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Abstract 

We describe a coding scheme for machine 
translation of spoken task-oriented dia-
logue. The coding scheme covers two 
levels of speaker intention − domain in-
dependent speech acts and domain de-
pendent domain actions. Our database 
contains over 14,000 tagged sentences in 
English, Italian, and German. We argue 
that domain actions, and not speech acts, 
are the relevant discourse unit for improv-
ing translation quality. We also show that, 
although domain actions are domain spe-
cific, the approach scales up to large do-
mains without an explosion of domain 
actions and can be coded with high inter-
coder reliability across research sites. Fur-
thermore, although the number of domain 
actions is on the order of ten times the 
number of speech acts, sparseness is not a 
problem for the training of classifiers for 
identifying the domain action. We de-
scribe our work on developing high accu-
racy speech act and domain action 
classifiers, which is the core of the source 
language analysis module of our 
NESPOLE machine translation system. 

1 Introduction 

The NESPOLE and C-STAR machine translation 
projects use an interlingua representation based on 
speaker intention rather than literal meaning. The 
speaker's intention is represented as a domain in-
dependent speech act followed by domain depend-
ent concepts. We use the term domain action to 
refer to the combination of a speech act with do-

main specific concepts. Examples of domain ac-
tions and speech acts are shown in Figure 1. 

 
c: gi ve- i nf or mat i on+par t y  
“ I  wi l l  be t r avel i ng wi t h my husband and 
our  t wo chi l dr en ages t wo and el even”  
 
c: r equest - i nf or mat i on+exi st ence+f aci l i t y  
“ Do t hey have par ki ng avai l abl e?"  
“ I s t her e somepl ace t o go i ce skat i ng?"  
 
c: gi ve- i nf or mat i on+vi ew+i nf or mat i on- obj ect   
“ I  see t he bus i con”   

 
Figure 1: Examples of Speech Acts and Domain 

Actions. 
 

Domain actions are constructed compositionally 
from an inventory of speech acts and an inventory 
of concepts. The allowable combinations of speech 
acts and concepts are formalized in a human- and 
machine-readable specification document. The 
specification document is supported by a database 
of over 14,000 tagged sentences in English, Ger-
man, and Italian. 

The discourse community has long recognized 
the potential for improving NLP systems by identi-
fying speaker intention. It has been hypothesized 
that predicting speaker intention of the next utter-
ance would improve speech recognition (Reith-
inger et al., Stolcke et al.), or reduce ambiguity for 
machine translation (Qu et al., 1996, Qu et al., 
1997). Identifying speaker intention is also critical 
for sentence generation. 

We argue in this paper that the explicit repre-
sentation of speaker intention using domain actions 
can serve as the basis for an effective language-
independent representation of meaning for speech-
to-speech translation and that the relevant units of 
speaker intention are the domain specific domain 
action as well as the domain independent speech 
act. After a brief description of our database, we 



present linguistic motivation for domain actions. 
We go on to show that although domain actions are 
domain specific, there is not an explosion or expo-
nential growth of domain actions when we scale up 
to a larger domain or port to a new domain. Finally 
we will show that, although the number of domain 
actions is on the order of ten times the number of 
speech acts, data sparseness is not a problem in 
training a domain action classifier. We present ex-
tensive work on developing a high-accuracy classi-
fier for domain actions using a variety of 
classification approaches and conclusions on the 
adequacy of these approaches to the task of domain 
action classification.  

2 Data Collection Scenario and Database 

Our study is based on data that was collected for 
the NESPOLE and C-STAR speech-to-speech 
translation projects. Three domains are included. 
The NESPOLE travel domain covers inquiries 
about vacation packages. The C-STAR travel do-
main consists largely of reservation and payment 
dialogues and overlaps only about 50% in vocabu-
lary with the NESPOLE travel domain. The medi-
cal assistance domain includes dialogues about 
chest pain and flu-like symptoms. 

There were two data collection protocols for the 
NESPOLE travel domain − monolingual and bilin-
gual. In the monolingual protocol, an English 
speaker in the United States had a conversation 
with an Italian travel agent speaking (non-native) 
English in Italy. Monolingual data was also col-
lected for German, French and Italian. Bilingual 
data was collected during user studies with, for 
example, an English speaker in the United States 
talking to an Italian-speaking travel agent in Italy, 
with the NESPOLE system providing the transla-
tion between the two parties. The C-STAR data 
consists of only monolingual role-playing dia-
logues with both speakers at the same site. The 
medical dialogues are monolingual with doctors 
playing the parts of both doctor and patient. 

