
Rapid Adaptive Development of Semantic Analysis

Grammars

Alicia Tribble, Alon Lavie, Lori Levin
Language Technology Institute, Carnegie Mellon University

5000 Forbes Avenue,
Pittsburgh, PA, USA

{atribble, alavie, lsl}@cs.cmu.edu

In this paper we describe a process for rapid development of semantic analysis gram-
mars for Interlingual Machine Translation. The technique applies to existing systems
and can be used to extend coverage into new languages quickly by separating the infor-
mant tasks performed by native speakers from the grammar writing tasks performed
by engineers familiar with the system. A tool for automatic manipulation of parse trees
uses information provided by both informant and engineer to create an example base of
parse trees in the new language from which a grammar for that language can be read.
Experimental results from a small-scale application of these tools are given to assess
feasibility of the technique.

1 Introduction

Interlingual Machine Translation is an efficient strategy in applications where many
different source and target languages will be paired, greatly reducing the number of
transfer rules that are required. But even in this reduced situation, the creation of
an analysis and generation grammar for each language is a time-consuming task that
makes up a large portion of the engineering cost of the system.

Particularly at the stage when an infrastructure has been built and new languages
are being added, the cost of grammar writing is high and can hold up development. One
of the main reasons for this lies in the combination of skills required for the task. At
such a point in the development of an MT system, the interlingua has evolved through
use into a (reasonably) stable and complete representation of the language-independent
concepts present in the domain at hand. The original grammar developers who design
and test the interlingua are familiar with it to a degree that is difficult to communicate
to new grammar writers. And yet native speakers of new languages must be recruited
and trained in order to expand the system. The Janus MT system (Waibel 1996, Levin
et al. 2000) is an example of a mature interlingual MT system in this position.

In this paper we describe a solution to this problem based on two principles: sepa-
rating the tasks of grammar writing experts from those of native speaker informants,
and increasing the rate of development with automatic tools for grammar induction.
In this approach, the native speaker provides language-specific information in the form
of translations, but he is shielded from the details of grammar writing. The grammar
writer creates example structures that conform to the semantic representation require-
ments of the project but which serve as parse skeletons and have no language-specific

Parse English sentences using current
Analysis grammars

ordering of branches in the L2 trees
Insert missing lexical items and correct linear

Translate English sentences

Word−to−word align L2 and English sentences

Choose English sentences based on
domain coverage

Replace English with L2 in tree skeletons
using word−to−word alignment information

Format parses of English sentences as
Annotated IF

Tasks Done by Grammar Writer

Tasks Done by Native Speaker

Tasks Done AutomaticallyTasks Done by Hand

Print grammar rules from L2 trees

Prune trees to fit L2 sentences

Extract tree skeletons from Annotated IFs

Check parse results for correctness

Tasks Done by Existing MT system

Tasks Done by Grammar Tools
Proposed in this Paper

Figure 1: Grammar Adaptation Process

information. Finally, grammar induction tools link these two products together to form
a forest of semantic parse trees and a grammar in the new language can be read from
it. In the context of induction tools at large, our approach lies closer to the interactive
techniques of Gavalda (2000) than to unsupervised approaches such as de Marcken’s
(1995) and Lee’s (1996).

In Section 2 we discuss the steps of this grammar development process in detail.
Section 3 describes the tools that are used to induce grammar rules from translation
examples and the Machine Translation system that we use in our experiments. Al-
though our research into this topic is continuing, we have used these tools to develop
a small grammar for Polish and we describe the experimental results of this feasibility
study in Section 4. Section 5 concludes the paper.

2 Approach

The grammar development process can be cleanly divided into tasks completed by
a grammar expert, tasks completed by a native speaker of the new language (L2),
and tasks completed automatically by grammar induction tools. Figure 1 shows the
sequence of steps to developing a new grammar and who performs them.

2.1 Tasks for the Grammar Writer

This process starts with a delineation of the domain of the sentences that the new
grammar will cover. In the context where our technique is applicable, grammars in

Table 1: Data labelling styles used in MT and Grammar Induction

English feeling nauseous

Interlingual Form
c:give-information+concept
(concept-spec=(body-state-spec=(feeling, nausea)))

Annotated IF
c:give-information+concept(concept-spec=(body-state-
spec=(feeling(feeling))(nausea(nauseous))))

other languages already exist for this domain. An experienced developer of one of
these grammars can provide a list of sentences representing the variety of concepts that
are covered there.

The existing domain for our experiments in particular is medical dialogue between
doctors and patients, and the interlingua is a semantic representation of the dialogue
tasks achieved by a speaker in a given utterance. In our case, therefore, the body of
sentences should include an example of every dialogue task. Our interlingua also uses
semantic feature-value pairs to represent the detailed information in a sentence and
each of these features should be represented in the example base as well.

