to say I did not try it with Душа готова, но
плоть слаба.4

5.

Interactive system
Another area of interest was interactive MT,
which “enables direct involvement on-line
during the course of translation” (Hutchins &
Somers, 1992:77). Obviously it would be a
major undertaking to try to emulate the sophisti-

4 ‘The spirit is willing but the flesh is weak.’

a coast is not big.
I don’t know to speak Russian.
I love Russian popular songs.
to our street be always many avtomobilej.
I didn’t have the letter from my friend.
their conversation lasted whole hour.
we sent own baggage with the fast train.
hand over me, please, newspaper which lies by

you.
why you don’t lay their to the shelf.
this knigam is here not a place.
I want to the tea.
we saw some picture young artist, about who you

read in the newspaper.
chji of the picture you saw yesterday to the

exhibition.
my mother ask me to bring her didn’t big carpet.
nashi friends came to a harbour to see off nas.
want cigarette?
in the evening after the work I rest.
give to the ill woman of the milk.
he didn’t listen to the teacher’s explanation.
my son doesn’t understand this simple rule

because he not listened to the teacher’s
explanation.

does your sister speak Russian ? no, she doesn’t
say, but she understands all, what she
reads.

a brother’s English newspaper is here.
from the coast of the sea to our house is not

remote.
at-home is your father ?
do you wish the plate of the meat ?
a left sleeve of the new woollen dress too(much)

is long and narrow.

(8) Example translations from the Georgetwon [sic]
system.

cated interactive interfaces available with
commercial systems, so the aim with this system
was more to explore some issues which had
become apparent at the time when I was
associated with the Ntran project (Whitelock et
al., 1986), and in my own even earlier work
(Somers & Johnson, 1979). These issues are that
the system must know not only when to interact,
but also how. If the system interacts whenever it
meets a problem, from the user’s point of view
the interactions may seem disjointed and
illogical, since they will be following the
system’s “flight-path”. So for example, it may
do lexical disambiguation for various parts of
the SL text, then “come back” to do some
syntactic disambiguation, and then return for a
third time to the “same” problem if there is a
question of TL lexical choice. On top of this,
there may be a tension between the system’s

need to translate the current text, and its
“learning” function whereby it tries to update its
dictionaries (and grammars?): the tension arises
because of the potential conflict between the
answer to the immediate question, and the
answer to a more generic question.

Although the architecture of the system5 is
not the primary interest, some care was taken
over it. The system has as its basic data
structure a classical chart (Kaplan, 1973)
with fairly simple feature bundles on the arcs.
The system was developed for French–English
translation with, as a reference corpus, a small
set of sentences from a corpus of Swiss
avalanche warning bulletins.6 The user is
assumed to have some knowledge of both
languages though in fact since only interactions
during analysis were developed, one could claim
it to model a user who knows only the source
language.7 The system interacts with the user at
three points: after morphological analysis,
during syntactic analysis to resolve category
ambiguities, and again later to resolve
attachment ambiguities; interaction during
lexical transfer was planned but unfortunately
never developed.

The morphological analysis looks only at
suffixes, and operates in a fairly standard rule-
based manner. Since our focus is how an
interactive system should work, unknown words
are of particular interest: we want our model to
make whatever inferences it can from
morphological analysis. In the case of an
unknown word, all segmentations are tried and
then these must be presented to the user. (An
alternative would be to keep the alternatives on
the chart and wait to see if syntactic analysis
ruled out the wrong solutions.) French
morphology is quite rich, particularly in
adjective and verb paradigms: this richness
involves not so much a large range of
inflections, but a large variety of interactions
between stems and endings. Supposing, for
example, that the word basses was not in the
lexicon. According to our rules, there are 21
different interpretations of this string, assuming
it is inflected (9).

