
Non-Contiguous Tree Parsing

Mark Dras
Centre for Language Technology

Macquarie University
madras@ics.mq.edu.au

Chung-hye Han
Department of Linguistics
Simon Fraser University
chunghye@sfu.ca

Abstract

Pairing structural descriptions in MT, syntax-semantics interfaces and so on becomes more difficult the more

structurally different are the languages involved; there is, implicitly or explicitly, a process of ‘tree parsing’,

where a structural description is split into component smaller trees for transfer rules to be applied. Recent work

has looked at the construction of transfer rules, using both symbolic and statistical approaches, that require the

pairing of groups of several contiguous nodes in structural descriptions. We look at the case where pairings of

groups of non-contiguous nodes are necessary, and present an efficient dynamic programming algorithm based

on TAG and drawing on compiler theory for a decomposition into appropriate groupings. We then examine the

formal properties of this algorithm, and show that it is linear in the number of nodes in the tree and has the same

complexity as existing algorithms requiring only groupings of contiguous nodes.

1 Introduction

There are many situations in which it is necessary to relate two sets of structures: machine translation,
paraphrase, mapping between syntax and semantics, and so on. Often these are trees, and often struc-
tural divergences are significant. Dorr (1994) presents a classification of divergences in MT, including
the structural, and uses the extent of the divergences to argue for an explicit semantic representation.

Because of structural differences, it is necessary to use some transformation operation in the pairing
of the trees. In some cases this is dealt with in an ad hoc manner, although there are several differ-
ent models for dealing algorithmically with these structural differences that have been proposed. For
example, in the structure-pairing formalism based on context-free derivations proposed for MT by
Wu (1997), re-ordering of righthand sides in context-free grammar rules is allowed in order to rep-
resent differences in structure; more recently, Eisner (2003) has used a model of Synchronous Tree
Substitution Grammars (S-TSGs) as the basis for a stochastic mapping induction system. Broadly, this
takes a group of nodes in each tree and treats them as a single unit in order to be able to pair trees of
different structure.

Abeillé et al. (1990), in presenting Synchronous Tree Adjoining Grammar (S-TAG) as a formalism
for representing MT, note that the extent of the divergences and consequent restructuring will depend
on the formalism chosen: with a formalism such as S-TAG, with its extended domain of locality which
incorporates predicate–argument structure into the elementary units of the grammar, there are fewer
divergences. Even with this minimisation of divergence through choice of representation, it is not the
case that the structures to paired are isomorphic: the redefinition of S-TAG in Shieber (1994) which
requires isomorphic (i.e. node-to-node) derivations is extended in that paper to include also the pairing
of groups of nodes in trees.

A

is

C small

B

...
...

A’

cak-ayo

C’

B’

... �

...

$A[class:adj] ,

BE[]

$A

II

Figure 1: Paired non-isomorphic structures, with transfer rule

Current models of tree transformation, however, allow only the grouping of contiguous nodes for
the purpose of pairing, and there are situations where groupings of non-contiguous nodes—but not just
any arbitrary groups of non-contiguous nodes—are required. ‘Parsing’ a tree with a grammar based on
some formalism other than CFGs or TSGs will then permit the mapping of such groupings; this can
be viewed as applying to the tree a meta-level grammar along the lines of Dras (1999). For cases of
parsing trees with groupings of contiguous nodes, there are standard efficient algorithms in compiler
theory; however, these do not exist for pairing of groupings of non-contiguous nodes, and this would
at first glance appear to require more powerful and slower mechanisms.

In this paper we use Tree Adjoining Grammar as the formalism for capturing non-contiguous group-
ings of nodes required by pairings; it has properties that, given certain conditions, allow an efficient
tree parsing algorithm. In Section 2 we examine some examples of the types of groupings required;
in Section 3 we give a brief overview of TAG; and in Section 4, we present a dynamic programming
algorithm that allows tree mappings with groupings of non-contiguous nodes, which is linear in the
number of nodes in the tree and hence as efficient as that for the contiguous case, followed by some
discussion of more general questions related to the notion of tree parsing.