One constraint on this process is the choice of L1 languages; since the L1 sentences
must be translated by a native speaker of L2, choosing an L1 that is widely known
increases the chance of finding a bilingual speaker to perform the translation. In our
experiments the native informant is bilingual in Polish and English, and an existing
English grammar was used for adaptation.

After an example base has been created in L1, it can be parsed using the existing sys-
tem to yield an interlingua representation for each of the sentences. This representation
is then reviewed for correctness by the grammar writer and annotated automatically
to reflect the full tree structure of the semantic parse. In our experiments, analyzer
output is already bracketed to show this tree structure, but because the output is inter-
lingua the L1 surface strings have been removed. We therefore perform an automatic
annotation of the interlingual format with L1 surface strings added to the frontier of
the parse tree. We refer to the new format as Annotated IF; an example of this format
is shown in Table 1.

2.2 Tasks for the Native Speaker

The responsibility of the native speaker in this procedure is limited to a detailed trans-
lation task. Since one of our goals is to spare ourselves the overhead cost associated
with turning a native speaker into a grammar writer, we present him with the example
L1 sentences without referring to their interlingual structure.

We instruct the native speaker to provide as many translations as possible for every
English sentence. Although the amount of variation in the translated example base will
vary from translator to translator, there is no reason to assume that this variation will
be wider than the variation among hand-written grammars.

Additionally, the native speaker is responsible for providing word-level alignment
information for every translated sentence. This is currently done in a second pass by
editing a text file where the L1 and L2 sentences are given. The native speaker fills in
an L2 alignment for each of the L1 words. Two examples from this file are given below.

34.1 feeling nauseous 39.2 i have had some warts on my left hand
34.1p zle sie czuje 39.2p miewalam brodawki na lewej rece

feeling sie czuje i miewalam
nauseous zle have miewalam

had miewalam
some
warts brodawki
on na
my
left lewej
hand rece

Example 34.1 contains a 1-N alignment in addition to word reordering. Example
39.2 contains an M-1 alignment and several 1-0 alignments but no word reordering. 0-1
alignments are also possible, as are M-1 alignments where the M words from L1 are not
contiguous. In the second case, the native speaker is instructed to create M distinct
sentence alignments for the sentence pair. In each of these sentence alignments one of
the M words from L1 is shown as a 1-1 alignment with the word from L2; the others
are left unaligned. In this way a separate link is established between each L1 word and
the L2 target.

2.3 Tasks for the Automatic Grammar Development Tools

Given the set of parsed example sentences and their translations and word-level align-
ments, the grammar development process passes into a fully automatic stage where a
tool written in C++ combines these inputs and produces a grammar file. The tool
performs three basic operations. It replaces L1 surface strings in the example parse
trees with their L2 translations, it prunes the resulting trees to fit the L2 sentences,
and it prints grammar rules by reading them off of the trees. Finally, because these
rules are read from a tree that was word-ordered according to L1, a reordering step
must take place before they are usable for parsing new L2 sentences. This step can be
done automatically or by the grammar writer. These steps are discussed in detail in
Section 3.1.

The product of this automatic process is a file that can be used with the existing
MT system to parse sentences of the new language.

3 Grammar Development Tools and the Existing MT

System

3.1 Tree Manipulation Tools

We have developed a tool for performing the automatic steps described above that
stores two types of data: an L1-L2 alignment table constructed from the text-based
alignment file, and trees representing L1 parse structures.

3.1.1 Pruning

Tree transformations start with a search-and-replace of all L1 strings with their L2
equivalents. We examine every leaf node of the tree, looking up the L1 surface string in
the alignment table. If the L1 string has a translation, we replace the L1 tokens with
the L2 tokens and move on. If there is no L2 translation in the table, we delete the
current leaf node.

At this point in the algorithm we have dangling internal nodes which should not be
exposed on the frontier of the tree; these correspond to nonterminal grammar rules and
not to surface strings. In order to maintain the correctness of the tree, we continue to
traverse it in postorder and delete all childless nodes. In this way, nonterminals that
are realized as surface strings in L2 are kept while nonterminals without surface rep-
resentation are removed from the tree. A graphical representation of this tree pruning
procedure is given in Figures 2 and 3.

3.1.2 Re-Ordering

After pruning, the series of L2 strings on the frontier of the IF tree may no longer form
a legal utterance in that language. The L2 strings still appear in the order dictated
by their English equivalents, which may not reflect their ordering in the original L2
translation. The L2 utterance may also be incomplete, since any L2 word that was not
aligned to English has not yet been inserted.

