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Abstract

We present a statistical phrase-based transla-
tion model that useshierarchical phrases—
phrases that contain subphrases. The model
is formally a synchronous context-free gram-
mar but is learned from a bitext without any
syntactic information. Thus it can be seen as
a shift to the formal machinery of syntax-
based translation systems without anylin-
guistic commitment. In our experiments us-
ing BLEU as a metric, the hierarchical phrase-
based model achieves a relative improve-
ment of 7.5% over Pharaoh, a state-of-the-art
phrase-based system.

1 Introduction

The alignment template translation model (Och and
Ney, 2004) and related phrase-based models ad-
vanced the previous state of the art by moving
from words tophrasesas the basic unit of transla-
tion. Phrases, which can be any substring and not
necessarily phrases in any syntactic theory, allow
these models to learn local reorderings, translation
of short idioms, or insertions and deletions that are
sensitive to local context. They are thus a simple and
powerful mechanism for machine translation.

The basic phrase-based model is an instance of
the noisy-channel approach (Brown et al., 1993),1 in
which the translation of a French sentencef into an

1Throughout this paper, we follow the convention of Brown
et al. of designating the source and target languages as “French”
and “English,” respectively. The variablesf and e stand for
source and target sentences;f j

i stands for the substring off
from positioni to position j inclusive, and similarly forej

i .

English sentencee is modeled as:

arg max
e

P(e | f ) = arg max
e

P(e, f )(1)

= arg max
e

(P(e) × P( f | e))(2)

The translation modelP( f | e) “encodes”e into f by
the following steps:

1. segmente into phrases ¯e1 · · · ēI , typically with
a uniform distribution over segmentations;

2. reorder the ¯ei according to some distortion
model;

3. translate each of the ¯ei into French phrases ac-
cording to a modelP( f̄ | ē) estimated from the
training data.

Other phrase-based models model the joint distribu-
tion P(e, f ) (Marcu and Wong, 2002) or madeP(e)
andP( f | e) into features of a log-linear model (Och
and Ney, 2002). But the basic architecture of phrase
segmentation (or generation), phrase reordering, and
phrase translation remains the same.

Phrase-based models can robustly perform trans-
lations that are localized to substrings that are com-
mon enough to have been observed in training. But
Koehn et al. (2003) find that phrases longer than
three words improve performance little, suggesting
that data sparseness takes over for longer phrases.
Above the phrase level, these models typically have
a simple distortion model that reorders phrases in-
dependently of their content (Och and Ney, 2004;
Koehn et al., 2003), or not at all (Zens and Ney,
2004; Kumar et al., 2005).

But it is often desirable to capture translations
whose scope is larger than a few consecutive words.
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Consider the following Mandarin example and its
English translation:

(3) ³2
Aozhou
Australia

/
shi
is

�
yu
with

�
Bei
North

é
Han
Korea

	
you
have

¦¤
bangjiao
dipl. rels.

�
de
that

�p
shaoshu
few

ý¶
guojia
countries

K�
zhiyi
one of

‘Australia is one of the few countries that have
diplomatic relations with North Korea’

If we countzhiyi, lit. ‘of-one,’ as a single token, then
translating this sentence correctly into English re-
quires reversing a sequence of five elements. When
we run a phrase-based system, Pharaoh (Koehn et
al., 2003; Koehn, 2004a), on this sentence (using the
experimental setup described below), we get the fol-
lowing phrases with translations:

(4) [Aozhou] [shi] [yu] [Bei Han] [you]
[bangjiao]1 [de shaoshu guojia zhiyi]

[Australia] [is] [dipl. rels.]1 [with] [North
Korea] [is] [one of the few countries]

where we have used subscripts to indicate the re-
ordering of phrases. The phrase-based model is
able to order “diplomatic. . .Korea” correctly (using
phrase reordering) and “one. . .countries” correctly
(using a phrase translation), but does not accom-
plish the necessary inversion of those two groups.
A lexicalized phrase-reordering model like that in
use in ISI’s system (Och et al., 2004) might be able
to learn a better reordering, but simpler distortion
models will probably not.

