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Abstract

The University of Cambridge/Microsoft/Toshiba
team participated in the NTCIR-2 Japanese-English
Cross-Language IR task only, using the Okapi Basic
Search System at the University of Cambridge. The
aim of our participation this year was to improve the
reliability of pseudo-relevance feedback (PRF) rather
than to achieve a high cross-language performance.
We therefore regarded the cross-language task as a
monolingual one, after having translated the Japanese
search requests into English using a machine trans-
lation system that was not tuned in any way for the
NTCIR-2 task. Our flexible pseudo-relevance feed-
back (FPRF) strategies attempt to estimate the best
PRF parameter values for each test request based on
results with a set of training requests. Seven automatic
runs were submitted using the DESCRIPTION fields:
one FPRF run which varies the number of pseudo-
relevant documents across requests, four FPRF runs
which vary the number of expansion terms across re-
quests, and traditional runs with and without PRF.
This paper reports on our pre-submission and post-
submission FPRF experiments.
Keywords: Pseudo-relevance feedback, local feed-
back, query expansion.

1 Introduction

The University of Cambridge/Microsoft/Toshiba
team participated in the NTCIR-2 Japanese-English
Cross-Language IR task only. The aim of our par-
ticipation this year was to improve the reliability
of pseudo-relevance feedback (PRF) rather than to
achieve a high cross-language performance. We there-
fore regarded the cross-language task as a monolin-
gual one, after having translated the Japanese search
requests into English using Toshiba’s machine trans-
lation service called MT Avenue (http://mtave.
softpark.jplaza.com/MTave) [2], which was

not tuned in any way for the NTCIR-2 task. Our flex-
ible pseudo-relevance feedback (FPRF) strategies at-
tempt to estimate the best PRF parameter values for
each test request based on results with a set of train-
ing requests [7]. Seven automatic runs were submitted
using the DESCRIPTION fields: one FPRF run which
varies the number of pseudo-Relevant documents ( 
 )
across requests, four FPRF runs which vary the num-
ber of expansion Terms ( � ) across requests, and tradi-
tional runs with and without PRF.

(Although NII also released a set of manual English
translations of the Japanese search requests, we did not
use them to generate any English monolingual base-
lines. This is not only because we are interested in
comparing FPRF with traditional PRF rather than fill-
ing the cross-language gap, but also because we found
that some of the translations were not quite accurate.
These English translations should perhaps be treated
with care, since previous work suggests that compar-
ing a cross-language performance against a monolin-
gual baseline is heavily dependent on the manual re-
quest translation process even if the translations are
accurate [8].)

In all of our training experiments, we used the
60 NTCIR-1 cross-lingual requests with the entire
NTCIR-2 English document collection that consists of
322,058 documents. Therefore, unlike a TREC ad hoc
task, the relevance data used in the training phase are
incomplete in that they only cover a subcollection that
consists of 187,080 documents (i.e. the NTCIR-1 En-
glish document collection).

All of our experiments used a family of shell scripts
that utilize the Okapi Basic Search System with the
BM25 probabilistic retrieval formula [4][5]. Our ba-
sic PRF algorithm involves term reweighting based
on the Robertson/Sparck Jones relevance weight and
query expansion based on the offer weight, as de-
scribed fully in [3][10]. The actual retrieval steps, also
used in [6][8], are as follows:

1. Remove “Document will discuss” and the like



from the search request and generate an initial
query using a stopword list and stemming.

2. Perform initial (or pilot) search.

3. Assume the top � documents in the initial ranked
output relevant and extract  new search terms
from them, using offer weights as term selection
values.

4. Reweight the initial search terms with relevance
weights. To this reweighted initial query, add the
new search terms with downweighted relevance
weights, using a downweighting factor ��������� .

5. Perform final search using the expanded query.

While traditional PRF uses the same values of �
and  for all requests, FPRF attempts to estimate the
best value of � and/or  for each given test request.

The remainder of this paper is organized as follows.
Section 2 describes our FPRF strategies in detail. Sec-
tion 3 describes our pre-submission experiments for
generating the official runs, in which we mistakenly
used noninterpolated average precision over retrieved
relevant documents instead of that over all relevant
documents (i.e. TREC average precision). Therefore,
Section 4 repeats some of our experiments based on
TREC average precision using Chris Buckley’s eval-
uation program. These new experiments also cover a
few FPRF strategies that were not considered before
submission. Finally, Section 5 gives conclusions and
directions for future research.

2 Flexible Pseudo-Relevance Feedback

2.1 Direct Mapping and Categorization

Although PRF is widely used in laboratory exper-
iments and in TREC [1], traditional PRF is proba-
bly too unreliable for practical application since it is
known to hurt performance for approximately one-
third of a given set of search requests even when im-
proving the average performance [7].