2 Pairing Structural Descriptions

The aim of this work is to decompose trees into groupings of non-contiguous nodes that have been
identified as being in a correspondence for a transfer-based translation. The starting point for the pro-
cess is thus a tree assigned independently as the input to the transfer, typically by a parser; whether it
is a dependency tree, TAG derivation tree, or other, is immaterial.

First, we will define more precisely what we mean by groupings of contiguous nodes (gCNs) and
groupings of non-contiguous nodes (gNCNs). Taking nodes in a tree to be represented by Gorn ad-
dresses,1 a gCNN is a set of nodes such that if two nodes with addressesp1 ; p2 are inN , and they
have largest common prefixpc , then all nodes with addresspi such thatpc is a prefix ofpi andpi is a
prefix ofp1 or p2 must be inN . A gNCN is any set of nodes in a tree that is not a gCN.

In this section we will illustrate some of the situations where pairing of gNCNs is required. As an
example of the standard case of groupings of gCNs, we give pair (1) from Korean-English MT.

(1) pang-un
room–TOP

cak-ayo
be-small–DECL

The room is small.
For predicative adjectives, English uses copulabeplus the adjective, while Korean uses only a verb-

like lexical item. Embedding the adjectival constructions from (1) within a larger context, paired struc-
1The Gorn address of the root is�; the Gorn address of thejth child of node with addressi is i�j, j 2 N+ . Forp; q 2 N+

�,
q is aPREFIXof p if and only if there exists anr 2 N+

� such thatp = q � r.

�
�[the]

�[doctor]

�[recursive-verb]

...

�[recursive-verb]

�[his]

�[teeth]

�[examines]

�[el]

�[médico]

�[le]

�[recursive-verb]

...

�[recursive-verb]

�[los]

�[dientes]

�[examinar] �

Figure 2: Pairs for (2)

tures might look like the lefthand side of Figure 1.2 Here, we would need to treat the nodes foris and
smallas a single unit in order to pair it withcakayo, so the grouping of the nodes foris andsmallwould
be designated a gCN. If there were a need to groupis, smallandB, this would be a gNCN.

Paired TAGs In pairing two TAGs for MT, syntax-semantics mapping or paraphrase, under the redef-
inition of Synchronous TAG in Shieber (1994) there must be an isomorphism between the derivations
of two strings to be paired. In TAG, for eachDERIVED TREE derived from smaller elementary trees,
there is a correspondingDERIVATION TREE which describes the history of the derivation. This deriva-
tion tree has a number of similarities to dependency trees, but is not exactly the same (Rambow and
Joshi, 1997). In general there will not be an isomorphism between two such trees for any of the above
applications, hence Shieber’s proposed extension to allow “bounded subderivation” (which correspond
to gCNs in the context of derivation trees). However, he also notes the possibility, further explored in
Dras and Bleam (2000), that the pairing of gNCNs will be necessary. An example taken from the latter
is in (2).

(2) El
The

médico
doctor

le
him–DAT

quiero
wants

poder
to-be-able

. . . examinar

. . . to-examine
los
the

dientes.
teeth.

The doctor wants to be able. . . to examine his teeth.

In this Spanish-English example, the clitic can climb over an unlimited number of ‘trigger verbs’
(Aissen and Perlmutter, 1976) (indicated by the ellipses in the example), and for certain TAG grammars
this can correspond to a pair of derivation trees as in Figure 2. In this pair of trees,his corresponds to
both los and the cliticle. Both his and los are fixed in relation to the root of the tree, butle is an
unbounded distance from it, so it is not possible to form a gCN in the Spanish tree for pairing without
the unbounded and unrelated recursively-inserted verbs, hence requiring infinitely many transfer rules.