We propose a solution to these problems that
does not interfere with the strengths of the phrase-
based approach, but rather capitalizes on them: since
phrases are good for learning reorderings of words,
we can use them to learn reorderings of phrases
as well. In order to do this we needhierarchical
phrasesthat consist of both words and subphrases.
For example, a hierarchical phrase pair that might
help with the above example is:

(5) 〈yu 1 you 2 ,have 2 with 1 〉

where 1 and 2 are placeholders for subphrases. This
would capture the fact that Chinese PPs almost al-
ways modify VP on the left, whereas English PPs

usually modify VP on the right. Because it gener-
alizes over possible prepositional objects and direct
objects, it acts both as a discontinuous phrase pair
and as a phrase-reordering rule. Thus it is consider-
ably more powerful than a conventional phrase pair.

Similarly,

(6) 〈 1 de 2 , the 2 that 1 〉

would capture the fact that Chinese relative clauses
modify NPs on the left, whereas English relative
clauses modify on the right; and

(7) 〈 1 zhiyi,one of 1 〉

would render the constructionzhiyi in English word
order. These three rules, along with some conven-
tional phrase pairs, suffice to translate the sentence
correctly:

(8) [Aozhou] [shi] [[[yu [Bei Han]1 you
[bangjiao]2] de [shaoshu guojia]3] zhiyi]

[Australia] [is] [one of [the [few countries]3

that [have [dipl. rels.]2 with [North Korea]1]]]

The system we describe below uses rules like this,
and in fact is able to learn them automatically from
a bitext without syntactic annotation. It translates the
above example almost exactly as we have shown, the
only error being that it omits the word ‘that’ from (6)
and therefore (8).

These hierarchical phrase pairs are formally pro-
ductions of a synchronous context-free grammar
(defined below). A move to synchronous CFG can
be seen as a move towards syntax-based MT; how-
ever, we make a distinction here betweenformally
syntax-based andlinguistically syntax-based MT. A
system like that of Yamada and Knight (2001) is
both formally and linguistically syntax-based: for-
mally because it uses synchronous CFG, linguisti-
cally because the structures it is defined over are (on
the English side) informed by syntactic theory (via
the Penn Treebank). Our system is formally syntax-
based in that it uses synchronous CFG, but not nec-
essarily linguistically syntax-based, because it in-
duces a grammar from a parallel text without relying
on any linguistic annotations or assumptions; the re-
sult sometimes resembles a syntactician’s grammar
but often does not. In this respect it resembles Wu’s
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bilingual bracketer (Wu, 1997), but ours uses a dif-
ferent extraction method that allows more than one
lexical item in a rule, in keeping with the phrase-
based philosophy. Our extraction method is basi-
cally the same as that of Block (2000), except we
allow more than one nonterminal symbol in a rule,
and use a more sophisticated probability model.

In this paper we describe the design and imple-
mentation of our hierarchical phrase-based model,
and report on experiments that demonstrate that hi-
erarchical phrases indeed improve translation.

2 The model

Our model is based on a weighted synchronous CFG
(Aho and Ullman, 1969). In a synchronous CFG the
elementary structures are rewrite rules with aligned
pairs of right-hand sides:

(9) X→ 〈γ, α,∼〉

whereX is a nonterminal,γ andα are both strings
of terminals and nonterminals, and∼ is a one-to-one
correspondence between nonterminal occurrences
in γ and nonterminal occurrences inα. Rewriting
begins with a pair of linked start symbols. At each
step, two coindexed nonterminals are rewritten us-
ing the two components of a single rule, such that
none of the newly introduced symbols is linked to
any symbols already present.

Thus the hierarchical phrase pairs from our above
example could be formalized in a synchronous CFG
as:

X → 〈yu X 1 you X 2 ,have X2 with X 1 〉(10)

X → 〈X 1 de X 2 , the X 2 that X 1 〉(11)

X → 〈X 1 zhiyi,one of X1 〉(12)

where we have used boxed indices to indicate which
occurrences of X are linked by∼.