5 The development of the morphological interaction part
was carried out by Gillian Chamberlain for her 1994 MSc
dissertation.
6 The corpus was obtained from colleagues at ISSCO,
Geneva – cf. Bouillon & Boesefeldt (1991).
7 The fact that the source language is French but the
interactions are presented in English is a superficial
anomaly.

stem cat gen nmbr para
basse n masc pl
basse n fem pl
basses adj masc sing 1
basses adj masc sing 2
basses adj masc sing 6
basses adj masc sing 11
basses adj masc sing 15
basses adj masc sing 18
basse adj masc pl 1
basses adj masc pl 2
basse adj masc pl 3
basse adj masc pl 6
basses adj masc pl 18
basses adj fem sing 18
bass adj fem pl 1
bass adj fem pl 2
basse adj fem pl 3
basx adj fem pl 4
bas adj fem pl 6
bas adj fem pl 15
basses adj fem pl 18

(9) 21 possible interpretations of basses.

From a user-interaction point of view, it
would clearly be impractical to present all these
alternatives in one menu, so the program works
out how best to reduce the list by interacting
feature by feature: Is it a noun or adjective? Is it
masculine or feminine? Is it singular or plural?
The correct answers (adjective, feminine, plural)
in this case would reduce the 21 possible
solutions to seven, at which point an interaction
such as shown in (10) can take place.

basses
a. stem: bass, paradigm: 1
b. stem: bass, paradigm: 2
c. stem: basse, paradigm:3
d. stem: basx, paradigm: 4
e. stem: bas, paradigm: 6
f. stem: bas, paradigm: 15
g. stem: basses, paradigm: 18

enter letter corresponding to
choice
enter ? for help
enter * to display context

(10) Interaction to disambiguate basses.

The three last options are presented in all
interactions. The “context” option shows the
whole sentence, since the interpretation might
depend on this. The “help” option in this case
explains the paradigm codes, as in (11).

The first syntactic pass sometimes identifies
sequences of words which are ambiguous, for
example sont tombés, which could be copular +
adjective ‘are fallen’ or perfect tense of tomber

************** HELP MENU ***************
KEY TO OPTIONS: INFLECTION OF ADJECTIVES

1. inflects like “GRAND”: -s –e -es
2. inflects like “GRIS”: - –e –es
3. inflects like “ROUGE”: -s - -s
4. inflects like “COURAGEU|X”: -x –se –ses
6. inflects like “BO|N”: -s –ne –nes
15. inflects like “GROS”: - -se –ses
18. invariable, e.g. compass points
**

(11) Help text for adjectives.
This is canned text but note that only the paradigms
mentioned in (10) are explained.

 ‘have fallen’. It is very difficult to know how to
ask a user to disambiguate this kind of thing, and
we have taken the somewhat unsatisfactory step
of presenting the two grammatical analyses
more or less “raw” (12).

sont tombés
a.
vg([v(tomber,pl,perf(pres),masc,pos)])
b. vg([v(être(tombé),pl,pres,masc,pos)])

enter letter corresponding to choice
enter ? for help
enter * to display context

(12) Interaction to disambiguate sont tombés.

Of more interest is the second interaction after
syntactic analysis, which deals with PP-
attachment and coordination. The difficulty here,
as we discovered with Ntran (see above) is to
frame a question that makes sense even if the
answer is “No”. Whitelock et al. (1986) illustrate
the difficulties in using “natural metalanguage”
or “disambiguating paraphrases” to frame
interactions (13).

Our solution is to take the lexical heads of the
phrases to which the PP might attach and simply
present them in a list. When the context is
shown close by, this may be an effective
method, at least for a user with some “feel” for
linguistics. Note that apart from the word attach,
no linguistic jargon is used (14).

The user can always elect to pass over any
interaction. Because the system does not allow
criss-crossing attachments, some attachments
can be resolved automatically, as a result of
other resolutions. For example, in the case in
(14), if des Alpes is attached to sont
tombés(‘fallen from the Alps’), then only
options a and f would be valid choices.

Of all the toy systems, the interactive one is

 “I saw a man in the park”
 1. The action [saw] takes place [in

the park]
2. [a man] is [in the park]

“This module provides the interface to
the system”
 1. The action [provides] takes place

[to the system]
2. [the interface] is [to the system]

1. The interface to the system is

provided by this module.
2. This module provides the system

with an interface.

