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Abstract

Automatic evaluation of machine transla-
tion, based on computing n-gram similar-
ity between system output and human ref-
erence translations, has revolutionized the
development of MT systems. We explore
the use of syntactic information, includ-
ing constituent labels and head-modifier
dependencies, in computing similarity be-
tween output and reference. Our results
show that adding syntactic information
to the evaluation metric improves both
sentence-level and corpus-level correla-
tion with human judgments.

1 Introduction

Evaluation has long been a stumbling block in the
development of machine translation systems, due to
the simple fact that there are many correct transla-
tions for a given sentence. Human evaluation of sys-
tem output is costly in both time and money, leading
to the rise of automatic evaluation metrics in recent
years. The most commonly used automatic evalua-
tion metrics, BLEU (Papineni et al., 2002) and NIST
(Doddington, 2002), are based on the assumption
that “The closer a machine translation is to a profes-
sional human translation, the better it is” (Papineni
et al., 2002). For every hypothesis, BLEU computes
the fraction of n-grams which also appear in the ref-
erence sentences, as well as a brevity penalty. NIST
uses a similar strategy to BLEU but further consid-
ers that n-grams with different frequency should be
treated differently in the evaluation. It introduces the
notion of information weights, which indicate that

rarely occurring n-grams count more than those fre-
quently occurring ones in the evaluation (Dodding-
ton, 2002). BLEU and NIST have been shown to
correlate closely with human judgments in ranking
MT systems with different qualities (Papineni et al.,
2002; Doddington, 2002).

In the 2003 Johns Hopkins Workshop on Speech
and Language Engineering, experiments on MT
evaluation showed that BLEU and NIST do not cor-
relate well with human judgments at the sentence
level, even when they correlate well over large test
sets (Blatz et al., 2003). Kulesza and Shieber (2004)
use a machine learning approach to improve the cor-
relation at the sentence level. Their method, based
on the assumption that higher classification accuracy
in discriminating human- from machine-generated
translations will yield closer correlation with hu-
man judgments, uses support vector machine (SVM)
based learning to weight multiple metrics such as
BLEU, NIST, and WER (minimal word error rate).
The SVM is trained for differentiating the MT hy-
pothesis and the professional human translations,
and then the distance from the hypothesis’s metric
vector to the hyper-plane of the trained SVM is taken
as the final score for the hypothesis.

While the machine learning approach improves
correlation with human judgments, all the metrics
discussed are based on the same type of information:
n-gram subsequences of the hypothesis translations.
This type of feature cannot capture the grammatical-
ity of the sentence, in part because they do not take
into account sentence-level information. For exam-
ple, a sentence can achieve an excellent BLEU score
without containing a verb. As MT systems improve,
the shortcomings of n-gram based evaluation are be-
coming more apparent. State-of-the-art MT output
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Figure 1: Syntax Trees of the Examples

often contains roughly the correct words and con-
cepts, but does not form a coherent sentence. Often
the intended meaning can be inferred; often it can-
not. Evidence that we are reaching the limits of n-
gram based evaluation was provided by Charniak et
al. (2003), who found that a syntax-based language
model improved the fluency and semantic accuracy
of their system, but lowered their BLEU score.

With the progress of MT research in recent years,
we are not satisfied with the getting correct words
in the translations; we also expect them to be well-
formed and more readable. This presents new chal-
lenges to MT evaluation. As discussed above, the
existing word-based metrics can not give a clear
evaluation for the hypothesis’ fluency. For exam-
ple, in the BLEU metric, the overlapping fractions
of n-grams with more than one word are considered
as a kind of metric for the fluency of the hypothesis.
Consider the following simple example:

Reference: I had a dog.
Hypothesis 1: I have the dog.
Hypothesis 2: A dog I had.

If we use BLEU to evaluate the two sentences, hy-
pothesis 2 has two bigrams a dog and I had which
are also found in the reference, and hypothesis 1 has
no bigrams in common with the reference. Thus hy-
pothesis 2 will get a higher score than hypothesis 1.

The result is obviously incorrect. However, if we
evaluate their fluency based on the syntactic simi-
larity with the reference, we will get our desired re-
sults. Figure 1 shows syntactic trees for the example
sentences, from which we can see that hypothesis 1
has exactly the same syntactic structure with the ref-
erence, while hypothesis 2 has a very different one.
Thus the evaluation of fluency can be transformed as
computing the syntactic similarity of the hypothesis
and the references.