Note that we have used only a single nonterminal
symbol X instead of assigning syntactic categories
to phrases. In the grammar we extract from a bitext
(described below), all of our rules use only X, ex-
cept for two special “glue” rules, which combine a
sequence of Xs to form an S:

S→ 〈S 1 X 2 ,S 1 X 2 〉(13)

S→ 〈X 1 ,X 1 〉(14)

These give the model the option to build only par-
tial translations using hierarchical phrases, and then
combine them serially as in a standard phrase-based
model. For a partial example of a synchronous CFG
derivation, see Figure 1.

Following Och and Ney (2002), we depart from
the traditional noisy-channel approach and use a
more general log-linear model. The weight of each
rule is:

(15) w(X→ 〈γ, α〉) =
∏

i

φi(X→ 〈γ, α〉)
λi

where theφi are features defined on rules. For our
experiments we used the following features, analo-
gous to Pharaoh’s default feature set:

• P(γ | α) andP(α | γ), the latter of which is not
found in the noisy-channel model, but has been
previously found to be a helpful feature (Och
and Ney, 2002);

• the lexical weightsPw(γ | α) and Pw(α | γ)
(Koehn et al., 2003), which estimate how well
the words inα translate the words inγ;2

• a phrase penalty exp(1), which allows the
model to learn a preference for longer or
shorter derivations, analogous to Koehn’s
phrase penalty (Koehn, 2003).

The exceptions to the above are the two glue rules,
(13), which has weight one, and (14), which has
weight

(16) w(S→ 〈S 1 X 2 ,S 1 X 2 〉) = exp(−λg)

the idea being thatλg controls the model’s prefer-
ence for hierarchical phrases over serial combination
of phrases.

Let D be a derivation of the grammar, and letf (D)
ande(D) be the French and English strings gener-
ated byD. Let us representD as a set of triples
〈r, i, j〉, each of which stands for an application of
a grammar ruler to rewrite a nonterminal that spans
f (D) j

i on the French side.3 Then the weight ofD

2This feature uses word alignment information, which is dis-
carded in the final grammar. If a rule occurs in training with
more than one possible word alignment, Koehn et al. take the
maximum lexical weight; we take a weighted average.

3This representation is not completely unambiguous, but is
sufficient for defining the model.
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〈S 1 ,S 1 〉 ⇒ 〈S 2 X 3 ,S 2 X 3 〉

⇒ 〈S 4 X 5 X 3 ,S 4 X 5 X 3 〉

⇒ 〈X 6 X 5 X 3 ,X 6 X 5 X 3 〉

⇒ 〈Aozhou X5 X 3 ,Australia X5 X 3 〉

⇒ 〈Aozhou shi X3 ,Australia is X3 〉

⇒ 〈Aozhou shi X7 zhiyi,Australia is one of X7 〉

⇒ 〈Aozhou shi X8 de X 9 zhiyi,Australia is one of the X9 that X 8 〉

⇒ 〈Aozhou shi yu X1 you X 2 de X 9 zhiyi,Australia is one of the X9 that have X2 with X 1 〉

Figure 1: Example partial derivation of a synchronous CFG.

is the product of the weights of the rules used in the
translation, multiplied by the following extra factors:

(17) w(D) =
∏
〈r,i, j〉∈D

w(r)× plm(e)λlm ×exp(−λwp|e|)

whereplm is the language model, and exp(−λwp|e|),
the word penalty, gives some control over the length
of the English output.

We have separated these factors out from the rule
weights for notational convenience, but it is concep-
tually cleaner (and necessary for polynomial-time
decoding) to integrate them into the rule weights,
so that the whole model is a weighted synchronous
CFG. The word penalty is easy; the language model
is integrated by intersecting the English-side CFG
with the language model, which is a weighted finite-
state automaton.

3 Training

The training process begins with a word-aligned cor-
pus: a set of triples〈 f ,e,∼〉, where f is a French
sentence,e is an English sentence, and∼ is a (many-
to-many) binary relation between positions off and
positions ofe. We obtain the word alignments using
the method of Koehn et al. (2003), which is based
on that of Och and Ney (2004). This involves run-
ning GIZA++ (Och and Ney, 2000) on the corpus in
both directions, and applying refinement rules (the
variant they designate “final-and”) to obtain a single
many-to-many word alignment for each sentence.