The dialogues were transcribed and multi-
sentence utterances were broken down into multi-
ple Semantic Dialogue Units (SDUs) that each cor-
respond to one domain action. Some SDUs have 
been translated into other NESPOLE or C-STAR 
languages. Over 14,000 SDUs have been tagged 
with interlingua representations including domain 
actions as well as argument-value pairs. Table 1 

summarizes the number of tagged SDUs in com-
plete dialogues in the interlingua database. There 
are some additional tagged dialogue fragments that 
are not counted. Figure 2 shows an excerpt from 
the database. 

 
English NESPOLE Travel 4691 
English C-STAR Travel 2025 
German NESPOLE Travel 1538 
Italian NESPOLE Travel 2248 
English Medical Assistance 2001 
German Medical Assistance 1152 
Italian Medical Assistance 935 

Table 1: Tagged SDUs in the Interlingua Database. 
 
e709wa. 19. 0  comment s:  DATA f r om 
e709_1_0018_I TAGOR_00 
 
e709wa. 19. 1  ol ang I TA  l ang I TA Pr v CMU   
“ hai  i n ment e una l ocal i t a speci f i ca?"  
e709wa. 19. 1  ol ang I TA  l ang GER  Pr v CMU   
“ haben Si e ei nen best i mmt en Or t  i m Si nn?"  
e709wa. 19. 1  ol ang I TA  l ang FRE  Pr v CLI PS 
“ "  
e709wa. 19. 1  ol ang I TA  l ang ENG  Pr v CMU   
“ do you have a speci f i c pl ace i n mi nd"  
e709wa. 19. 1                   I F  Pr v CMU   
a: r equest - i nf or mat i on+di sposi t i on+obj ect   
( obj ect - spec=( pl ace,  modi f i er =speci f i c,  
i dent i f i abi l i t y=no) ,  di sposi -
t i on=( i nt ent i on,  who=you) )  
e709wa. 19. 1  comment s:  Tagged by dmg 

 
Figure 2: Excerpt from the Interlingua Database. 

3 Linguistic Argument for Domain Ac-
tions 

Proponents of Construction Grammar (Fillmore et. 
al. 1988, Goldberg 1995) have argued that human 
languages consist of constructional units that in-
clude a syntactic structure along with its associated 
semantics and pragmatics. Some constructions fol-
low the typical syntactic rules of the language but 
have a semantic or pragmatic focus that is not 
compositionally predictable from the parts. Other 
constructions do not even follow the typical syntax 
of the language (e.g., Why not go? with no tensed 
verb). 

Our work with multilingual machine translation 
of spoken language shows that fixed expressions 
cannot be translated literally. For example, Why 
not go to the meeting? can be translated into Japa-
nese as Kaigi ni itte mitara doo? (meeting to going 
see/try-if how), which differs from the English in 



several ways. It does not have a word correspond-
ing to not; it has a word that means see/try that 
does not appear in the English sentence; and so on. 
In order to produce an acceptable translation, we 
must find a common ground between the English 
fixed expression Why not V-inf? and the Japanese 
fixed expression -te mittara doo?. The common 
ground is the speaker's intention (in this case, to 
make a suggestion) rather than the syntax or literal 
meaning. 

Speaker intention is partially captured with a di-
rect or indirect speech act. However, whereas 
speech acts are generally domain independent, 
task-oriented language abounds with fixed expres-
sions that have domain specific functions. For ex-
ample, the phrases We have… or There are… in the 
hotel reservation domain express availability of 
rooms in addition to their more literal meanings of 
possession and existence. In the past six years, we 
have been successful in using domain specific do-
main actions as the basis for translation of limited-
domain task-oriented spoken language (Levin et 
al., 1998, Levin et al. 2002; Langley and Lavie, 
2003) 

4 Scalability and Portability of Domain 
Actions 

Domain actions, like speech acts, convey speaker 
intention. However, domain actions also represent 
components of meaning and are therefore more 
numerous than domain independent speech acts. 
1168 unique domain actions are used in our 
NESPOLE database, in contrast to only 72 speech 
acts. We show in this section that domain actions 
yield good coverage of task-oriented domains, that 
domain actions can be coded effectively by hu-
mans, and that scaling up to larger domains or 
porting to new domains is feasible without an ex-
plosion of domain actions.  