This paper develops a number of syntactically
motivated evaluation metrics computed by automat-
ically parsing both reference and hypothesis sen-
tences. Our experiments measure how well these
metrics correlate with human judgments, both for in-
dividual sentences and over a large test set translated
by MT systems of varying quality.

2 Evaluating Machine Translation with
Syntactic Features

In order to give a clear and direct evaluation for the
fluency of a sentence, syntax trees are used to gen-
erate metrics based on the similarity of the MT hy-
pothesis’s tree and those of the references. We can’t
expect that the whole syntax tree of the hypothesis
can always be found in the references, thus our ap-
proach is to be based on the fractions of the subtrees
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which also appear in the reference syntax trees. This
idea is intuitively derived from BLEU, but with the
consideration of the sparse subtrees which lead to
zero fractions, we average the fractions in the arith-
metic mean, instead of the geometric mean used
in BLEU. Then for each hypothesis, the fractions
of subtrees with different depths are calculated and
their arithmetic mean is computed as the syntax tree
based metric, which we denote as “subtree metric”
STM:

STM =
1

D

D
∑

n=1

∑

t∈subtreesn(hyp) countclip(t)
∑

t∈subtreesn(hyp) count(t)

where D is the maximum depth of subtrees con-
sidered, count(t) denotes the number of times sub-
tree t appears in the candidate’s syntax tree, and
countclip(t) denotes the clipped number of times
t appears in the references’ syntax trees. Clipped
here means that, for a given subtree, the count com-
puted from the hypothesis syntax tree can not exceed
the maximum number of times the subtree occurs in
any single reference’s syntax tree. A simple exam-
ple with one hypothesis and one reference is shown
in Figure 2. Setting the maximum depth to 3, we
go through the hypothesis syntax tree and compute
the fraction of subtrees with different depths. For
the 1-depth subtrees, we get S, NP, VP, PRON, V,
NP which also appear in the reference syntax tree.
Since PRON only occurs once in the reference, its
clipped count should be 1 rather than 2. Then we
get 6 out of 7 for the 1-depth subtrees. For the 2-
depth subtrees, we get S→NP VP, NP→PRON, and
VP→V NP which also appear in the reference syntax
tree. For the same reason, the subtree NP→PRON
can only be counted once. Then we get 3 out of 4
for the 2-depth subtree. Similarly, the fraction of
3-depth subtrees is 1 out of 2. Therefore, the final
score of STM is (6/7+3/4+1/2)/3=0.702.

While the subtree overlap metric defined above
considers only subtrees of a fixed depth, subtrees of
other configurations may be important for discrimi-
nating good hypotheses. For example, we may want
to look for the subtree:

S

NP VP

V NP

to find sentences with transitive verbs, while ignor-
ing the internal structure of the subject noun phrase.
In order to include subtrees of all configurations in
our metric, we turn to convolution kernels on our
trees. Using H(x) to denote the vector of counts of
all subtrees found in tree x, for two trees T1 and T2,
the inner product H(T1) ·H(T2) counts the number
of matching pairs of subtrees of T1 and T2. Collins
and Duffy (2001) describe a method for efficiently
computing this dot product without explicitly com-
puting the vectors H , which have dimensionality ex-
ponential in the size of the original tree. In order to
derive a similarity measure ranging from zero to one,
we use the cosine of the vectors H:

cos(T1, T2) =
H(T1) ·H(T2)

|H(T1)||H(T2)|

Using the identity

|H(T1)| =
√

H(T1) ·H(T1)

we can compute the cosine similarity using the ker-
nel method, without ever computing the entire of
vector of counts H . Our kernel-based subtree metric
TKM is then defined as the maximum of the cosine
measure over the references:

TKM = max
t∈ref

cos(hyp, t)

The advantage of using the tree kernel is that it
can capture the similarity of subtrees of different
shapes; the weak point is that it can only use the
reference trees one by one, while STM can use them
simultaneously. The dot product also weights indi-
vidual features differently than our other measures,
which compute overlap in the same way as does
BLEU. For example, if the same subtree occurs 10
times in both the hypothesis and the reference, this
contributes a term of 100 to the dot product, rather
than 10 in the clipped count used by BLEU and by
our subtree metric STM.