Paired dependency trees The system of Han et al. (2000) pairs two dependency trees based on a
Deep Syntactic Structure (DSyntS) of Meaning Text Theory (MTT) (Mel’ˇcuk, 1988), a dependency
representation composed of nodes labeled by lexemes that correspond to meaning-bearing words
(nouns, verbs, adjectives, adverbs) and directed arcs with dependency relation labels. Transfer rules
are also represented by DSyntS trees, with variables.3 The goal of this particular dependency represen-
tation is to minimise ‘spurious’ structural divergences, such as when a preposition in one language is

2We use the romanization of Han et al. (2000), for consistency with our later example.
3The subject is labeled as ‘I’, the direct object as ‘II’, the indirect object as ‘III’, and other oblique arguments as ‘IV’;

adjuncts are labeled as ‘ATTR’. Function words such as determiners, semantically empty auxiliary verbs and grammatical
morphology are represented through features on the node labels.

say[aux:do tense:past]

who

ATTR

Mary
I

like[tense:pres]

II

that[class:subord conj]

ATTR

John

I

malha[tense:past mode:int]

Mary[case:nom]

I

cohaha[tense:pres mode-string:tako]

II

John[case:nom]

I

nwukwu[case:acc]

II

Figure 3: Paired DSyntS for (3)

say[aux:do]

who

ATTR

...

like[]

II

that[class:subord conj]

ATTR

malha[mode:int]

...

cohaha[mode-string:tako]

II

nwukwu[case:acc]

II

say[aux:do]

who

ATTR

...

like[]

II

that[class:subord conj]

ATTR

say[aux:do]

...

like[]

II

who

ATTR

that[class:subord conj]

ATTR

Figure 4: Correspondence for (3)

represented by a verbal inflection in the other. However, some divergences still occur, as in (1). The
transfer rule then requires that the two nodesis andsmallpair with the single nodecakayo: a transfer
rule for Figure 1, treating them as a gCN, would be as in the righthand side of that figure.4 However,
there are constructions which cannot be handled in such a way. Consider the translation pair in (3).

(3) Mary-ka
Mary–NOM

John-i
John–NOM

nwukwu-lul
who–ACC

cohaha-n-tako
like–PRES–COMP

malha-yess-ni?
say–PAST–Q

Whoi did Mary say that John likesti?

Syntactically,who is dependent on the matrix clause verb,did in English, while semantically it is
an argument of the subordinate verblikes, a case of long distrance extraction (see Figure 3). In the
DSyntS,did becomes part ofsayas a feature on thesaynode. Further,who is dependent onsayand
can only be labeled as ATTR since it is not an argument ofsay. In the Korean however,nwukwu(‘who’)
is still an object ofcohaha(‘like’) with its dependency arc labeled as II. So, a transfer rule covering
long distance extractedwhowould need to include matrix and embedded verbs, as in the lefthand pair
of Figure 4. But, because long distance extraction is in principle unbounded, we would need to specify
all the possible cases, giving an infinite number of transfer rules. Moreover, in the English DSyntS,
there is no way to represent the fact thatwhois a semantic argument oflikes, unless additional features
are used to track their relation.

Again, the key element in this problem is that nodes that are contiguous in the English tree (say,
who) are not contiguous in the corresponding Korean tree (malha, nwukwu); this, along with the TAG
example, can be seen as a case of intervening material breaking what should be contiguous.

It can of course be argued that an alternative representation would be more appropriate for MT, where
whodepends fromlikes in the tree. We have used the system of Han et al. (2000) to illustrate this point
because it is a system that has the goal of exploring the feasibility of a plug-and-play architecture: that
is, necessary components such as a parser are obtained from elsewhere, with a given output structure
that it is necessary to use. Given this, gNCNs are required either directly or indirectly. The case of the
direct relation, using these structures as the basis for a transfer component, is illustrated already in the

4$A is a variable slot for an adjective.

�
�DXD[the]

�COMPs[which]

�DXD[the]

�COMPs[which]

�DXD[the]

�NXdxN[floor]

�N0nx0Vnx1[covered]

�NXdxN[dust]

�N0nx0Vnx1[collected]

�NXdxN[jacket] �Vvx[is]

�nx0Ax1[tweed]

�DXD[the]

�COMPs[which]

�DXD[the]

�NXdxN[dust]

�N0nx0Vnx1[collected]

�NXdxN[jacket] �Vvx[is]

�NXN[it]

�DXD[the]

�NXdxN[floor]

�nx0Vnx1[covered]

�sPUs[.]