 
Coverage of Task-Oriented Domains: Our 
NESPOLE domain action database contains dia-
logues from two task-oriented domains: medical 
assistance and travel. Table 2 shows the number of 
speech acts and concepts that are used in the travel 
and medical domains.  The 1168 unique domain 
actions that appear in our database are composed 
of the 72 speech acts and 125 concepts. 
 
 

 
 Travel Medical Combined 

DAs 880 459 1168 
SAs 67 44 72 

Concepts 91 74 125 
Table 2: DA component counts in NESPOLE data. 

 
Our domain action based interlingua has quite high 
coverage of the travel and medical dialogues we 
have collected. To measure how well the interlin-
gua covers a domain, we define the no-tag rate as 
the percent of sentences that are not covered by the 
interlingua, according to a human expert. The no-
tag rate for the English NESPOLE travel dialogues 
is 4.3% for dialogues that have been used for sys-
tem development.  

We have also estimated the domain action no-
tag rate for unseen data using the NESPOLE travel 
database (English, German, and Italian combined). 
We randomly selected 100 SDUs as seen data and 
extracted their domain actions. We then randomly 
selected 100 additional SDUs from the remaining 
data and estimated the no-tag rate by counting the 
number of SDUs not covered by the domain ac-
tions in the seen data. We then added the unseen 
data to the seen data set and randomly selected 100 
new SDUs. We repeated this process until the en-
tire database had been seen, and we repeated the 
entire sampling process 10 times. Although the 
number of domain actions increases steadily with 
the database size (Figure 4), the no-tag rate for un-
seen data stabilizes at less than 10%.  

We also randomly selected half of the SDUs 
(4200) from the database as seen data and ex-
tracted the domain actions. Holding the seen data 
set fixed, we then estimated the no-tag rates in in-
creasing amounts of unseen data from the remain-
ing half of the database. We repeated this process 
10 times. With a fixed amount of seen data, the no-
tag rate remains stable for increasing amounts of 
unseen data. We observed similar no-tag rate re-
sults for the medical assistance domain and for the 
combination of travel and medical domains. 

It is also important to note that although there is 
a large set of uncommon domain actions, the top 
105 domain actions cover 80% of the sentences in 
the travel domain database. Thus domain actions 
are practical for covering task-oriented domains. 
 



Intercoder Agreement: Intercoder agreement is 
another indicator of manageability of the domain 
action based interlingua. We calculate intercoder 
agreement as percent agreement. Three interlingua 
experts at one NESPOLE site achieved 94% 
agreement (average pairwise agreement) on speech 
acts and 88% agreement on domain actions. Across 
sites, expert agreement on speech acts is still quite 
high (89%), although agreement on domain actions 
is lower (62%). Since many domain actions are 
similar in meaning, some disagreement can be tol-
erated without affecting translation quality. 

Figure 3: DAs to cover data (English). 
 

Figure 4: DAs to cover data (All languages). 
 
Scalability and Portability: The graphs in Figure 3 
and Figure 4 illustrate growth in the number of 
domain actions as the database size increases and 
as new domains are added. The x-axis represents 
the sample size randomly selected from the data-
base. The y-axis shows the number of unique do-
main actions (types) averaged over 10 samples of 
each size. Figure 3 shows the growth in domain 
actions for three English databases (NESPOLE 
travel, C-STAR travel, and medical assistance) as 

well as the growth in domain actions for a database 
consisting of equal amounts of data from each do-
main. Figure 4 shows the growth in domain actions 
for combined English, German, and Italian data in 
the NESPOLE travel and medical domains.  

Figure 3 and Figure 4 show that the number of 
domain actions increases steadily as the database 
grows. However, closer examination reveals that 
scalability to larger domains and portability to new 
domains are in fact feasible.  The curves represent-
ing combined domains (travel plus medical in 
Figure 4 and NESPOLE travel, C-STAR travel, 
and medical in Figure 3) show only a small in-
crease in the number of domain actions when two 
domains are combined. In fact, there is a large 
overlap between domains.  In Table 3 the Overlap 
columns show the number of DA types and tokens 
that are shared between the travel and medical do-
mains. We can see around 70% of DA tokens are 
covered by DA types that occur in both domains. 