To enhance the reliability of PRF, Sakai et al. [7]
recently proposed some methods for estimating the
best PRF parameter values for each given test request:
Firstly, the PRF parameters are optimized for each
training request. Secondly, the distance � between
the test request and each training request is calculated.
Then, in the case of direct mapping of requests, the
optimal parameter values for the training request that
minimizes � are re-used for the test request. That
is, the PRF parameters for a test request are selected
based on a “similar request that the system has seen
before”. In contrast, in the case of categorization of
requests, the training requests are first categorized into
several groups, so that each group contains requests

with the same optimal PRF parameter values. Then,
the distance � between a given test request and each
group is derived from individual � ’s, for example, by
taking the average. Finally, the optimal parameter val-
ues for the group that minimizes � are used for the test
request. Relying on the request-to-group distance ( � )
instead of the request-to-request distance ( � ) may pos-
sibly prevent “outliers” in the set of training requests
from doing harm to the test-to-training mapping. In
this paper, these approaches for per-request estima-
tion of the best PRF parameter values will collec-
tively be referred to as flexible pseudo-relevance feed-
back (FPRF).

2.2 Distance Measures for FPRF

The critical factor of FPRF (i.e. direct mapping
and categorization) is how to measure the request-to-
request distance � . This section discusses some pos-
sibilities for measuring it, most of which were intro-
duced in [7]. All related equations can be found in the
Appendix.

We considered three types of distance measures:
Section 2.2.1, 2.2.2 and 2.2.3 describe those that
rely on the document scores in the initial ranked
ouput, the offer weights of candidate expansion terms,
and the weights of the initial search terms, respec-
tively. Of these distance measures, those based on
the offer weight (Section 2.2.2) or the relevance
weight (HIRW, LIRW and IRWC in Section 2.2.3)
can only be used for estimating the best value of  ,
but not � , since these weights can only be obtained
after determining the set of pseudo-relevant docu-
ments [3][10].

Of the following, ICWC, IRWC and the distance
measures based on the relevance probability (RPC,
ARP, HRP) were examined in our post-submission
experiments only.

2.2.1 Distance Measures based on Initial Docu-
ment Scores

DSC, NDSC A document score curve (DSC) can be
obtained by plotting the initial document scores
against document rank. If the DSCs of two re-
quests are similar, this may possibly imply that
a PRF parameter value that is effective for one
may also be effective for the other. Moreover, it
is possible to normalize each DSC before com-
parison so that its shape will affect the similar-
ity, but not its height. Equations 2 and 3 define
distances based on the (Normalized) Document
Score Curve.

RDSC Another possible way to normalize a DSC is
to re-use a linear formula proposed by Robert-
son and Walker for the TREC-8 filtering track,
which is based on logistic regression [4]. Their



normalization method aims at making the doc-
ument scores comparable across requests based
on the average score of initially top ranked docu-
ments, the theoretical maximum document score,
and the query length. Equation 8 defines a dis-
tance based on the Robertson/Walker normalized
Document Score Curve. The Appendix also de-
scribes some variations of this distance measure,
such as RDSC � and RDSC � � .

RPC Yet another possible way to make document
scores comparable across requests is to re-use a
method proposed by Robertson and Walker for
the TREC-7/TREC-9 filtering tracks [5], which
attempts to convert the scores into actual prob-
abilities of relevance. This method first com-
putes calibrated document scores using the aver-
age score of initially top ranked documents and
a pair of constants, and then converts them to es-
timated relevance probabilities. Equation 11 de-
fines a distance based on the Robertson/Walker
Relevance Probability Curve.

ADS, ANDS, ARDS, ARP In contrast to comparing
document scores at each rank, it is possible to
take the average score of some top ranked doc-
uments first and then make comparisons across
requests. Equations 12–15 define distances
based on the Average (Normalized) Document
Score, the Average Robertson/Walker normal-
ized Document Score and the Average Relevance
Probability, respectively.

HDS, HNDS, HRDS, HRP Rather than examining
document scores at several ranks as in the
above approaches, examining the highest doc-
ument score may possibly be sufficient for de-
termining the request-to-request distance, since
it is possible to hypothesize that this value
is correlated with search request complexity
and with how successful PRF would be if ap-
plied [7]. Equations 16–19 define distance
measures based on the Highest (Normalized)
Document Score, the Highest Robertson/Walker
normalized Document Score and the Highest
Relevance Probability, respectively.

2.2.2 Distance Measures based on Offer Weights

OWC, NOWC Once the set of pseudo-relevant doc-
uments (and therefore the value of � ) has been
determined, a term selection value curve can be
obtained by plotting the term selection values of
candidate expansion terms in decreasing order. In
our current probabilistic framework, this is the
offer weight curve (OWC). If the OWCs of two
requests are similar, this may possibly imply that
the value of � that is effective for one may also be

effective for the other. As with DSCs, normaliza-
tion can be applied to OWCs. Equations 21 and
22 define distances based on the (Normalized)
Offer Weight Curve.