Then, following Och and others, we use heuris-
tics to hypothesize a distribution of possible deriva-
tions of each training example, and then estimate

the phrase translation parameters from the hypoth-
esized distribution. To do this, we first identifyini-
tial phrasepairs using the same criterion as previous
systems (Och and Ney, 2004; Koehn et al., 2003):

Definition 1. Given a word-aligned sentence pair
〈 f ,e,∼〉, a rule 〈 f j

i ,e
j′

i′ 〉 is an initial phrase pair of
〈 f ,e,∼〉 iff:

1. fk ∼ ek′ for somek ∈ [i, j] andk′ ∈ [i′, j′];

2. fk / ek′ for all k ∈ [i, j] andk′ < [i′, j′];

3. fk / ek′ for all k < [i, j] andk′ ∈ [i′, j′].

Next, we form all possible differences of phrase
pairs:

Definition 2. The set of rules of〈 f ,e,∼〉 is the
smallest set satisfying the following:

1. If 〈 f j
i ,e

j′

i′ 〉 is an initial phrase pair, then

X → 〈 f j
i ,e

j′

i′ 〉

is a rule.

2. If r = X → 〈γ, α〉 is a rule and〈 f j
i ,e

j′

i′ 〉 is an

initial phrase pair such thatγ = γ1 f j
i γ2 andα =

α1ej′

i′ α2, then

X → 〈γ1X k γ2, α1X k α2〉

is a rule, wherek is an index not used inr.

The above scheme generates a very large num-
ber of rules, which is undesirable not only because
it makes training and decoding very slow, but also
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because it createsspurious ambiguity—a situation
where the decoder produces many derivations that
are distinct yet have the same model feature vectors
and give the same translation. This can result inn-
best lists with very few different translations or fea-
ture vectors, which is problematic for the algorithm
we use to tune the feature weights. Therefore we
filter our grammar according to the following prin-
ciples, chosen to balance grammar size and perfor-
mance on our development set:

1. If there are multiple initial phrase pairs contain-
ing the same set of alignment points, we keep
only the smallest.

2. Initial phrases are limited to a length of 10 on
the French side, and rule to five (nonterminals
plus terminals) on the French right-hand side.

3. In the subtraction step,f j
i must have length

greater than one. The rationale is that little
would be gained by creating a new rule that is
no shorter than the original.

4. Rules can have at most two nonterminals,
which simplifies the decoder implementation.
Moreover, we prohibit nonterminals that are
adjacent on the French side, a major cause of
spurious ambiguity.

5. A rule must have at least one pair of aligned
words, making translation decisions always
based on some lexical evidence.

Now we must hypothesize weights for all the deriva-
tions. Och’s method gives equal weight to all the
extracted phrase occurences. However, our method
may extract many rules from a single initial phrase
pair; therefore we distribute weight equally among
initial phrase pairs, but distribute that weight equally
among the rules extracted from each. Treating this
distribution as our observed data, we use relative-
frequency estimation to obtainP(γ | α) andP(α | γ).

4 Decoding

Our decoder is a CKY parser with beam search
together with a postprocessor for mapping French
derivations to English derivations. Given a French
sentencef , it finds the best derivation (orn best
derivations, with little overhead) that generates〈 f ,e〉

for somee. Note that we find the English yield of the
highest-probability single derivation

(18) e

 arg max
D s.t. f (D) = f

w(D)


and not necessarily the highest-probabilitye, which
would require a more expensive summation over
derivations.

We prune the search space in several ways. First,
an item that has a score worse thanβ times the best
score in the same cell is discarded; second, an item
that is worse than thebth best item in the same cell is
discarded. Each cell contains all the items standing
for X spanningf j

i . We chooseb and β to balance
speed and performance on our development set. For
our experiments, we setb = 40, β = 10−1 for X cells,
andb = 15, β = 10−1 for S cells. We also prune rules
that have the same French side (b = 100).

The parser only operates on the French-side gram-
mar; the English-side grammar affects parsing only
by increasing the effective grammar size, because
there may be multiple rules with the same French
side but different English sides, and also because in-
tersecting the language model with the English-side
grammar introduces many states into the nontermi-
nal alphabet, which are projected over to the French
side. Thus, our decoder’s search space is many times
larger than a monolingual parser’s would be. To re-
duce this effect, we apply the following heuristic
when filling a cell: if an item falls outside the beam,
then any item that would be generated using a lower-
scoring rule or a lower-scoring antecedent item is
also assumed to fall outside the beam. This heuristic
greatly increases decoding speed, at the cost of some
search errors.