 

 
DA 

Types 
Type 

Overlap 
DA 

Tokens 
Token 

Overlap 
NESPOLE 

Travel 
880 171 8477 

6004 
(70.8%) 

NESPOLE 
Medical 

459 171 4088 
2743 

(67.1%) 
Table 3: DA Overlap (All languages). 

5 A Hybrid Analysis Approach for Pars-
ing Domain Actions 

Langley et al. (2002; Langley and Lavie, 2003) 
describe the hybrid analysis approach that is used 
in the NESPOLE! system (Lavie et al., 2002). The 
hybrid analysis approach combines grammar-based 
phrasal parsing and machine learning techniques to 
transform utterances into our interlingua represen-
tation. Our analyzer operates in three stages to 
identify the domain action and arguments. 

First, an input utterance is parsed into a se-
quence of arguments using phrase-level semantic 
grammars and the SOUP parser (Gavaldà, 2000). 
Four grammars are defined for argument parsing: 
an argument grammar, a pseudo-argument gram-
mar, a cross-domain grammar, and a shared gram-
mar. The argument grammar contains phrase-level 
rules for parsing arguments defined in the interlin-
gua. The pseudo-argument grammar contains rules 
for parsing common phrases that are not covered 
by interlingua arguments. For example, all booked 

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

SDUs per Sample

M
ea

n
 U

n
iq

u
e 

D
A

s 
o

ve
r 

10
 R

an
d

o
m

 S
am

p
le

s

Nespole Travel Nespole Medical Nespole Travel+Medical

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000

SDUs per Sample

M
ea

n
 U

n
iq

u
e 

D
A

s 
o

ve
r 

10
 R

an
d

o
m

 S
am

p
le

s

Nespole Travel Nespole Medical C-STAR
Nespole Travel+Medical C-STAR + Nespole Travel+Medical



up, full, and sold out might be grouped into a class 
of phrases that indicate unavailability. The cross-
domain grammar contains rules for parsing com-
plete DAs that are domain independent. For exam-
ple, this grammar contains rules for greetings 
(Hello, Good bye, Nice to meet you, etc.). Finally, 
the shared grammar contains low-level rules that 
can be used by all other subgrammars. 

After argument parsing, the utterance is seg-
mented into SDUs using memory-based learning 
(k-nearest neighbor) techniques. Spoken utterances 
often consist of several SDUs. Since DAs are as-
signed at the SDU level, it is necessary to segment 
utterances before assigning DAs. 

The final stage in the hybrid analysis approach 
is domain action classification.  

6 Domain Action Classification 

Identifying the domain action is a critical step in 
the analysis process for our interlingua-based 
translation systems. One possible approach would 
be to manually develop grammars designed to 
parse input utterances all the way to the domain 
action level. However, while grammar-based pars-
ing may provide very accurate analyses, it is gen-
erally not feasible to develop a grammar that 
completely covers a domain. This problem is exac-
erbated with spoken input, where disfluencies and 
deviations from the grammar are very common. 
Furthermore, a great deal of effort by human ex-
perts is generally required to develop a wide-
coverage grammar. 

An alternative to writing full domain action 
grammars is to train classifiers to identify the DA. 
Machine learning approaches allow the analyzer to 
generalize beyond training data and tend to de-
grade gracefully in the face of noisy input. Ma-
chine learning methods may, however, be less 
accurate than grammars, especially on common in-
domain input, and may require a large amount of 
training data in order to achieve adequate levels of 
performance. In the hybrid analyzer described 
above, classifiers are used to identify the DA for 
domain specific portions of utterances that are not 
covered by the cross-domain grammar. 

We tested classifiers trained to classify com-
plete DAs. We also split the DA classification task 
into two subtasks: speech act classification and 
concept sequence classification. This simplifies the 
task of each classifier, allows for the use of differ-

ent approaches and/or feature sets for each task, 
and reduces data sparseness. Our hybrid analyzer 
uses the output of each classifier along with the 
interlingua specification to identify the DA (Lang-
ley et al., 2002; Langley and Lavie, 2003). 

7 Experimental Setup 

We conducted experiments to assess the perform-
ance of several machine-learning approaches on 
the DA classification tasks. We evaluated all of the 
classifiers on English and German input in the 
NESPOLE travel domain.  