�nx0Ax1[tweed] �

Figure 5: Derivation tree pair for example (4)

lefthand pair of Figure 4; a pairing indirectly involving gNCNs would be required in transforming the
syntactic representation into a deeper semantic one (the one used in translation), as in the righthand
pair of Figure 4. This latter is the sort of relation that may need to be specified, then, in a formalism
with multiple levels, such as MTT.

In some cases it may be possible to know which representation will be structurally the most suitable
for a particular application like MT and a particular pairing of languages, and to be able to specify for
example the parser output representation, or to modify the parser (although this might be undesirable
for reasons of modularity). However, this is not always the case, as we discuss in the next example.

Paraphrase Here we use an example, (4), from Dras (1999), where paraphrases are represented by
pairing TAG derivation trees (Figure 5). This is again similar to the previous MT examples: in order to
define a paraphrase where the most embedded clause becomes a separate sentence, it is necessary to
form a gNCN (those nodes in bold in Figure 5).

(4) The jacket which collected the dust which covered the floor was tweed.

The jacket which collected the dust was tweed. The dust covered the floor.

Here, all other nodes correspond one-to-one in the trees, so the gNCNs are clear. This will be the case
in paraphrase for many different types of representation: if the tree on the left has the most embedded
clause represented by the most embedded subtree, there will still be this problem of fixed relation to
the root vs unbounded relation; if the clause order is represented in the tree in reverse, with the most
embedded clause the one closest to the root, there will be a parallel problem with a paraphrase where
the least embedded non-matrix clause becomes a separate sentence. And unlike the case ofwhoabove,
which representation is best is in general only a function of the pairing of the trees, not something
innate to the grammar which generates an individual tree.

Thus there are a number of situations in which gCNs are not sufficient. Given that gCNs can be
represented by Tree Substitution Grammars, as in Eisner (2003), which are in fact TAGs that do not
allow precisely the kind of unbounded phenomena described by TAGs, this would suggest that using
a TAG grammar to describe the gNCNs in order to decompose the trees would be feasible; and this is
further an interesting question for theoretical reasons described below.

3 TAG Overview

TAG is a grammar formalism based on trees rather than context free rules (Joshi, 1987). Elementary
trees are of two types, initial trees and auxiliary trees. Auxiliary trees have a designated foot node,

�1 : S

a A

a

�1 : A

B# b A�;NA

�2 : B

c

derived: S

a A

B

c

b A

B

c

b A

a

derivation: �1

�1

�2 �1

�2

Figure 6: Elementary, derived and derivation trees

marked with a *, whose label is the same as that of the root. In Figure 6,�1 and�2 are initial trees;
�1 is an auxiliary tree. The trees are combined together by two operations, substitution and adjunction.
Under substitution, a node marked for substitution5 in a tree is replaced by an initial tree with the
same label at the root; under adjunction, an internal node in a tree is ‘split apart’, replaced by an
auxiliary tree with the same label at the root and foot. In theDERIVED TREE for the stringacbcba,
in Figure 6, copies of�1 have been adjoined either at the root node labelledA of other nodes�1 or
ultimately at theA node of�1 ; an�2 tree has been substituted into each�1 tree at the node labelled
B. The derivation history is recorded in theDERIVATION TREE (Figure 6). It can be seen that the
TAG property of an ‘extended domain of locality’ can allow the twoas in the generated string to be
separated by an abitrary amount of intervening material; this characteristic is used for representation
of, for example,WH- phenomena when TAG derived trees are used for a linguistic representation. Of
more interest for us than the derived string is the nature of the derived tree: the branches containing the
a nodes in the derived tree are also separated by an arbitary distance.