AOW, ANOW, HOW, HNOW Equations 23–26 de-
fine distances based on the Average (Normalized)
Offer Weight and the Highest (Normalized)
Offer Weight, respectively.

2.2.3 Distance Measures based on Weights of Ini-
tial Search Terms

HICW, LICW It is possible to hypothesize that the
collection frequency weight [3][10] of an ini-
tial search term is associated with search request
complexity, and with how successful PRF would
be if applied. For example, if an initial query
contains a term with a high collection frequency
weight, the search may be quite specific and
easy [7]. Equations 27 and 28 define distances
based on the Highest/Lowest Initial Collection
frequency Weights, respectively.

HIRW, LIRW Once the set of pseudo-relevant doc-
uments (and therefore the value of � ) has been
determined, term reweighting replaces the collec-
tion frequency weights of the initial search terms
with relevance weights (See Section 1). These
can also be used for measuring the request-to-
request distance, but only for estimating the best
value of � . Equations 29 and 30 define dis-
tances based on the Highest/Lowest Relevance
Weights, respectively.

ICWC, IRWC Instead of focusing on the high-
est/lowest weights of the initial search terms, it
is possible to compare the entire initial queries
by regarding them as lists of weights in decreas-
ing order, so that they can be regarded as similar
if their query length and their weights are sim-
ilar. Equations 31 and 32 define distances based
on the Initial Collection frequency Weight Curve
and the Initial Relevance Weight Curve, respec-
tively.

3 Pre-Submission Experiments

Section 3.1 describes our pre-submission experi-
ments based on average precision over retrieved rel-
evant documents, which we used by mistake. This
affected our optimization processes, selection of the
more promising FPRF strategies, and therefore our of-
ficial results shown in Section 3.2. Therefore, Sec-
tion 4 repeats some of our FPRF experiments using
standard TREC average precision. Another difference
between our pre-submission and post-submission ex-
periments is that, for each NTCIR-1 request, the for-
mer treated the A-relevant and B-relevant documents



as relevant while the latter treated only the A-relevant
documents as relevant. Throughout this paper, our
evaluation with the NTCIR-2 test requests treat S-
relevant (i.e. highly relevant) and A-relevant docu-
ments as relevant unless otherwise stated.

3.1 Training with the NTCIR-1 Requests

3.1.1 Tuning the General Parameters

The BM25 parameters ��� and � [4][5], and the PRF
parameters  , ! and " were optimized using the
60 NTCIR-1 requests with the incomplete relevance
data (See Section 1). The best run without PRF used�#�%$'&)( *,+-�.$'&)( /)/ , while the best run with traditional
PRF used �#�0$�&)( *,+-�.$1/2(435* for the initial search, and� � $6&)( *,+-�0$6&)( /)/,+7 '$6&8/2+9!:$<;5/2+9"<$</2( ; for the
final search. These are denoted by NOPRF and PRF,
respectively.

Based on the above results, we considered two spe-
cific problems of FPRF:

Problem-  For each test request, select the best value
of  from =>/,+?*�+�&�/,+8&�*#@ when the values of all
other parameters are fixed.

Problem- ! For each test request, select the best value
of ! from =�/2+�&8/2+7;)/,+-*5/�@ when the values of all
other parameters are fixed.

When  A$B/ (or !C$B/ ) is selected for a particular
request, that is, when it is estimated that it is better
not to apply PRF at all, FPRF behaves like NOPRF.
Otherwise, it behaves like PRF except for the value of (or ! ).

Variations of the above problems, such as binary
decisions (e.g. selecting the value of ! from =�/,+-;5/,@ )
were not successful in our preliminary experiments.
Previous work suggests that varying  and ! at the
same time is very difficult [7].

3.1.2 Subtasks

For generating our official FPRF runs, we addressed
the following two questions:

(a) What are the most reliable distance measures for
defining the test-to-training mapping?

(b) Which is more reliable, direct mapping or cate-
gorization?

Moreover, some FPRF strategies required parameter
tuning (See the Appendix). For these purposes, we de-
vised a set of subtasks by dividing the set of NTCIR-1
requests into two subsets, each containing 30 requests.
Our first division method put the first NTCIR-1 request
into a subset D � , the second into DFE , and so on. Then,
firstly DFE was used as the training set, and D � was

Table 1. Official NTCIR-2 test results.
AvePG

-cNDSC (CAMUK5) 0.2146 (0.1990)
PRF (CAMUK6) 0.2139 (0.1977)H

-dAOW (CAMUK2) 0.2138 (0.1919)H
-cAOW (CAMUK4) 0.2123 (0.1961)H
-cHOW (CAMUK3) 0.2117 (0.1932)H
-cHNOW (CAMUK1) 0.2067 (0.1865)

NOPRF (CAMUK7) 0.1720 (0.1505)

used as the test set (this will be referred to as Sub-
task 1). Secondly, the subsets were interchanged (this
will be referred to as Subtask 2). However, because our
results were not consistent across the two subtasks, we
devised four additional division methods to reshuffle
the requests. This yielded eight additional subtasks,
with subsets DFI through D���J .