7.1 Corpus 

The corpus used in all of the experiments was the 
NESPOLE! travel and tourism database. Since our 
goal was to evaluate the SA and concept sequence 
classifiers and not segmentation, we created train-
ing examples for each SDU in the database rather 
than for each utterance. Table 4 contains statistics 
regarding the contents of the corpus for our classi-
fication tasks. Table 5 shows the frequency of the 
most common domain action, speech act, and con-
cept sequence in the corpus. These frequencies 
provide a baseline that would be achieved by a 
simple classifier that always returned the most 
common class. 

 
 English German 
SDUs 8289 8719 
Domain Actions 972 1001 
Speech Acts 70 70 
Concept Sequences 615 638 
Vocabulary Size 1946 2815 

Table 4: Corpus Statistics. 
 

 English German 
DA (acknowledge) 19.2% 19.7% 
SA (give-information) 41.4% 40.7% 
Concept Sequence 
(No concepts) 

38.9% 40.3% 

Table 5: Most frequent DAs, SAs, and CSs. 
 

All of the results presented in this paper were 
produced using a 20-fold cross validation setup. 
The corpus was randomly divided into 20 sets of 
equal size. Each of the sets was held out as the test 
set for one fold with the remaining 19 sets used as 
training data. Within each language, the same ran-



dom split was used for all of the classification ex-
periments. Because the same split of the data was 
used for different classifiers, the results of two 
classifiers on the same test set are directly compa-
rable. Thus, we tested for significance using two-
tailed matched pair t-tests. 

7.2 Machine Learning Approaches 

We evaluated the performance of four different 
machine-learning approaches on the DA classifica-
tion tasks: memory-based learning (k-Nearest-
Neighbor), decision trees, neural networks, and 
naïve Bayes n-gram classifiers. We selected these 
approaches because they vary substantially in the 
their representations of the training data and their 
methods for selecting the best class. 

Our purpose was not to implement each ap-
proach from scratch but to test the approach for our 
particular task. Thus, we chose to use existing 
software for each approach “off the shelf.”  The 
ease of acquiring and setting up the software influ-
enced our choice. Furthermore, the ease of incor-
porating the software into our online translation 
system was also a factor. 

Our memory-based classifiers were imple-
mented using TiMBL (Daelemans et al., 2002). We 
used C4.5 (Quinlan, 1993) for our decision tree 
classifiers. Our neural network classifiers were 
implemented using SNNS (Zell et al., 1998). We 
used Rainbow (McCallum, 1996) for our naïve 
Bayes n-gram classifiers. 

8 Experiments 

In our first experiment, we compared the perform-
ance of the four machine learning approaches. 
Each SDU was parsed using the argument and 
pseudo-argument grammars described above. The 
feature set for the DA and SA classifiers consisted 
of binary features indicating the presence or ab-
sence of labels from the grammars in the parse for-
est for the SDU. The feature set included 212 
features for English and 259 features for German. 
The concept sequence classifiers used the same 
feature set with the addition of the speech act. 

In the SA classification experiment, the TiMBL 
classifier used the IB1 (k-NN) algorithm with 1 
neighbor and gain ratio feature weighting. The 
C4.5 classifier required at least one instance per 
branch and used node post-pruning. Both the 
TiMBL and C4.5 classifiers used the binary fea-

tures described above and produced the single best 
class as output. The SNNS classifier used a simple 
feed-forward network with 1 input unit for each 
binary feature, 1 hidden layer containing 15 units, 
and 1 output unit for each speech act. The network 
was trained using backpropagation. The order of 
presentation of the training examples was random-
ized in each epoch, and the weights were updated 
after each training example presentation. In order 
to simulate the binary features used by the other 
classifiers as closely as possible, the Rainbow clas-
sifier used a simple unigram model whose vocabu-
lary was the set of labels included in the binary 
feature set. The setup for the DA classification ex-
periment was identical except that the neural net-
work had 50 hidden units. 

The setup of the classifiers for the concept se-
quence classification experiment was very similar. 
The TiMBL and C4.5 classifiers were set up ex-
actly as in the DA and SA experiments with one 
extra feature whose value was the speech act. The 
SNNS concept sequence classifier used a similar 
network with 50 hidden units. The SA feature was 
represented as a set of binary input units. The 
Rainbow classifier was set up exactly as in the DA 
and SA experiments. The SA feature was not in-
cluded. 