(13) Examples of interaction
From Whitelock et al. (1986:333). While the first (from
Tomita, 1985) works well, with another text the result can
be simply absurd. The problem with the third case is
finding a set of rules that can correctly generate the
paraphrases.

“60 à 80 cm de neige sont tombés de
samedi à mardi matin sur le versant
nord et la crête des Alpes au dessus de
2000 m.”
Does the PP “au dessus de 2000 m”
attach to:

a. tomber
b. samedi
c. matin
d. versant
e. crête
f. Alpes

(14) Example of PP attachment disambiguation. 8

perhaps the least satisfactory as a model, though
it does illustrate some difficult questions.

6.

Example-based MT
Our final model is a re-implementation of one of
the first EBMT systems, the original ATR
system (Sumita et al., 1990) handling Japanese
adnominal noun phrases of the form A no B.9
These structures are notoriously difficult to
translate, the default rendering B of A is
appropriate less than 40% of the time. Some
examples are shown in (15) (from Sumita et al.,
1990:207).

Like the original, our model handles
translations in the domain of conference
registration. It has a database of previously
translated examples of A no B structures, in fact
a subset of ATR’s own corpus. The system has a

8 The text reads ‘60 to 80 cm of snow fell from Saturday to
Tuesday morning on the north face and the crest of the Alps
above 2000m.’
9 This system was programmed by Rachel Patterson for her
1994 MSc dissertation.

 (15) a. yooka no gogo the afternoon of the 8th
b. kaigi no sankairyoo the application fee for

 the conference
c. kyooto deno kaigi the conference in

Kyoto
d. isshukan no yasumi a week’s holiday
e. hoteru no goyoyaku the hotel reservation
f. mitsu no hoteru three hotels

vocabulary of just over 300 words. The database
contains 250 examples, stored as triples
consisting of the Japanese text (romanized), the
translation, and a coded indication of the target
structure, e.g. BofA, AB, BtoA, and so on.

As in the ATR original, the input is matched
against the database of examples, and the best
match is used as a model for the translation. The
matching procedure involves a distance
measure based on proximity in a thesaurus. The
thesaurus is a shallow (four-level) hierarchy of
about 120 domain-specific primitives. A small
part of it is shown in (16). All vocabulary items
are identified with one thesaurus term, as
illustrated in (17) (the first argument is the
semantic marker).

root
..actions

....travelling

......travel,sightseeing,sport,activities

....booking
......application,registration,reservation,ca

ncellation,reception,arrangement
......attendance
....study
......research
..objects

%etc.

(16) Excerpt from semantic hierarchy

x(sport, tenisu, tennis).
x(reception, uerukamu, welcome).
x(arrangement, enjo, support).
x(arrangement, 'un-ei', steering).
x(study, kenkyuu, research).
x(research, kagaku, science).

(17) Examples of dictionary entries

The distance measure is defined as in (18),
(18) ()(∑ ×= iiii EIwEIsdEId ,),(),()

where sd is the semantic distance between Ii and
Ei, the corresponding words in the input and
example, and w is a weighting which reflects the
frequency with which the same pattern is used
when Ii is translated as Ei. sd is given as the level
of the most specific common abstraction of the
two terms, divided by the depth of the thesaurus,
always 4 in our case. w is defined as in (19).

 (19)
2

),(
),,(∑

=

EIN
jEIpatt

w

where patt(I,E,j) is the number of examples
where I is translated as E with pattern j, and
N(I,E) the total number of examples where I is
translated as E. The idea behind this weight is
that if, when I is translated as E, a variety of
patterns is used, then I should be less influential
in the choice of translation pattern.10 These
weights can be precompiled.

Let us work through an actual example.
Suppose we want to translate rondon no ofisu
(lit. ‘London ADN office’). The semantic feature
associated with rondon is city, while ofisu is
branch. Among the examples we look at are
(20a–c). The calculations of the distance scores
shown in (20).