2.1 Dependency-Based Metrics

Dependency trees consist of trees of head-modifier
relations with a word at each node, rather than just
at the leaves. Dependency trees were found to corre-
spond better across translation pairs than constituent
trees by Fox (2002), and form the basis of the ma-
chine translation systems of Alshawi et al. (2000)
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Figure 2: Examples for the Computation of STM

and Lin (2004). We derived dependency trees from
the constituent trees by applying the determinis-
tic headword extraction rules used by the parser of
Collins (1999). For the example of the reference
syntax tree in Figure 2, the whole tree with the root
S represents a sentence; and the subtree NP→ART N
represents a noun phrase. Then for every node in the
syntax tree, we can determine its headword by its
syntactic structure; from the subtree NP→ART N,
for example, the headword selection rules chose the
headword of NP to be word corresponding to the
POS N in the subtree, and the other child, which cor-
responds to ART, is the modifier for the headword.
The dependency tree then is a kind of structure con-
stituted by headwords and every subtree represents
the modifier information for its root headword. For
example, the dependency tree of the sentence I have
a red pen is shown as below.

have

I pen

a red

The dependency tree contains both the lexical and
syntactic information, which inspires us to use it for
the MT evaluation.

Noticing that in a dependent tree the child
nodes are the modifier of its parent, we propose
a dependency-tree based metric by extracting the
headwords chains from both the hypothesis and the
reference dependency trees. A headword chain is
a sequence of words which corresponds to a path
in the dependency tree. Take the dependency tree
in Figure 2 as the example, the 2-word headword

chains include have I, have pen, pen a, and pen
red. Before using the headword chains, we need
to extract them out of the dependency trees. Fig-
ure 3 gives an algorithm which recursively extracts
the headword chains in a dependency tree from short
to long. Having the headword chains, the headword
chain based metric is computed in a manner similar
to BLEU, but using n-grams of dependency chains
rather than n-grams in the linear order of the sen-
tence. For every hypothesis, the fractions of head-
word chains which also appear in the reference de-
pendency trees are averaged as the final score. Using
HWCM to denote the headword chain based metric,
it is computed as follows:

HWCM =
1

D

D
∑

n=1

∑

g∈chainn(hyp) countclip(g)
∑

g∈chainn(hyp) count(g)

where D is chosen as the maximum length chain
considered.

We may also wish to consider dependency rela-
tions over more than two words that are contigu-
ous but not in a single ancestor chain in the depen-
dency tree. For this reason, the two methods de-
scribed in section 3.1 are used to compute the simi-
larity of dependency trees between the MT hypothe-
sis and its references, and the corresponding metrics
are denoted DSTM for dependency subtree metric
and DTKM for dependency tree kernel metric.

3 Experiments

Our testing data contains two parts. One part is a set
of 665 English sentences generated by a Chinese-
English MT system. And for each MT hypothesis,
three reference translations are associated with it.
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Input: dependency tree T, maximum length N of the headword chain
Output: headword chains from length 1 to N

for i = 1 to N
for every node n in T

if i == 1
add n’s word to n’s 1 word headword chains;

else
for every direct child c of n

for every i-1 words headword chain hc of c
newchain = joint(n’s word, hc);
add newchain to the i words headword chains of n;

endfor
endfor

endif
endfor

endfor

Figure 3: Algorithm for Extracting the Headword Chains

The human judgments, on a scale of 1 to 5, were col-
lected at the 2003 Johns Hopkins Speech and Lan-
guage Summer Workshop, which tells the overall
quality of the MT hypotheses. The translations were
generated by the alignment template system of Och
(2003). This testing set is called JHU testing set
in this paper. The other set of testing data is from
MT evaluation workshop at ACL05. Three sets of
human translations (E01, E03, E04) are selected as
the references, and the outputs of seven MT systems
(E9 E11 E12 E14 E15 E17 E22) are used for testing
the performance of our syntactic metrics. Each set
of MT translations contains 929 English sentences,
each of which is associated with human judgments
for its fluency and adequacy. The fluency and ade-
quacy scores both range from 1 to 5.

3.1 Sentence-level Evaluation

Our syntactic metrics are motivated by a desire to
better capture grammaticality in MT evaluation, and
thus we are most interested in how well they cor-
relate with human judgments of sentences’ fluency,
rather than the adequacy of the translation. To
do this, the syntactic metrics (computed with the
Collins (1999) parser) as well as BLEU were used
to evaluate hypotheses in the test set from ACL05
MT workshop, which provides both fluency and ad-
equacy scores for each sentence, and their Pearson
coefficients of correlation with the human fluency
scores were computed. For BLEU and HWCM, in
order to avoid assigning zero scores to individual