As mentioned above, both experiments used a 
20-fold cross-validation setup. In each fold, the 
TiMBL, C4.5, and Rainbow classifiers were sim-
ply trained on 19 subsets of the data and tested on 
the remaining set. The SNNS classifiers required a 
more complex setup to determine the number of 
epochs to train the neural network for each test set. 
Within each fold, a cross-validation setup was used 
to determine the number of training epochs. Each 
of the 19 training subsets for a fold was used as a 
validation set. The network was trained on the re-
maining 18 subsets until the accuracy on the vali-
dation set did not improve for 50 consecutive 
epochs. The network was then trained on all 19 
training subsets for the average number of epochs 
from the validation sets. This process was used for 
all 20-folds in the SA classification experiment. 
For the DA and concept sequence experiments, this 
process ran for approximately 1.5 days for each 
fold. Thus, this process was run for the first two 
folds, and the average number of epochs from 
those folds was used for training. 

 
 



 English German 
TiMBL 49.69% 46.51% 
C4.5 48.90% 46.58% 
SNNS 49.39% 46.21% 
Rainbow 39.74% 38.32% 

Table 6: Domain Action classifier accuracy. 
 

 English German 
TiMBL 69.82% 67.57% 
C4.5 70.41% 67.90% 
SNNS 71.52% 67.61% 
Rainbow 51.39% 46.00% 

Table 7: Speech Act classifier accuracy. 
 

 English German 
TiMBL 69.59% 67.08% 
C4.5 68.47% 66.45% 
SNNS 71.35% 68.67% 
Rainbow 51.64% 51.50% 

Table 8: Concept Sequence classifier accuracy. 
 

Table 6, Table 7, and Table 8 show the average 
accuracy of each learning approach on the 20-fold 
cross validation experiments for domain action, 
speech act, and concept classification respectively. 
For DA classification, there were no significant 
differences between the TiMBL, C4.5, and SNNS 
classifiers for English or German. In the SA ex-
periment, the difference between the TiMBL and 
C4.5 classifiers for English was not significant. 
The SNNS classifier was significantly better than 
both TiMBL and C4.5 (at least p=0.0001). For 
German SA classification, there were no signifi-
cant differences between the TiMBL, C4.5, and 
SNNS classifiers. For concept sequence classifica-
tion, SNNS was significantly better than TiMBL 
and C4.5 (at least p=0.0001) for both English and 
German. For English only, TiMBL was signifi-
cantly better than C4.5 (p=0.005). 

For both languages, the Rainbow classifier per-
formed much worse than the other classifiers. 
However, the unigram model over arguments did 
not exploit the strengths of the n-gram classifica-
tion approach. Thus, we ran another experiment in 
which the Rainbow classifier was trained on sim-
ple word bigrams. No stemming or stop words 
were used in building the bigram models. 

 
 

 English German 
Domain Action 48.59% 48.09% 
Speech Act 79.00% 77.46% 
Concept Sequence 56.87% 57.77% 

Table 9: Rainbow accuracy with word bigrams. 
 

Table 9 shows the average accuracy of the 
Rainbow word bigram classifiers using the same 
20-fold cross-validation setup as in the previous 
experiments. As we expected, using word bigrams 
rather than parse label unigrams improved the per-
formance of the Rainbow classifiers. For German 
DA classification, the word bigram classifier was 
significantly better than all of the previous German 
DA classifiers (at least p=0.005). Furthermore, the 
Rainbow word bigram SA classifiers for both lan-
guages outperformed all of the SA classifiers that 
used only the parse labels. 

Although the argument parse labels provide an 
abstraction of the words present in an SDU, the 
words themselves also clearly provided useful in-
formation for classification, at least for the SA 
task. Thus, we conducted additional experiments to 
examine whether combining parse and word in-
formation could further improve performance. 

We chose to incorporate word information into 
the TiMBL classifiers used in the first experiment. 
Although the SNNS SA classifier performed sig-
nificantly better than the TiMBL SA classifier for 
English, there was no significant difference for SA 
classification in German. Furthermore, because of 
the complexity and time required for training with 
SNNS, we preferred working with TiMBL. 