In general, for linguistic representation it is the derived tree that is used as the primary structure of
representation, so the labelsa; b; c would represent words in a typical lexicalised grammar and the trees
�1 , �2 and�1 would represent argument structure of these words. However, we will use a TAG gram-
mar as a way of characterising other sorts of trees, such as TAG derivation trees or dependency trees;
this is thus in a sense an extension of the notion of the meta-level grammar of Dras (1999). The idea is
then to use a TAG grammar to break down some tree representation—which may be a dependency tree,
a TAG derivation tree,6 or other—into component trees possibly representing non-contiguous group-
ings. The aim is not to describe every decomposition into non-contiguous groupings, only those such
as the language-related cases presented in Section 2; and the use of TAG as representation allows for
the complexity results below. We now present an algorithm for the decomposition in Section 4.

4 A Tree Parsing Algorithm

4.1 Pattern Trees and Compilers

The process of breaking down an input abstract syntax tree (AST) into component pattern trees, in
order to generate an instruction set, is a standard one in compilers. The standard technique involves a
bottom-up rewriting system (BURS), with the optimal instruction set constructed by the dynamic pro-
gramming algorithm of Proebsting (1995); see for example Grune et al. (2000). Because of the nature

5Substitution sites are conventionally marked with#.
6Note that in MT based on TAG, it isderivationtrees that are paired for transfer, rather thanderivedtrees, and it is this

derivation tree that must be decomposed; that is, the process of decomposition is not just a side-effect of the parsing to obtain
the initial derived tree representation. Rather, it can be thought of as a TAG grammar sitting on another TAG grammar, a
meta-level grammar in the sense of Dras (1999).

S (�1 , �2)

A (�1 + �1 :1; �1 + �5 :1, �3)

A (�1 + �1 :1; �1 + �5 :1, �3 , �5)

A (�1 :1, �4 , �5 :1)

a b

b

b

c

�1 (@4): S

A

a b

c

�5 (@5): ANA

A

a b

b

�2 (@3): S

A# c

�1 (@3): A

A�;NA b

�3 (@3): A

A# b

�4 (@3): ANA

a b

Figure 7: Abstract Syntax Tree and pattern trees

of programming languages, the sort of pattern trees that are allowed are only groupings of contiguous
nodes; in effect, tree parsing is allowed with a tree grammar consisting of trees of possibly multiple
levels and allowing only concatenation: this is equivalent to a TSG. Consider an AST in Figure 7 (ig-
noring the annotations on the nodes, in parentheses); and take for pattern trees only those initial trees of
Figure 7 (�1 ; : : : ; �5). It can be seen that the AST can be decomposed in several ways, for example by
the set of pattern treesf�2 ; �3 ; �3 ; �4 g or the setf�2 ; �3 ; �5 g. If the numbers in parentheses after the
labels (@c) are considered as costs, an optimal decomposition can be determined (here,f�2 ; �3 ; �5 g).

Now in Section 4.2 we develop an algorithm based on this which allows an input AST (for us, a
derivation or dependency structure, for example) to be broken into component non-contiguous ‘trees’
efficiently. From a theoretical point of view this is interesting, as the expectation would be that some
more complex mechanism would be necessary, in much the same way that allowing stretching of paired
characters in strings (say, in the language of nested stringsfanbn jn � 0g, where theith a is matched
with the (n � i + 1)th b) cannot be performed by a finite state automaton but requires a pushdown
automaton through the addition of a stack; here, it might be expected that a stack is similarly necessary
to keep track of the unbounded elements.

4.2 Generalizing to Restricted Non-Contiguity

As a first step, we consider only cases where at any node during the tree traversal in the BURS, there
is only potentially one gNCN at a time: that is, it is not possible to embed or overlap these gNCNs. In
order to explain this, consider first the example below. The input AST (ignoring the annotations on the
nodes) is in Figure 7; pattern trees, in the form of a TAG grammar (with associated costs still indicated
by @c), are also in Figure 7. The algorithm we use for bottom-up pattern matching, adapted from that
of Grune et al. (2000), is in Figure 8.