Finally, the decoder has a constraint that pro-
hibits any X from spanning a substring longer than
10 on the French side, corresponding to the maxi-
mum length constraint on initial rules during train-
ing. This makes the decoding algorithm asymptoti-
cally linear-time.

The decoder is implemented in Python, an inter-
preted language, with C++ code from the SRI Lan-
guage Modeling Toolkit (Stolcke, 2002). Using the
settings described above, on a 2.4 GHz Pentium IV,
it takes about 20 seconds to translate each sentence
(average length about 30). This is faster than our
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Python implementation of a standard phrase-based
decoder, so we expect that a future optimized imple-
mentation of the hierarchical decoder will run at a
speed competitive with other phrase-based systems.

5 Experiments

Our experiments were on Mandarin-to-English
translation. We compared a baseline system,
the state-of-the-art phrase-based system Pharaoh
(Koehn et al., 2003; Koehn, 2004a), against our sys-
tem. For all three systems we trained the transla-
tion model on the FBIS corpus (7.2M+9.2M words);
for the language model, we used the SRI Language
Modeling Toolkit to train a trigram model with mod-
ified Kneser-Ney smoothing (Chen and Goodman,
1998) on 155M words of English newswire text,
mostly from the Xinhua portion of the Gigaword
corpus. We used the 2002 NIST MT evaluation test
set as our development set, and the 2003 test set as
our test set. Our evaluation metric was BLEU (Pap-
ineni et al., 2002), as calculated by the NIST script
(version 11a) with its default settings, which is to
perform case-insensitive matching ofn-grams up to
n = 4, and to use the shortest (as opposed to nearest)
reference sentence for the brevity penalty. The re-
sults of the experiments are summarized in Table 1.

5.1 Baseline

The baseline system we used for comparison was
Pharaoh (Koehn et al., 2003; Koehn, 2004a), as pub-
licly distributed. We used the default feature set: lan-
guage model (same as above),p( f̄ | ē), p(ē | f̄ ), lex-
ical weighting (both directions), distortion model,
word penalty, and phrase penalty. We ran the trainer
with its default settings (maximum phrase length 7),
and then used Koehn’s implementation of minimum-
error-rate training (Och, 2003) to tune the feature
weights to maximize the system’s BLEU score on
our development set, yielding the values shown in
Table 2. Finally, we ran the decoder on the test set,
pruning the phrase table withb = 100, pruning the
chart withb = 100, β = 10−5, and limiting distor-
tions to 4. These are the default settings, except for
the phrase table’sb, which was raised from 20, and
the distortion limit. Both of these changes, made by
Koehn’s minimum-error-rate trainer by default, im-
prove performance on the development set.

Rank Chinese English
1 � .
3 � the

14 ( in
23 � ’s

577 X 1 � X 2 the X 2 of X 1

735 X 1 � X 2 the X 2 X 1

763 X 1 K� one of X1

1201 X1 ;ß president X1

1240 X1 �C $ X 1

2091 Êt X 1 X 1 this year
3253 ~�K X 1 X 1 percent

10508 ( X 1 � under X1

28426 ( X 1 M before X1

47015 X1 � X 2 the X 2 that X 1

1752457 � X 1 	 X 2 have X2 with X 1

Figure 2: A selection of extracted rules, with ranks
after filtering for the development set. All have X for
their left-hand sides.

5.2 Hierarchical model

We ran the training process of Section 3 on the same
data, obtaining a grammar of 24M rules. When fil-
tered for the development set, the grammar has 2.2M
rules (see Figure 2 for examples). We then ran the
minimum-error rate trainer with our decoder to tune
the feature weights, yielding the values shown in Ta-
ble 2. Note thatλg penalizes the glue rule much less
thanλpp does ordinary rules. This suggests that the
model will prefer serial combination of phrases, un-
less some other factor supports the use of hierarchi-
cal phrases (e.g., a better language model score).