We tested two approaches to adding word in-
formation to the TiMBL classifier. In both ap-
proaches, the word-based information for each fold 
was computed only based on the data in the train-
ing set. In our first approach, we added binary fea-
tures for the 250 words that had the highest mutual 
information with the class. Each feature indicated 
the presence or absence of the word in the SDU. In 
this condition, we used the TiMBL classifier with 
gain ratio feature weighting, 3 neighbors, and un-
weighted voting. The second approach we tested 
combined the Rainbow word bigram classifier with 
the TiMBL classifier. We added one input feature 
for each possible speech act to the TiMBL classi-
fier. The value of each SA feature was the prob-
ability of the speech act computed by the Rainbow 
word bigram classifier. In this condition, we used 



the TiMBL classifier with gain ratio feature 
weighting, 11 neighbors, and inverse linear dis-
tance weighted voting. 
 

 English German 
TiMBL + words 78.59% 75.98% 
TiMBL + Rainbow 81.25% 78.93% 
Table 10: Word+Parse SA classifier accuracy. 

 
Table 10 shows the average accuracy of the SA 

classifiers that combined parse and word informa-
tion using the same 20-fold cross-validation setup 
as the previous experiments. Although adding bi-
nary features for individual words improved per-
formance over the classifiers with no word 
information, it did not allow the combined classifi-
ers to outperform the Rainbow word bigram classi-
fiers. However, for both languages, adding the 
probabilities computed by the Rainbow bigram 
model resulted in a SA classifier that outperformed 
all previous classifiers. The improvement in accu-
racy was highly significant for both languages. 

We conducted a similar experiment for combin-
ing parse and word information in the concept se-
quence classifiers. The first condition was 
analogous to the first condition in the combined 
SA classification experiment. The second condi-
tion was slightly different. A concept sequence can 
be broken down into a set of individual concepts. 
The set of individual concepts is much smaller than 
the set of concept sequences (110 for English and 
111 for German). Thus, we used a Rainbow word 
bigram classifier to compute the probability of 
each individual concept rather than the complete 
concept sequence. The probabilities for the indi-
vidual concepts were added to the parse label fea-
tures for the combined classifier. In both 
conditions, the performance of the combined clas-
sifiers was roughly the same as the classifiers that 
used only parse labels as features. 

 
 English German 
TiMBL + words 56.48% 54.98% 
Table 11: Word+Parse DA classifier accuracy. 
 
Table 11 shows the average accuracy of DA 

classifiers for English and German using a setup 
similar to the first approach in the combined SA 
experiment. In this experiment, we added binary 
features for the 250 words that the highest mutual 

information with the class. We used a TiMBL clas-
sifier with gain ratio feature weighting and one 
neighbor. The improvement in accuracy for both 
languages was highly significant. 

 
 English German 
TiMBL SA 
+ TiMBL CS 

49.63% 46.50% 

TiMBL+Rainbow SA 
+ TiMBL CS 

57.74% 53.93% 

Table 12: DA accuracy of SA+CS classifiers. 
 

Finally, Table 12 shows the results from two 
tests to compare the performance of combining the 
best output of the SA and concept sequence classi-
fiers with the performance of the complete DA 
classifiers. In the first test, we combined the output 
from the TiMBL SA and CS classifiers shown in 
Table 7 and Table 8. The performance of the com-
bined SA+CS classifiers was almost identical to 
that of the TiMBL DA classifiers shown in Table 
6. In the second test, we combined our best SA 
classifier (TiMBL+Rainbow, shown in Table 10) 
with the TiMBL CS classifier. In this case, we had 
mixed results. The performance of the combined 
classifiers was better than our best DA classifier 
for English and worse for German. 

9 Discussion 

One of our main goals was to determine the feasi-
bility of automatically classifying domain actions. 
As the data in Table 4 show, DA classification is a 
challenging problem with approximately 1000 
classes. Even when the task is divided into 
subproblems of identifying the SA and concept 
sequence, the subtasks remain difficult. The diffi-
culty is compounded by relatively sparse training 
data with unevenly distributed classes. Although 
the most common classes in our training corpus 
had over 1000 training examples, many of the 
classes had only 1 or 2 examples. 

Despite these difficulties, our results indicate 
that domain action classification is feasible. For 
SA classification in particular we were able to 
achieve very strong performance. Although per-
formance on concept sequence and DA classifica-
tion is not as high, it is still quite strong, especially 
given that there are an order of magnitude more 
classes than in SA classification. Based on our ex-
periments, it appears that all of the learning ap-



proaches we tested were able to cope with data 
sparseness at the level found in our data, with the 
possible exception of the naïve Bayes n-gram ap-
proach (Rainbow) for the concept sequence task. 