(a) tookyoo no hoteru ‘my hotel in Tokyo’ BinA
(c) oosaka no kaigi ‘the Osaka conference’ AB
(b) nihon no daigaku ‘a Japanese university’ ^AB

sd(rondon,tookyoo) = 0.00
sd(ofisu,hoteru) = 0.25
w(tookyoo,Tokyo) = 1.00
w(hoteru,hotel) = 0.28
d = (0.00x1.00) + (0.25x0.28) = 0.07
sd(rondon,oosaka) = 0.00
sd(ofisu,kaigi) = 1.00
w(oosaka,Osaka) = 1.00
w(kaigi,conference) = 0.15
d = (0.00x1.00) + (1.00x0.15) = 0.15
sd(rondon,nihon) = 0.25
sd(ofisu,daigaku) = 0.25
w(nihon,Japanese) = 1.00
w(daigaku,univ.) = 1.00
d = (0.25x1.00) + (0.25x1.00) = 0.50

(20) Calculation of distance scores for rondon no
ofisu and three examples.

Based on the distance scores, (20a) is chosen
as the best fit. The English side of the example is
taken as the template, and the words Tokyo and
hotel replaced by London and office (as given by
the dictionary) to give my office in London. The
system can also show the next best options,
which in this case would be the London office
and a London office.

There are a number of points that make the
process slightly more complex however. The
first is that for many words there are multiple
translations: Japanese does not distinguish
singular and plural, cf. hoteru in (15e,f). In the

10 Strangely, in the original article, Sumita et al. multiply sd
by w, which has the effect of decreasing the distance
measure when there are varied patterns.

pattern ^AB, the ^ symbol indicates adjectival
form, so for example nihon may be Japan or
Japanese. Thus, for the TL generation the
translation patterns should really carry some
grammatical information to guide the choice of
surface form.

Another complication is that the form of the
adnominal is also variable: in some examples the
no particle is attached to a postposition, as in
kaiba madeno shatorubasu ‘shuttle bus to the
conference site’. This is fairly easily handled by
extending the distance calculation in (18) to
include the adnominal.

The last example shows a case where the
single Japanese word is rendered in English as a
compound. Actually, this is not a big problem
as long as the compound can be treated as a unit.
More significantly, in the A no B construction in
general the A and B can be noun phrases, not
just simple nouns, as the examples in (21)
illustrate.
(21) a. 50 nin hodo no guruupu ‘a group of about 50

members’
 b. sono kimpen no bijinesu hoteru ‘a business

hotel in this neighbourhood’
 c. kaidan kikanchuu no sukejuuru ‘your

schedule during the conference’

In this case, the distance measure has to be
adapted to be able to compare single- and multi-
word constructions. For example, the system
should recognize that kimpen no hoteru is
usefully similar to (21b).

A final (and realistic) difficulty is in handling
inconsistency in the example set. In even our
small example set, dates are translated in a
number of different ways (e.g. the 5th of August,
March 8th) and there are even examples of the
same phrase with two different translations.

All of these are interesting problems which
do give the student an insight into some of the
pros and cons of EBMT.

7. Afterword
We have presented here a number of Prolog
implementations of model systems. In fact, the
author (and his students) have worked on one or
two more, not reported here, including a French–
English system of somewhat similar design to
the Russian–English system described above,
and (ironically, considering the history of Prolog
– see above) a re-implementation of Météo.
Students also had (at the time) limited access to
Eurotra which, while not perhaps (intended as) a
“toy” system certainly was written in Prolog!

References
Amores, J. Gabriel (2002) ‘Teaching MT with

Xepisteme’, in 6th EAMT Workshop Teaching
Machine Translation, Manchester, pages 63–
68.

Bech, Annelise and Anders Nygaard (1988) ‘The E-
Framework: A Formalism for Natural Language
Processing’, in Coling Budapest: Proceedings
of the 12th International Conference on
Computational Linguistics, Budapest, pages
36–39.