We attempt to reconstruct the word order of the original L2 sentences by having our
grammar writer adjust the rules manually using the translations as a guide. However,
the operations she performs during this stage are limited to reordering the RHSs of
individual grammar rules one at a time — she does not re-nest words or nonterminals
under new LHSs or perform any other nonlinear operations. These restrictions on
reordering make the task easy for a grammar writer to perform without any knowledge
of L2, but more importantly they represent transformations on the rules that can be
achieved through branch-switching operations on the parse trees, operations which can
be implemented in software in a straightforward way.

In such an automated process, every leaf in the pruned tree is marked with its
position in the original L2 example string, and out-of-order nodes are swapped at their
lowest common ancestor until the frontier matches the L2 string in left-to-right ordering.

Finally, missing tokens from the L2 string must be inserted. These strings did
not align to any of the L1 words and therefore have no well-defined position in the
hierarchy of the tree. An unaligned L2 token can be inserted directly into the tree at
the highest common ancestor of the tokens that appear to the left and right of it in the

[experiencer=] [body−location=]

[rash][leg][identifiability=][i]

(i)

[c:give−information+existence+body−object]

(have)

[no]

(a) (leg) (rash)

[body−object−spec=]

Figure 2: Annotated IF tree

[experiencer=] [body−location=]

[rash][leg][identifiability=][i]

[c:give−information+existence+body−object]

(mam) (mam) (wysypke)(nodze)(a)

[no]

[body−object−spec=]

Figure 3: Tree after deletion

[experiencer=]

[i]

[c:give−information+existence+body−object]

(mam)

[body−location=][body−object−spec=]

[leg]

(nodze)

[rash]

(wysypke) (na)(mam)

Figure 4: Tree after reordering

original L2 sentence. During this process the number of words on the frontier is also
checked against the original sentence and repetitions that result from 1-N alignments
are removed. Figure 4 shows the tree after branch-switching operations, demonstrating
a successful recovery of the original L2 word order.

3.1.3 Rule Gathering

Once the IF trees have been aligned with the L2 strings, grammar rules can be read
directly from the example trees. Every non-leaf node of the tree represents the LHS of a
rule, with its children on the RHS. The technique of reading grammars from parse trees
has been tested experimentally on syntactic treebanks with positive results (Charniak,
1996). The main difficulty with this approach for syntactic grammars has been the
explosion in the number of resulting grammar rules, many of which are redundant.
This is due to the fact that a single tree will generate many overlapping rules that may
have been seen in previous examples. In our experiments we attempt to remove some
of this redundancy by sorting the rules and merging them to produce a more concise
grammar. Rules with identical LHSs are merged and the RHS of the new rule is the
set of all unique patterns in the union of the original RHSs.

3.2 The Nespole! Project and the Interchange Format

The Machine Translation system for which we are developing grammars is a speech-to-
speech system called LingWear. It includes a robust parser that works with context-free
grammars. The interlingua is based on the Interchange Format (IF), a representation
developed in another speech translation project called Nespole!.

The Nespole! IF is a task-based representation of the semantics of a unit of speech.
Since the system translates spoken dialogue, these units are called Spoken Dialogue
Units (SDUs), and they range in length from a single word (“hello”) up to a full
sentence (“I’d like a room”). The interlingual tag for a single SDU is composed of four
parts: a Speaker Label, a Speech Act, a Concept List, and a list of Arguments and
values.

c:
︸︷︷︸

give-information
︸ ︷︷ ︸

+plan+trip
︸ ︷︷ ︸

(who=i,destination=italy,time=(month=12))
︸ ︷︷ ︸

Speaker Speech Act Concept List Argument List
Tag

The arguments list contains the most detailed information in the IF representation
and its form is strictly hierarchical. Generally, we can interpret any IF label as a tree
structure, with the Domain Action at the root. Subsequent nodes represent arguments,
sub-arguments, and values whose children are sub-arguments, values, or bottom-level
token nodes, respectively. This tree-structured property, along with the maturity and
thorough specification of the IF, make it an excellent candidate for our experiments.

4 Experimental Results

As a preliminary experiment on the feasibility of this approach, we created a new
grammar for the LingWear system in Polish using the tools described above. Figure 1,

which we have used to explain the steps of our grammar induction process, models the
procedural details of this experiment.

Our goal was to cover a subset of the LingWear domain including 11 Domain Actions
that refer to the existence of physical symptoms. An example base of 41 English
sentences with a vocabulary size of 95 tokens was chosen to represent this subdomain.
A native speaker of Polish translated and aligned 77 Polish sentences to the English
example base with a resulting vocabulary size of 115 tokens.