One additional point worth noting is that there 
is evidence that domain action classification could 
be performed reasonably well using only word-
based information. Although our best-performing 
classifiers combined word and argument parse in-
formation, the naïve Bayes word bigram classifier 
(Rainbow) performed very well on the SA classifi-
cation task. With additional data, the performance 
of the concept sequence and DA word bigram clas-
sifiers could be expected to improve. Cattoni et al. 
(2001) also apply statistical language models to 
DA classification. A word bigram model is trained 
for each DA, and the DA with the highest likeli-
hood is assigned to each SDU. Arguments are 
identified using recursive transition networks, and 
interlingua specification constraints are used to 
find the most likely valid interlingua representa-
tion. Although it is clear that argument information 
is useful for the task, it appears that words alone 
can be used to achieve reasonable performance. 

Another goal of our experiments was to help in 
the selection of a machine learning approach to be 
used in our hybrid analyzer. Certainly one of the 
most important considerations is how well the 
learning approach performs the task. For SA classi-
fication, the combination of parse features and 
word bigram probabilities clearly gave the best 
performance. For concept sequence classification, 
no learning approach clearly outperformed any 
other (with the exception that the naïve Bayes n-
gram approach performed worse than other ap-
proaches). However, the performance of the classi-
fiers is not the only consideration to be made in 
selecting the classifier for our hybrid analyzer. 

Several additional factors are also important in 
selecting the particular machine learning approach 
to be used. One important attribute of the learning 
approach is the speed of both classification and 
training. Since the classifiers are part of a transla-
tion system designed for use between two humans 
to facilitate (near) real-time communication, the 
DA classifiers must classify individual utterances 
online very quickly. Furthermore, since humans 
must write and test the argument grammars, 
training and batch classification should be fast so 
that the grammar writers can update the grammars, 
retrain the classifiers, and test efficiently. 

The machine learning approach should also be 
able to easily accommodate both continuous and 
discrete features from a variety of sources. Possible 
sources for features include words and/or phrases 
in an utterance, the argument parse, the interlingua 
representation of the arguments, and properties of 
the dialogue (e.g. speaker tag). The classifier 
should be able to easily combine features from any 
or all of these sources. 

Another desirable attribute for the machine 
learning approach is the ability to produce a ranked 
list of possible classes. Our interlingua specifica-
tion defines how speech acts and concepts are al-
lowed to combine as well as how arguments are 
licensed by the domain action. These constraints 
can be used to select an alternative DA if the best 
DA violates the specification. 

Based on all of these considerations, the 
TiMBL+Rainbow classifier, which combines parse 
label features with word bigram probabilities, 
seems like an excellent choice for speech act clas-
sification. It was the most accurate classifier that 
we tested. Furthermore, the main TiMBL classifier 
meets all of the requirements discussed above ex-
cept the ability to produce a complete ranked list of 
the classes for each instance. However, such a list 
could be produced as a backup from the Rainbow 
probability features. Adding new features to the 
combined classifier would also be very easy be-
cause TiMBL was the primary classifier in the 
combination. Finally, since both TiMBL and Rain-
bow provide an online server mode for classifying 
single instances, incorporating the combined clas-
sifier into an online translation system would not 
be difficult. Since there were no significant differ-
ences in the performance of most of the concept 
sequence classifiers, this combined approach is 
probably also a good option for that task. 

10 Conclusion 

We have described a representation of speaker 
intention that includes domain independent speech 
acts as well as domain dependent domain actions. 
We have shown that domain actions are a useful 
level of abstraction for machine translation of task-
oriented dialogue, and that, in spite of their domain 
specificity, they are scalable to larger domains and 
portable to new domains.  

We have also presented classifiers for domain 
actions that have been comparatively tested and 



used successfully in the NESPOLE speech-to-
speech translation system. We experimentally 
compared the effectiveness of several machine-
learning approaches for classification of domain 
actions, speech acts, and concept sequences on two 
input languages. Despite the difficulty of the clas-
sification tasks due to a large number of classes 
and relatively sparse data, the classifiers exhibited 
strong performance on all tasks. We also demon-
strated how the combination of two learning ap-
proaches could be used to improve performance 
and overcome the weaknesses of the individual 
approaches. 
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