For explanatory purposes, we first look at the bottom up pattern matching aspect of the algorithm.
First, we notionally split the pattern trees into a set of single-level trees, theSPLIT TREE SET, given
labels based on Gorn address. So, for example,�1 is considered as two trees,�1 (for the top half)
and�1 :1 (for the bottom). Further, each node in these trees is given atype , indicating which others
it can join with. This can be a single value for trees that were originally split (so theA node in the
split would have the type�1 :1), or one of four valuessub , adj , both , none . For leaves of split
trees not marked by single values, nodes labelled with terminals are of typenone , nodes marked for
substitution are markedsub , and foot nodes are markedadj . For roots of split trees, roots of auxiliary
trees are markedadj , null adjunction nodes markedsub , and others markedboth .

PROCEDURE bu-match (Node) FUNCTION matches (tree, annot)
IF Node has non-terminal label IF tree.label = annot.label

bu-match (Node.left) IF tree.type IN annot.label
bu-match (Node.right) OR annot.type = both
SET Node.annot-set TO get-annot-set (Node) OR tree.type = annot.type

ELSE RETURN true
SET Node.annot-set TO { (Node.type = none) } RETURN false

FUNCTION get-annot-set (Node) FUNCTION new-annot (tree, l-annot, r-annot)
SET a-set TO Empty-set IF tree.left.type = adj
FOR EACH tree IN split tree set foot = l-annot

FOR EACH l-annot IN Node.left.annot-set IF tree.right.type = adj
FOR EACH r-annot IN Node.right.annot-set foot = r-annot

IF tree.label = Node.label IF tree.cat = auxiliary
AND matches (tree.left, l-annot) RETURN t + foot
AND matches (tree.right, r-annot) ELSE

Insert new-annot (tree, l-annot, r-annot) into a-set RETURN t
RETURN a-set

Figure 8: Bottom-up pattern matching

We then traverse the AST bottom up, annotating the nodes with those parts of pattern trees that can
apply, taking into account both labels and types of nodes. (Ignore, at this stage, the costs indicated by
@c.) The lowestA node and its immediate childrena andb could result from the application of pattern
tree�4 ; equally, it could be the lower half of trees�1 or�5 (i.e.�1 :1 or�5 :1). The next higherA node
with its childrenA andb could result from�3 ; or from �5 (since the left childA is annotated with
�5 :1, indicating that the subtree from that point contains the remainder of�5); or from�1 . Here there
are the additional annotations+�1 :1i and+�5 :1i: this is because�1 represents material that has split
�1 or �5 into gNCNs (the role of auxiliary trees in TAG), and so�1 :1 and�5 :1 are percolated up the
tree as a record of the lower potential gNCNs. It is necessary for this to be attached to the annotation
of an auxiliary tree, as auxiliary trees are the only valid intervening material. At the next higherA the
same situation holds. Finally, the rootS node can either result from the application of�2 , or of �1

with interposed material (indicated by the left child ofS having the label�1 :1).
For the dynamic programming algorithm, costs are taken into account. In compilers, this value is

related to the cost of the instructions corresponding to the pattern tree. For this example, the costs are
not a function of anything external; they do, however, capture the preference of larger pattern trees
over combinations of smaller trees, which is desireable; see Estival et al. (1990). Tracing through the
example again, then, this time with costs, at the lowestA node the annotation�4 has cost 3; the other
two annotations�1 :1 and�5 :1, being partial pattern trees, have no cost. At the next higherA node,
the annotations�1 + �1 :1 and�1 + �5 :1 have cost 3;�3 has cost 6 (3 for the pattern tree�3 , and
3 for the left child as annotated in the previous step);�5 has cost 5. As both� alternatives span the
same subtree from thisA node down, and have the same return type (sub), it is possible to discard the
annotation�3 , as it will always be cheaper to use�5 at this point, regardless of what happens further
up the tree. At the next higherA node, the annotations�1 + �1 :1 and�1 + �5 :1 have cost 6, and
�3 has cost 8. Finally, at the topS node,�2 has cost 13 (5 for the pattern tree, 8 for the left child:
as the pattern tree can only accept an initial tree as the left child, only�3 is a suitable candidate); but
�1 has cost 10 (4 for the pattern tree, 6 for the intervening auxiliary trees). The algorithm in Figure 8
is modified so that any annotation in an annotation set with the sametype but non-minimal cost is
discarded. Thus the derivation of the optimal tree parse, top-down, would be�1 with an adjunction of
�1 which in turn has an adjunction of�1 .