We returned to the native speaker several weeks later and asked him to generate
a new set of sentences in the same domain, using the vocabulary list as a guide but
attempting not to repeat constructions from the training set. The result was a set of
39 new Polish sentences which were used for evaluation.

The English parse trees and English-Polish alignments were processed automatically
by the tree adaptation routines described above, and the resulting grammar rules were
reordered by hand by the grammar writer using the translations as a guide.

The resulting Polish grammar contained rules for each of the 11 Domain Actions,
plus 60 nonterminal rules for arguments and values. Two example rules from this gram-
mar are given below.

s[request-information+existence+body-object]
(czy [body-object-spec=])
(czy jest [body-object-spec=])
(czy ma pan [body-object-spec=] [body-location=])

[body-object-spec=]
([symptom-blood])
([wart@quantity=plural])
([cramp@quantity=plural])
([rash])
([gas])
([bile])
([ulcer])
([whose=i] [arm])
([whose=i] [side=] [body-foot])

Parsing the Polish test set with this grammar resulted in a parse for 33 of the 39
sentences. Our robust parser produces some output even when parts of the input string
must be skipped, so some of these parses represent coverage of only a portion of the
test sentence. The average coverage over all of the input sentences was 51.7%, with 6
sentences covered perfectly (100%) and 6 not covered at all (0%).

The real concern in analysis grammar evaluation is whether an accurate translation
can be generated from the analysis result. Close inspection of the parse output reveals
that many of the partial parses contained enough information for an accurate transla-
tion, indicating that 52% coverage is a lower-bound estimate of the translation quality.
An example of such a parse is shown here: notice that although only 25% of the surface

string was parsed, it was labelled with the correct Domain Action and would produce
an accurate translation (“It is on my leg”).

; Parsing utt 5 (line 5)

; "<s> to jest na nodze </s> "

; Interpretation 5.1

; !<s> !to !jest !na nodze !</s>

; Coverage 25% (1/4) in 1 tree

[give-information+body-object]::MED

([body-location=]::MED ([leg]::MED (nodze)))

5 Conclusions

In conclusion, we found the results of our preliminary study promising for the rapid
development of grammars in new languages. The overall time to development for
our test grammar was on the order of 1-2 days. This includes native speaker time
and grammar writer time, and the process we describe here allowed the tasks to be
completed independently by the two experts without additional cost for coordinating
their schedules. We also note that much of the grammar writer’s effort was spent
selecting and formatting the example base of English sentences; this example base is
an artifact that can be reused in all subsequent experiments in this domain, further
reducing development time for grammars in other new languages.

In the future we plan to apply this technique in coordination with machine learning
algorithms for grammar expansion, in an effort to cover larger domains with little
additional human effort. One candidate for such expansion is a grammar generalization
tool developed by Ben Han for Nespole! grammars in (Lavie et al., 2001).

This grammar development process adds to the growing number of systems for
rapid-deployment Machine Translation and contributes positively to an increasingly
important field.

References

Eugene Charniak: 1996, ‘Tree-bank Grammars’, in Proceedings of the Thirteenth National
Conference on Artificial Intelligence, 1031–1036, Menlo Park 1996.

M. Gavalda: 2000, ‘Epiphenomenal Grammar Acquisition with CSG’, in Proceedings of the
Workshop on Conversational Systems of the 6th Conference on Applied Natural Language
Processing and the 1st Conference of the North American Chapter of the Association for
Computational Linguistics (ANLP/NAACL–2000), Seattle, U.S.A., 2000.

A. Lavie, L. Levin, T. Schultz, C. Langley, B. Han, A. Tribble, D. Gates, D. Wallace, and K.
Peterson: 2001, ‘Domain Portability in Speech–to–speech Translation’, in Proceedings of
the First International Conference on Human Language Technology Research (HLT–2001),
San Diego, CA, March 2001.

Lillian Lee: 1996, ‘Learning of Context-Free Languages: Survey of the Literature’, in Technical
Report TR–12–96, Center for Research in Computing Technology, Harvard University,
Cambridge, MA, 1996.

de Marcken:1995 Carl de Marcken: 1995, ‘Lexical Heads, Phrase Structure, and the Induction
of Grammar’, in Third Workshop on Very Large Corpora, 14–26, Cambridge, MA, 1996.

Waibel, Alex, Michael Finke, Donna Gates, Marsal Gavalda, Thomas Kemp, Alon Lavie, Lori
Levin, Martin Maier, Laura Mayfield, Arthur McNair, Ivica Rogina, Kaori Shima, Tilo
Sloboda, Monika Woszczyna, Torsten Zeppenfeld, and Puming Zhan: 1996, ‘JANUS–II:
Translation of Spontaneous Conversational Speech’, in Proceedings of ICASSP-1996