Max
Length/

Depth BLEU HWCM STM DSTM
1 0.126 0.130 —– —–
2 0.132 0.142 0.142 0.159
3 0.117 0.157 0.147 0.150
4 0.093 0.153 0.136 0.121

kernel 0.065 0.090

Table 1: Correlation with Human Fluency Judg-
ments for E14

sentences, when precision for n-grams of a particu-
lar length is zero we replace it with an epsilon value
of 10−3. We choose E14 and E15 as two repre-
sentative MT systems in the ACL05 MT workshop
data set, which have relatively high human scores
and low human scores respectively. The results are
shown in Table 1 and Table 2, with every metric
indexed by the maximum n-gram length or subtree
depth. The last row of the each table shows the tree-
kernel-based measures, which have no depth param-
eter to adjust, but implicitly consider all depths.

The results show that in both systems our syntac-
tic metrics all achieve a better performance in the
correlation with human judgments of fluency. We
also notice that with the increasing of the maximum
length of n-grams, the correlation of BLEU with hu-
man judgments does not necessarily increase, but
decreases in most cases. This is contrary to the argu-
ment in BLEU which says that longer n-grams bet-
ter represent the sentences’ fluency than the shorter
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Max
Length/

Depth BLEU HWCM STM DSTM
1 0.122 0.128 —– —–
2 0.094 0.120 0.134 0.137
3 0.073 0.119 0.144 0.124
4 0.048 0.113 0.143 0.121

kernel 0.089 0.066

Table 2: Correlation with Human Fluency Judg-
ments for E15

ones. The problem can be explained by the limi-
tation of the reference translations. In our exper-
iments, every hypothesis is evaluated by referring
to three human translations. Since the three human
translations can only cover a small set of possible
translations, with the increasing of n-gram length,
more and more correct n-grams might not be found
in the references, so that the fraction of longer n-
grams turns to be less reliable than the short ones
and hurts the final scores. In the the corpus-level
evaluation of a MT system, the sparse data problem
will be less serious than in the sentence-level evalu-
ation, since the overlapping n-grams of all the sen-
tences and their references will be summed up. So
in the traditional BLEU algorithm used for corpus-
level evaluation, a maximum n-gram of length 4 or 5
is usually used. A similar trend can be found in syn-
tax tree and dependency tree based metrics, but the
decreasing ratios are much lower than BLEU, which
indicates that the syntactic metrics are less affected
by the sparse data problem. The poor performance
of tree-kernel based metrics also confirms our argu-
ments on the sparse data problem, since the kernel
measures implicitly consider the overlapping ratios
of the sub-trees of all shapes, and thus will be very
much affected by the sparse data problem.

Though our syntactic metrics are proposed for
evaluating the sentences’ fluency, we are curious
how well they do in the overall evaluation of sen-
tences. Thus we also computed each metric’s cor-
relation with human overall judgments in E14, E15
and JHU testing set. The overall human score for
each sentence in E14 and E15 is computed by sum-
ming up its fluency score and adequacy score. The
results are shown in Table 3, Table 4, and Table
5. We can see that the syntactic metrics achieve

Max
Length/

Depth BLEU HWCM STM DSTM
1 0.176 0.191 —– —–
2 0.185 0.195 0.171 0.193
3 0.169 0.202 0.168 0.175
4 0.137 0.199 0.158 0.143

kernel 0.093 0.127

Table 3: Correlation with Human Overall Judgments
for E14

Max
Length/

Depth BLEU HWCM STM DSTM
1 0.146 0.152 —– —–
2 0.124 0.142 0.148 0.152
3 0.095 0.144 0.151 0.139
4 0.067 0.137 0.144 0.137

kernel 0.098 0.084

Table 4: Correlation with Human Overall Judgments
for E15

competitive correlations in the test, among which
HWCM, based on headword chains, gives better
performances in evaluation of E14 and E15, and a
slightly worse performance in JHU testing set than
BLEU. Just as with the fluency evaluation, HWCM
and other syntactic metrics present more stable per-
formance as the n-gram’s length (subtree’s depth)
increases.