For each subtask, each FPRF strategy was assessed
using the following three conditions:

1. It must outperform PRF in terms of average per-
formance.

2. It must outperform PRF for at least K requests
if PRF outperforms it for other K requests. We
used this rather weak condition because we could
not obtain any statistically significant differences
regarding Condition 1.

3. It must correctly estimate the best PRF parameter
value for at least 9 requests out of 30. This is be-
cause, since both Problem-  and Problem- ! are
essentially selection from 4 possible values, the
expected number of correct guesses by a random
selection strategy is ;)/ML>NF$<3#(4* .

Because the final results were still inconsistent
across the subtasks, we selected all FPRF strategies
that satisfied all of the above three conditions for at
least 3 subtasks out of 10, and used them for generat-
ing the official runs.

3.2 Official Results with the NTCIR-2 Test
Requests

Table 1 shows the results of our 7 official runs. “  -”
and “ ! -” represent FPRF runs that deal with Problem- and Problem- ! , respectively, while “c” and “d”
represent Categorization and Direct mapping, respec-
tively. Thus, for example, “  -cNDSC (CAMUK5)”
is an FPRF run for Problem-  , based on the Normal-
ized Document Score Curve through categorization.
However, recall that these results are based on pre-
submission experiments which did not use standard
TREC average precision. (Table 1 also shows the av-
erage precision values based on S-relevant, A-relevant
and B-relevant documents, in parentheses.)



4 Post-Submission Experiments

After the NTCIR-2 submission, our FPRF strate-
gies were re-run and re-evaluated based on TREC av-
erage precision, but by re-using the parameter val-
ues of O#P>Q-RSQ7TUQ9V0Q7W mentioned in Section 3.1.1 rather
than re-tuning them. The FPRF parameters were re-
tuned using Subtasks 1 and 2 (See the Appendix).

Tables 2 and 3 show the corrected results with the
NTCIR-2 test requests, for all FPRF strategies that
outperformed PRF on average in either Subtask 1 or 2
or both (i.e. in the training experiments). The official
runs PRF and NOPRF, which did not require any cor-
rection, are included for comparison. Here, T -IDEAL
and V -IDEAL are the theoretically best possible FPRF
runs, with 100% parameter estimation accuracy. The
three table columns correspond to the conditions men-
tioned in Section 3.1.2: For example, Table 2 provides
the following information regarding T -IDEAL:

1. Its average precision is 0.2506.

2. It outperforms PRF for 31 requests, while PRF
never outperforms it (since T -IDEAL selects the
best value of T for each request). The “**” in-
dicates that this difference is statisticallly signifi-
cant with the sign test ( XZY1[,\ [,] ).

3. The number of its correct guesses is 49 out of
49 (by definition of an ideal FPRF run).

The overall results are quite disappointing: Most
of our FPRF strategies failed to outperform PRF, ex-
cept T -dHRP, T -dRPC, V -dNOWC, V -cAOW andV -cNOWC, and even these exceptions are nowhere
near the ideal runs. Moreover, it can be observed thatT -dHRP and V -dNOWC are in fact less effective than
PRF in terms of per-request “win-or-lose” compari-
son. On the other hand, the “#correct” column shows
that some of our FPRF strategies are more accurate
than the random selection strategy, whose expected
number of correct guesses in this case is 49/4=12.3.
Our most recent work [9] contains re-examination of
these FPRF strategies using recent TREC data, as well
as more details on the NTCIR-2 results.

Figure 1 shows the actual values of T used for each
NTCIR-2 test request by T -IDEAL, T -dHRP and T -
dRPC. The height of each dot is slightly adjusted to
avoid collision. For example, for Request ID=105, T -
dHRP used T^Y^]>_ while T -dRPC used T`Y^]�[ ,
but the true best value (used by T -IDEAL) is TaYb[ .
That is, PRF is in fact not effective for this request.
A similar graph for Problem- V (not included in this
paper due to lack of space) suggests that V -cNOWC
and V -cAOW favour large values of V .

Regarding Question (a) mentioned in Sec-
tion 3.1.2 (What are the most reliable distance
measures?), our NTCIR-2 experiments appear to
suggest that the relevance probability may be useful

Table 2. Corrected NTCIR-2 test results
(Problem- T ).