By observation, and just as the standard algorithm, this extension is alsoO(n) time and space com-
plexity in the number of nodes. This is not surprising, as the restriction on non-embedding of gNCNs
occurs if a TAG grammar is restricted to the normal form of Rogers (1994), so that the tree set is rec-

S

A

A

A

A

A

A

A

e

a

a

a

b

b

b �: S

A

e

�: ANA

A

A�;NA a

b

�0: ANA

B

A

C

A�;NA a

b

Figure 9: Embedding pattern trees

ognizable: in brief, in this normal form auxiliary trees cannot embed, and so the grammar is in effect
an equivalent but variant form of CFG whose syntax allows a limited degree of non-local behavior. (In
the given example, it can be seen that it is not possible to embed recursive material, as all the auxiliary
trees are only of height 1.)

However, despite linear complexity in the number of nodes, the work done and space used are pro-
portional to the number of pattern trees. A standard technique is to precompile all sets of annotations;
as there is a finite set of pattern trees, there will be a finite set of annotations—in the case of the per-
colated annotations attached to� annotations representing gNCNs, this is still true—it is also possible
here. The algorithm is then an implementation of a finite-state tree automaton.

4.3 A Further Generalization

If embedding is allowed, the algorithm is more complex. Consider the AST in Figure 9 and the pattern
trees in Figure 9. Starting from the lowestA label, the annotations would be�:1, �+�:1, �+�:1+�:1;
for an AST of arbitrary depth, the annotation would be�+�:1+ : : :+�:1+�:1. Clearly, a finite-state
tree automaton is not an appropriate model: it is not possible to precompile the complete annotation
set.

If the pattern tree we want to complete is only the most embedded—that is, it is not possible to
overlap gNCNs—this corresponds to the operation of unrestricted TAG adjoining. That is, from the
example, only the last�:1 annotation is accessible, so the obvious model is a stack. The procedure
is then an implementation of some form of bottom-up tree pushdown automaton (buTPDA) (Schimpf
and Gallier, 1985), a tree automaton augmented with a stack, in the same way a pushdown automaton
(PDA) is a a finite-state automaton (FSA) plus a stack.

A standard buTPDA is not quite the right model. Schimpf and Gallier (1985) prove that TPDAs are
necessary for operating on tree sets with context-free path languages.7 But they also prove that the
yield of the class of tree languages accepted by buTPDAs is the indexed languages. For the nature
of gNCNs presented in this paper, the string language should be within the mildly context-sensitive
languages (MCSLs); thus this type of TPDA is too powerful.

However, it is possible to restrict the power of a TPDA so that the string language accepted by
the automaton is within the MCSLs. A proof is beyond the scope of this paper, but a sketch follows.
TPDAs as currently defined allow the stack to be accessible at any point during the operation of the

7The path language for ASTs of the form in Figure 9 isfSA�g which is regular. But it is clear that the path language for
the grammar,fSA�g [fSA�BA�B : : : A�CA�CA� j number of As and Bs is equalg, is context-free.

automaton. Thus it is possible for the stack to be accessed on different paths; and so it is possible
for paths to be dependent (e.g. one path in the tree isAn , another isBn). Grammars that generate
MCSLs cannot have dependent paths (Weir, 1988). But if access to the stack is restricted to a single
path—in the same manner that restricting stack passing to a single non-terminal child in an indexed
grammar produces a linear indexed grammar (Gazdar, 1988), which generates MCSLs—the power of
the TPDA is suitably restricted. The idea is related to the Embedded Pushdown Automaton (EPDA)
of Vijay-Shanker (1987), although this is of course a string automaton rather than a tree automaton.
Regardless of this, it is still not possible to precompile the annotation set, in the same way a PDA
cannot be compiled out like an FSA; so the algorithm is stillO(n) time and space complexity in the
number of nodes, but is also proportional to the size of the grammar.