Bouillon, Pierrette and Katharina Boesefeldt (1991)
‘Applying an experiemtnal MT system to a
realistic problem’, in Machine Translation
Summit III Proceedings, Washington, DC,
pages 45–49.

Chamberlain, Gillian T. (1994) A model of an
interactive machine translation system. MSc
Dissertation, Department of Language and
Linguistics, UMIST.

Colmerauer, Alain and Philippe Roussel (1993) ‘The
Birth of Prolog’, SIGPLAN Notices 28.3, 37–
52.

Fourman, Maximilian (1943) Russian, London:
Teach Yourself Books.

Gal, Annie, Guy Lapalme, Patrick Saint-Dizier and
Harold Somers (1991) Prolog for Natural
LanguageProcessing, Chichester: John Wiley.

Hutchins, W. John and Harold L. Somers (1992) An
Introduction to Machine Translation, London:
Academic Press.

Kaplan, R.M. (1973) ‘A general syntactic processor’,
in R. Rustin (ed.) Natural Language
Processing, New York: Algorithmic Press,
pages 193–241.

Kenny, Dorothy and Andy Way (2001) ‘Teaching
Machine Translation & Translation
Technology: A Contrastive Study’, in MT
Summit VIII Workshop on Teaching Machine
Translation, Santiago de Compostela, pages
13–17.

McCord, Michael C. (1989) ‘Design of LMT: A
Prolog-Based Machine Translation System’,
Computational Linguistics 15, 33–52.

Patterson, Rachel M. (1994) A Prolog simulation of
the example-based machine translation
experiment of A.T.R. Laboratories. MSc
Dissertation, Department of Language and
Linguistics, UMIST.

Pereira, Fernando C.N. and David H.D. Warren
(1980) ‘Definite Clause Grammars for natural
language analysis – a survey of the formalism
and a comparison with Augmented Transition
Networks’, Artificial Intelligence 13, 231–278.

Sheremetyeva, Svetlana (2002) ‘An MT Learning
Environment for Computational linguistics
Students’, in 6th EAMT Workshop Teaching
Machine Translation, Manchester, pages 79–
87.

Somers, Harold (2001) ‘Three Perspectives on MT in
the Classroom’, in MT Summit VIII Workshop
on Teaching Machine Translation, Santiago de
Compostela, pages 25–29.

Somers, H.L. and R.L. Johnson (1979) ‘PTOSYS: an
interactive system for “understanding” texts
using a dynamic strategy for creating and
updating dictionary entries, in M. MacCafferty
and K. Gray (eds) The analysis of meaning:
Informatics 5, London: Aslib, pages 85–103.

Sumita, Eichiro, Hitoshi Iida and Hideo Kohyama
(1990) ‘Translating with Examples: A New
Approach to Machine Translation’, The Third
International Conference on Theoretical and
Methodological Issues in Machine Translation
of Natural Language, Austin, Texas, pages
203–212.

Tomita, Masaru (1985) An efficient context-free
parsing algorithm for natural languages and its
application, PhD thesis, Carnegie Mellon
University, Pittsburgh.

v. Hahn, Walther and Cristina Vertan (2002)
‘Architectures of “toy” systems for teaching
Machine Translation’, in 6th EAMT Workshop
Teaching Machine Translation, Manchester,
pages 69–77.

Way, Andy (2002) ‘Testing Students’ Understanding
of Complex Transfer’, in 6th EAMT Workshop
Teaching Machine Translation, Manchester,
pages 53–61.

Whitelock, P.J., M. McGee Wood, B.J. Chandler, N.
Holden and H.J. Horsfall (1986) ‘Strategies for
Interactive Machine Translation: the experience
and implications of the UMIST Japanese project’,
in 11th International Conference on
Computational Linguistics: Proceedings of
Coling ’86, Bonn, pages 329–334.

	Abstract
	Introduction
	Similar approaches
	Systems that students can develop
	A really dumb system
	A Prolog-like model: DCG-based transfer
	An LFG-like interlingua model

	Return to Georgetown
	Interactive system
	Example-based MT
	Afterword
	References