AveP c / d PRF #correcte
-IDEAL 0.2506 31/0 ** 49e
-dHRP 0.2207 14/18 15e
-dRPC 0.2179 17/16 18

PRF 0.2139 - 15
(CAMUK6)e
-cARP 0.2114 3/5 14e
-dARDS 0.2011 10/22 * 8e
-cHICW 0.1992 16/28 9e
-dADS 0.1987 9/22 * 11e
-cANDS 0.1978 15/23 13e
-dARP 0.1970 10/18 10e
-dRDSC 0.1965 12/20 13e
-cNDSC 0.1879 15/24 13e
-cICWC 0.1873 11/22 13e
-cRDSC 0.1721 14/30 * 9

NOPRF 0.1720 13/33 ** 10
(CAMUK7)e
-cARDS 0.1718 14/31 * 8

Table 3. Corrected NTCIR-2 test results
(Problem- V ).

AveP c / d PRF #correctf
-IDEAL 0.2408 36/0 ** 49f
-dNOWC 0.2177 12/17 11f
-cAOW 0.2167 18/14 17f
-cNOWC 0.2147 23/22 17

PRF 0.2139 - 11
(CAMUK6)f
-dOWC 0.2138 14/13 15f
-dRPC 0.2128 17/19 14f
-cANOW 0.2095 23/23 15f
-cOWC 0.2067 20/20 16f
-cANDS 0.2064 2/3 11f
-dANOW 0.2063 13/21 12f
-dLIRW 0.2053 17/21 13f
-cHOW 0.2044 23/22 19f
-cHNDS 0.2035 11/20 10f
-dAOW 0.2019 15/23 13f
-cHRDS 0.2018 17/28 11f
-cHNOW 0.2013 21/22 16f
-dRDSC 0.2004 15/23 15f
-dHDS 0.1995 11/19 8f
-dHRDS g 0.1992 13/21 7f
-dHRP 0.1985 12/22 11f
-cHIRW 0.1968 16/31 * 9f
-dADS 0.1967 16/20 14f
-dARP 0.1946 13/17 11f
-cHRP 0.1865 13/33 ** 5f
-cRPC 0.1842 13/32 ** 5f
-cARP 0.1842 13/33 ** 5f
-cARDS g g 0.1731 15/31 * 12

NOPRF 0.1720 13/33 ** 12
(CAMUK7)f
-cNDSC 0.1717 15/29 * 9
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Figure 1. The values of h used for each
NTCIR-2 test request.

for determining h , and that the offer weight may be
useful for determining i . However, our subsequent
experiments using TREC data [9] do not show any
advantage of using the relevance probability. As for
Question (b) (Which is better, direct mapping or cate-
gorization?), our TREC data experiments do suggest
that categorization may be more reliable than direct
mapping, although this is not clear from our NTCIR-2
results alone. Whether a specific distance calculation
method is better than others (e.g. Is normalization
useful at all?) remains an open question.

5 Conclusions

This paper described our pre-submission and post-
submission NTCIR-2 experiments for enhancing the
reliability of pseudo-relevance feedback. Although the
parameter estimations of our flexible pseudo-relevance
feedback strategies are not yet accurate enough for any
practical use, our NTCIR-2 results, together with our
subsequent TREC data results, suggest that the offer
weight may be useful for determining the number of
expansion terms, and that categorization may be more
reliable than direct mapping [9].

Our future work includes investigations of other ap-
proaches to FPRF such as the use of optimization ta-
bles [7], which first form training request groups based
on evidence such as the initial document scores, and
then perform per-group optimization of the PRF pa-
rameters rather than per-request optimization.
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Appendix: Distances

Distances based on Initial Document Scores

Let jSk�lnmpoSq denote the document score at rank o in
the initial ranked output for a search request r . For
a given hts , the corresponding normalized document
score can be defined as follows:u j>k l mvoSw-h s qyx6j>k l mvonq{z|j>k l mph sM}1~ q (1)

The distance between a given test request r5s and each
training request r�mp��q can be defined based on the Docu-
ment Score Curve (DSC) or the Normalized Document
Score Curve (NDSC), as follows:

�����)�{� ��� m�r s w7r�mv��q7qyx ~h s
� ��
�7����� j>k l � mpoSq�z�jSk l?����� mponq �

(2)�������)��� � � mpr s w7r�mp��q7qyx
~h s
� ��
�-����� u jSk l � mvoSw-h s q{z u jSk l?����� mpoSw7h s q � (3)



The following is the Robertson/Walker normal-
ized document score taken from the TREC-8 filtering
track [4]:

�-�>���5�v n¡�¢ �S���S�v n¡£5�>��¤ �y¥§¦,¨4©5©,ª £8«M�S� �¬¯®)¨ °²±´³ � (4)

where £5�>��¤�� is the average document score of the top
1% of initially retrieved documents, ª £�«#�>�S� is the the-
oretical maximum document score, and ±´³ � is the ini-
tial query length in terms. The following are some
variations:

�-�>�8µ� �v n¡�¢ �>���5�v n¡£5�>��¤ �y¥§¦,¨4©5©�ª £�«#�S� � (5)

�7�>� µ µ� �v n¡�¢ �S� � �p n¡ª £�«#�>� � (6)

�7�S�8µ µ µ� �p S¡¢ �S�>�S�p S¡£5�S�´¤ � (7)

The distance based on the Robertson/Walker normal-
ized Document Score Curve (RDSC) can be defined as
follows:

¶�·�¸�¹)º{» ¼�½ ��¾ µp¿ ¾��vÀ�¡9¡Á¢ ®Â µ
¼ ½Ã
Ä7Å�Æ�Ç �7�>� � ½ �p S¡ ¬ �-�>� ��È�É�Ê �v n¡ Ç

(8)
Similarly,

¶ ·�¸�¹5º ½ » ¼ ½
,
¶ ·�¸�¹5º ½ ½ » ¼ ½

and
¶ ·�¸�¹)º ½ ½ ½ » ¼ ½

can be defined using Equations 5–7. Our pre-
submission subtask experiments suggested that tuning
the constants in Equation 4 for the NTCIR-2 task is
not particularly beneficial.

The following is the Robertson/Walker estimated
relevance probability taken from the TREC-7/TREC-9
filtering tracks [5]:

Ë?�S� � �p  ¿9Ìy¿9Í ¡�¢ Ì ¥ Í �>� � �v n¡£5�>��¤�� (9)

�ÏÎ � �p  ¿9Ìy¿9Í ¡�¢ Ð�Ñ#Ò Ë?�S���S�v  ¿7Ìy¿�Í ¡®Á¥ Ð�Ñ�Ò Ë-�S� � �p  ¿9Ìy¿9Í ¡ (10)

where Ë-�S� � �v n¡ is called the calibrated document score,
and Ì and Í are constants that may be tuned using
some training data. In our post-submission subtask
experiments, we started with the values used at TREC-
7/TREC-9 that were obtained through logistic regres-
sion ( Ì ¢ ¬0Ó,¨ÕÔ5Ô ¿�Í ¢ ©,¨ Ó)Ö ), and then adjusted them
empirically. The distance based on the Relevance
Probability Curve (RPC) can be defined as follows:¶�·�×²º{» ¼�½v» Ø,» Ù ��¾ µp¿ ¾��vÀ�¡9¡�¢

®Â µ
¼ ½Ã
Ä-Å�Æ�Ç �ÏÎ � ½ �p  ¿9Ìy¿9Í ¡ ¬ �ÏÎ �?È�É�Ê �v  ¿7Ìy¿�Í ¡ Ç (11)

The following distances are based on the Average
Document Score (ADS), the Average Normalized Doc-
ument Score (ANDS), the Average Robertson/Walker

normalized Document Score (ARDS), and the Average
Relevance Probability (ARP), respectively:

¶{Ú�¸�¹2» ¼�½ ��¾ µ�¿ ¾��vÀ�¡9¡y¢ Ç
®Â µ
¼ ½Ã
Ä-Å�Æ �S� � ½ �v n¡ ¬

®Â µ
¼ ½Ã
Ä-Å�Æ �>� ��È�É�Ê �v n¡ Ç

(12)¶{ÚÜÛ�¸�¹Ý» ¼�½ �p¾ µ�¿ ¾��vÀ�¡7¡�¢
Ç
®Â µ
¼ ½Ã
Ä-Å�Æ�Þ �S� � ½ �p  ¿ Â µ ¡ ¬

®Â µ
¼ ½Ã
Ä-Å�Æ�Þ �>� ��È�É�Ê �v  ¿ Â µ ¡ Ç (13)

¶{Ú�·�¸�¹2» ¼�½ ��¾ µÏ¿ ¾��vÀ�¡7¡�¢
Ç
®Â µ
¼ ½Ã
Ä-Å�Æ �7�>�>� ½ �p n¡ ¬

®Â µ
¼ ½Ã
Ä-Å�Æ �-�>� ��È�É�Ê �v n¡ Ç (14)

¶ Ú�·�×Ü» ¼�½v» Ø2» Ù �p¾ µ ¿ ¾��pÀ�¡9¡�¢
Ç
®Â µ
¼ ½Ã
Ä-Å�Æ �ÏÎ � ½ �v  ¿7Ìy¿�Í ¡ ¬

®Â µ
¼ ½Ã
Ä-Å�Æ �ÏÎ �?È�É�Ê �p  ¿9Ìy¿9Í ¡ Ç (15)