We then tested our system, using the settings de-
scribed above.4 Our system achieves an absolute im-
provement of 0.02 over the baseline (7.5% relative),
without using any additional training data. This dif-
ference is statistically significant (p < 0.01).5 See
Table 1, which also shows that the relative gain is
higher for highern-grams.

4Note that we gave Pharaoh wider beam settings than we
used on our own decoder; on the other hand, since our decoder’s
chart has more cells, itsb limits do not need to be as high.

5We used Zhang’s significance tester (Zhang et al., 2004),
which uses bootstrap resampling (Koehn, 2004b); it was mod-
ified to conform to NIST’s current definition of the BLEU
brevity penalty.
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BLEU-n n-gram precisions
System 4 1 2 3 4 5 6 7 8
Pharaoh 0.2676 0.72 0.37 0.19 0.10 0.052 0.027 0.014 0.0075
hierarchical 0.2877 0.74 0.39 0.21 0.11 0.060 0.032 0.017 0.0084
+constituent 0.2881 0.73 0.39 0.21 0.11 0.062 0.032 0.017 0.0088

Table 1: Results on baseline system and hierarchical system, with and without constituent feature.

Features
System Plm(e) P(γ|α) P(α|γ) Pw(γ|α) Pw(α|γ) Word Phr λd λg λc

Pharaoh 0.19 0.095 0.030 0.14 0.029 −0.20 0.22 0.11 — —
hierarchical 0.15 0.036 0.074 0.037 0.076 −0.32 0.22 — 0.09 —
+constituent 0.11 0.026 0.062 0.025 0.029 −0.23 0.21 — 0.11 0.20

Table 2: Feature weights obtained by minimum-error-rate training (normalized so that absolute values sum
to one). Word= word penalty; Phr= phrase penalty. Note that we have inverted the sense of Pharaoh’s
phrase penalty so that a positive weight indicates a penalty.

5.3 Adding a constituent feature

The use of hierarchical structures opens the pos-
sibility of making the model sensitive to syntac-
tic structure. Koehn et al. (2003) mention German
〈es gibt, there is〉 as an example of a good phrase
pair which is not a syntactic phrase pair, and report
that favoring syntactic phrases does not improve ac-
curacy. But in our model, the rule

(19) X→ 〈es gibt X1 , there is X1 〉

would indeed respect syntactic phrases, because it
builds a pair of Ss out of a pair of NPs. Thus, favor-
ing subtrees in our model that are syntactic phrases
might provide a fairer way of testing the hypothesis
that syntactic phrases are better phrases.

This feature adds a factor to (17),

(20) c(i, j) =

1 if f j
i is a constituent

0 otherwise

as determined by a statistical tree-substitution-
grammar parser (Bikel and Chiang, 2000), trained
on the Penn Chinese Treebank, version 3 (250k
words). Note that the parser was run only on the
test data and not the (much larger) training data. Re-
running the minimum-error-rate trainer with the new
feature yielded the feature weights shown in Table 2.
Although the feature improved accuracy on the de-
velopment set (from 0.314 to 0.322), it gave no sta-
tistically significant improvement on the test set.

6 Conclusion

Hierarchical phrase pairs, which can be learned
without any syntactically-annotated training data,
improve translation accuracy significantly compared
with a state-of-the-art phrase-based system. They
also facilitate the incorporation of syntactic informa-
tion, which, however, did not provide a statistically
significant gain.

Our primary goal for the future is to move towards
a more syntactically-motivated grammar, whether
by automatic methods to induce syntactic categories,
or by better integration of parsers trained on an-
notated data. This would potentially improve both
accuracy and efficiency. Moreover, reducing the
grammar size would allow more ambitious train-
ing settings. The maximum initial phrase length
is currently 10; preliminary experiments show that
increasing this limit to as high as 15 does im-
prove accuracy, but requires more memory. On the
other hand, we have successfully trained on almost
30M+30M words by tightening the initial phrase
length limit for part of the data. Streamlining the
grammar would allow further experimentation in
these directions.

In any case, future improvements to this system
will maintain the design philosophy proven here,
that ideas from syntax should be incorporated into
statistical translation, but not in exchange for the
strengths of the phrase-based approach.
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