5 Conclusion

In this paper we have given examples of situations in the mapping of trees where it is necessary to pair
groups of non-contiguous nodes. We have shown how some types of non-contiguity can be represented
formally using the idea of a grammar to group nodes in the tree; and then, treating this as a set of pattern
trees in the sense of a bottom-up rewriting system in compiler theory, we have developed an efficient
algorithm for this tree decomposition. Future work will involve looking at various practical aspects:
how in the BURS costs can be determined, beyond the general notion of preferring larger pattern trees
over smaller; how best to represent precompilation of annotations in the BURS algorithm; and so on.

References
A. Abeillé, Y. Schabes, and A. Joshi. 1990. Using lexicalized Tree Adjoining Grammars for Machine Translation. InProc.

of COLING ’90.
J. Aissen and D. Perlmutter. 1976. Clause Reduction in Spanish. InProc. of the 2nd Annual Mtg of Berkeley Ling. Soc.
B. Dorr. 1994. Machine translation divergences: A formal description and proposed solution.Comp. Ling., 20(4):597–633.
M. Dras and T. Bleam. 2000. How Problematic are Clitics for S-TAG Translation? InProc. of TAG+5, pages 241–244.
M. Dras. 1999. A meta-level grammar: redefining Synchronous TAG for translation and paraphrase. InProc. of ACL ’99,

pages 80–87.
J. Eisner. 2003. Learning Non-Isomorphic Tree Mappings for Machine Translation. InProc. of ACL ’03.
D. Estival, A. Ballim, G. Russell, and S. Warwick. 1990. A syntax and semantics for feature-structure transfer. InProc. of

TMI ’90, pages 131–144.
G. Gazdar. 1988. Applicability of indexed grammars to natural languages. In Uwe Reyle and Christian Rohrer, editors,

Natural Language Parsing and Linguistic Theories. D. Reidel Publishing Company, Dordrecht, Holland.
D. Grune, H. Bal, C. Jacobs, and K. Langendoen. 2000.Modern Compiler Design. John Wiley, Chichester, UK.
C-h. Han, B. Lavoie, M. Palmer, O. Rambow, R. Kittredge, T. Korelsky, N. Kim, and M. Kim. 2000. Handling Struc-

tural Divergences and Recovering Dropped Arguments in a Korean/English Machine Translation System. InEnvisioning
Machine Translation in the Information Future, pages 40–53. Springer-Verlag.

A. Joshi. 1987. An introduction to Tree Adjoining Grammars. In A. Manaster-Ramer, editor,Mathematics of Language.
John Benjamins.

I. Mel’ čuk. 1988.Dependency syntax: theory and practice. State University of NY Press.
T. Proebsting. 1995. BURS automata generation.ACM Trans. Programming Languages and Systems, 17(3):461–486.
O. Rambow and A. Joshi. 1997. A Formal Look at Dependency Grammars and Phrase-Structure Grammars, with Special

Consideration of Word-Order Phenomena. In Leo Wanner, editor,Current Issues in Meaning-Text Theory. Pinter, London.
J. Rogers. 1994. Capturing CFLs with Tree Adjoining Grammars. InProc. of ACL ’94, pages 155–162.
K. Schimpf and J. Gallier. 1985. Tree pushdown automata.J. of Comp. and System Sciences, 30:25–40.
S. Shieber. 1994. Restricting the Weak-Generative Capacity of Synchronous Tree Adjoining Grammars.Computational

Intelligence, 10(4).
K. Vijay-Shanker. 1987.A study of tree adjoining grammars. Ph.D. thesis, Department of Computer and Information

Science, University of Pennsylvania.
D. Weir. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, Dept. of Comp. and Info.

Science, Univ. of Pennsylvania.
D. Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora.Comp. Ling., 23(3):377–

404.