Similarly,
¶ Ú�·�¸�¹ ½ » ¼�½

,
¶ Ú�·�¸�¹ ½ ½ » ¼�½

and
¶ Ú�·�¸�¹ ½ ½ ½ » ¼�½

can be defined using Equations 5–7.
The following distances are based on the Highest

Document Score (HDS), the Highest Normalized Doc-
ument Score (HNDS), the Highest Robertson/Walker
normalized Document Score (HRDS), and the High-
est Relevance Probability (HRP), respectively:¶�ß�¸�¹ �p¾ µ�¿ ¾��pÀ�¡7¡�¢ ¶y¸�¹)º{» Æ �p¾ µÏ¿ ¾��pÀ�¡9¡y¢¶{Ú�¸�¹Ý» Æ �p¾ µ ¿ ¾��pÀ�¡7¡�¢ Ç �>� � ½ � ® ¡ ¬ �>� �?È�É�Ê � ® ¡ Ç (16)¶�ß�Û�¸�¹Ý» ¼�½ ��¾ µ ¿ ¾��vÀ�¡7¡y¢ ÇàÞ �S� � ½ � ® ¿ Â µ ¡ ¬ Þ �S� �?È�É�Ê � ® ¿ Â µ ¡ Ç(17)¶{ß�·�¸�¹ ��¾ µ�¿ ¾��vÀ�¡9¡y¢ Ç �7�>� � ½ � ® ¡ ¬ �7�>� ��È�É�Ê � ® ¡ Ç (18)¶{ß�·�×�» Ø,» Ù ��¾ µ�¿ ¾��vÀ�¡9¡y¢ Ç �ÏÎ � ½ � ® ¿9Ìy¿9Í ¡ ¬ �ÏÎ ��È�É�Ê � ® ¿9Ìy¿9Í ¡ Ç(19)
Similarly,

¶ ß�·�¸�¹ ½
,
¶ ß�·�¸�¹ ½ ½

and
¶ ß�·�¸�¹ ½ ½ ½

can be de-
fined using Equations 5–7.

Distances based on Offer Weights

For a request ¾ with a given set of pseudo-relevant
documents, let ánâ � �v n¡ denote the   -th highest value
among the offer weights [3][10] of candidate expan-
sion terms. For a given ã µ , the corresponding normal-
ized offer weight can be defined as follows:

Þ áSâ � �p  ¿ ã µ ¡y¢ ánâ � �v n¡ ¬ ánâ � � ã µ ¥|® ¡ (20)

The distance between ¾ µ and ¾��vÀ�¡ can be calculated
based on the Offer Weight Curve (OWC) or the Nor-
malized Offer Weight Curve (NOWC), as follows:

¶.ä{å ºy» æÝ½ �p¾ µ ¿ ¾��pÀ�¡7¡�¢ ®
ã µ

æ ½Ã
Ä-Å�Æ Ç ánâ � ½ �p n¡ ¬ áSâ �?È�É�Ê �p S¡ Ç

(21)
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The following distances are based on the Average
Offer Weight (AOW), the Average Normalized Offer
Weight (ANOW), the Highest Offer Weight (HOW),
and the Highest Normalized Offer Weight (HNOW),
respectively. ç�� é{ê í î ï7ðpñSò�ó7ñ�ðvô�õ7õ�ö

ý
÷ø ò
î ïù
ú-û�ü�ÿ�� � ï ð�nõ��

÷ø ò
î ïù
ú-û�ü�ÿ�� ���
	
� ð�nõ ý (23)

ç�� è{é{ê í î ï ðpñ ò ó7ñ�ðpô�õ7õ�ö

ý
÷ø ò
î ïù
ú-û�ü þ²ÿ�� � ï ð��Só ø ò õ��
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ç��{é{ê ð�ñ ò ó-ñ�ðvô�õ9õÁö|ç.é{ê ëyí ü ðpñ ò ó-ñ�ðvô�õ9õyöç�� é{ê í ü ð�ñ ò ó-ñ�ðvô�õ9õyö ý�ÿ�� � ï ð ÷ õ�� ÿ�� ���
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� ð ÷ ó ø ò õ ý(26)

Distances based on Initial Search Terms Weights

For a request
ñ
, let ��� � �

ð��nõ
denote the

�
-th highest

value among the collection frequency weights [3][10]
of the initial search terms. Then, ��� � �

ð ÷ õ
and

��� � �
ð���� � õ are called the Highest/Lowest Initial Col-

lecion frequency Weights (HICW/LICW), respec-
tively, where

��� � is the initial query length in terms.
Likewise, let ��� � �

ð��nõ
denote the

�
-th highest value

among the relevance weights [3][10] of the initial
search terms, after term reweighting based on a set
of pseudo-relevant documents has been performed.
Then, ��� � �

ð ÷ õ
and ��� � �

ð���� � õ are called the High-
est/Lowest Initial Relevance Weights (HIRW/LIRW),
respectively. The following distances are based on the
above values:ç�����ë ê ð�ñ ò ó-ñ�ðvô�õ9õÁö ý ��� � � ï ð ÷ õ�� ��� � ���
	
� ð ÷ õ ý (27)ç �!��ë ê ðpñ ò ó-ñ�ðvô�õ9õyö ý ��� � � ï ð���� � ï õ�� ��� � ����	
� ð"��� ���
	�� õ ý(28)ç����$#�ê ð�ñ ò ó7ñ�ðvô�õ7õyö ý ��� � � ï ð ÷ õ�� ��� � ����	
� ð ÷ õ ý (29)ç �!�$#�ê ðpñ ò ó-ñ�ðvô�õ9õyö ý ��� � � ï ð"��� � ï õ�� ��� � ���
	�� ð"��� ���
	
� õ ý(30)

For convenience, let ��� � �
ð��nõ ö ��� � �

ð�nõ ö&%
for�(')��� � . Then, the distances based on the Initial Col-

lection Frequency Weight Curve (ICWC) and the Ini-
tial Relevance Weight Curve (IRWC) can be defined
as follows:

ç�*�+�,-+%ð�ñ ò ó-ñ�ðvô�õ9õÁö ÷
.0/�1 ���

24365�798ù
ú-û�ü ý ô;:�< � ï ð�nõ��Zô;:�< ���
	�� ð�nõ ý

(31)

Table 4. FPRF parameter values.
parameter values=

-cNDSC (CAMUK5)
= ï û ü;>=

-cNDSC
= ï û0?@>=

-dRDSC
= ï û ü;>=

-cRDSC
= ï û ü;>=

-dRPC
= ï û ü6> í�A ûCBÜü;> í$D û0E�F G"H=

-dADS
= ï û0I@>=

-cANDS
= ï û0?@>=

-dARDS
= ï û ü;>=

-cARDS
= ï û ü;>=

-dARP
= ï û0I@> í�A ûJBKG�F L"L í$D û0E�F G�H=

-cARP
= ï û0I@> í�A ûJBKG�F L"L í$D û0E�F G�H=

-dHRP
A ûJBÜü;> í�D û0E�F G"Hî

-cNDSC
= ï û0I@>î

-dRDSC
= ï û0?@>î

-dRPC
= ï û ü;> í�A ûJBKG�F L"L í$D û0E�F G�Hî

-cRPC
= ï û ü6> í�A ûJBMG�F L�L í�D û üî

-dADS
= ï û0I@>î

-cANDS
= ï û ü;>î

-cARDS”
= ï û0I@>î

-dARP
= ï û ü;> í�A ûJBKG�F L"L í$D û0E�F G�Hî

-cARP
= ï û ü6> í�A ûJBMG�F L�L í�D û0Iî

-cHNDS
= ï û0?@>î

-dHRP
A ûJBÜü;> í�D û0E�F G"Hî

-cHRP
A ûJBM? í�D û0E�F G"Hî

-dOWC
î ï û0?@>î

-cOWC
î ï û ü;>î

-dNOWC
î ï û0?@>î

-cNOWC
î ï û0?@>î

-dAOW (CAMUK2)
î ï û0?@>î

-dAOW
î ï û ü;>î

-cAOW (CAMUK3)
î ï û0?@>î

-cAOW
î ï û0?@>î

-dANOW
î ï û ü;>î

-cANOW
î ï û ü;>î

-cHNOW (CAMUK1)
î ï û ü;>î

-cHNOW
î ï û ü;>

ç * = ,0+ ðpñSòÏó7ñ�ðpô�õ9õyö ÷
.-/N1 ���

24365�7O8ù
ú7û ü ý ô9�P< � ï ð�nõ��ZôO�P< ���
	�� ð�nõ ý

(32)
where .0/�1 ����öRQ0S�T�ð���� � ï óU��� ����	
� õ .
Categorization

In the case of categorization of requests, the dis-
tance between

ñ ò
and each group of training requestsV ð
W#õ

can be determined as follows, based on any of
the aforementioned request-to-request distance:

XJY ð�ñ ò ó V ð
W#õ7õ�ö ÷
ý V ð
W#õ ý

ù
����	
�OZ![\�^]��

ç Y ð�ñ ò ó7ñ�ðvô�õ7õ
(33)

Tuning the FPRF Parameters
Table 4 shows the actual parameter values used with

our FPRF strategies in our pre-submission and post-
submission experiments, which were selected based
on the results with Subtasks 1 and 2. Some of the pre-
submission values (labelled with CAMUK) are differ-
ent from the post-submission ones because (1) they are
not based on TREC average precision; (2) they treat B-
relevant documents as relevant as well (See Section 3).