3.2 Corpus-level Evaluation

While sentence-level evaluation is useful if we are
interested in a confidence measure on MT outputs,
corpus level evaluation is more useful for comparing

Max
Length/

Depth BLEU HWCM STM DSTM
1 0.536 0.502 —– —–
2 0.562 0.555 0.515 0.513
3 0.513 0.538 0.529 0.477
4 0.453 0.510 0.497 0.450

kernel 0.461 0.413

Table 5: Correlation with Human Overall Judgments
for JHU Testing Set
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Max
Length/

Depth BLEU HWCM STM DSTM
1 0.629 0.723 —– —–
2 0.683 0.757 0.538 0.780
3 0.724 0.774 0.597 0.780
4 0.753 0.778 0.612 0.788
5 0.781 0.780 0.618 0.778
6 0.763 0.778 0.618 0.782

kernel 0.539 0.875

Table 6: Corpus-level Correlation with Human
Overall Judgments (E9 E11 E12 E14 E15 E17 E22)

MT systems and guiding their development. Does
higher sentence-level correlation necessarily indi-
cate higher correlation in corpus-level evaluation?
To answer this question, we used our syntactic met-
rics and BLEU to evaluate all the human-scored MT
systems (E9 E11 E12 E14 E15 E17 E22) in the
ACL05 MT workshop test set, and computed the
correlation with human overall judgments. The hu-
man judgments for an MT system are estimated by
summing up each sentence’s human overall score.
Table 6 shows the results indexed by different n-
grams and tree depths.

We can see that the corpus-level correlation and
the sentence-level correlation don’t always corre-
spond. For example, the kernel dependency subtree
metric achieves a very good performance in corpus-
level evaluation, but it has a poor performance in
sentence-level evaluation. Sentence-level correla-
tion reflects the relative qualities of different hy-
potheses in a MT system, which does not indicate
any information for the relative qualities of differ-
ent systems. If we uniformly decrease or increase
every hypothesis’s automatic score in a MT sys-
tem, the sentence-level correlation with human judg-
ments will remain the same, but the corpus-level cor-
relation will be changed. So we might possibly get
inconsistent corpus-level and sentence-level correla-
tions.

From the results, we can see that with the increase
of n-grams length, the performance of BLEU and
HWCM will first increase up to length 5, and then
starts decreasing, where the optimal n-gram length
of 5 corresponds to our usual setting for BLEU algo-
rithm. This shows that corpus-level evaluation, com-

pared with the sentence-level evaluation, is much
less sensitive to the sparse data problem and thus
leaves more space for making use of comprehen-
sive evaluation metrics. We speculate this is why the
kernel dependency subtree metric achieves the best
performance among all the metrics. We can also see
that HWCM and DSTM beat BLEU in most cases
and exhibit more stable performance.

An example hypothesis which was assigned a
high score by HWCM but a low score by BLEU is
shown in Table 7. In this particular sentence, the
common head-modifier relations “aboard← plane”
and “plane ← the” caused a high headword chain
overlap, but did not appear as common n-grams
counted by BLEU. The hypothesis is missing the
word “fifth”, but was nonetheless assigned a high
score by human judges. This is probably due to its
fluency, which HWCM seems to capture better than
BLEU.

4 Conclusion

This paper introduces several syntax-based metrics
for the evaluation of MT, which we find to be par-
ticularly useful for predicting a hypothesis’s fluency.
The syntactic metrics, except the kernel based ones,
all outperform BLEU in sentence-level fluency eval-
uation. For the overall evaluation of sentences for
fluency and adequacy, the metric based on headword
chain performs better than BLEU in both sentence-
level and corpus-level correlation with human judg-
ments. The kernel based metrics, though poor in
sentence-level evaluation, achieve the best results in
corpus-level evaluation, where sparse data are less
of a barrier.

Our syntax-based measures require the existence
of a parser for the language in question, however it
is worth noting that a parser is required for the tar-
get language only, as all our measures of similarity
are defined across hypotheses and references in the
same language.

Our results, in particular for the primarily struc-
tural STM, may be surprising in light of the fact
that the parser is not designed to handle ill-formed
or ungrammatical sentences such as those produced
by machine translation systems. Modern statistical
parsers have been tuned to discriminate good struc-
tures from bad rather than good sentences from bad.
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hyp Diplomats will be aboard the plane to return home .
ref1 Diplomats are to come back home aboard the fifth plane .
ref2 Diplomatic staff would go home in a fifth plane .
ref3 Diplomatic staff will take the fifth plane home .

Table 7: An example hypothesis in the ACL05-MTE workshop which was assigned a high score by HWCM
(0.511) but a low score by BLEU (0.084). Both human judges assigned a high score (4).

Indeed, in some recent work on re-ranking machine
translation hypotheses (Och et al., 2004), parser-
produced structures were not found to provide help-
ful information, as a parser is likely to assign a good-
looking structure to even a lousy input hypothesis.

However, there is an important distinction be-
tween the use of parsers in re-ranking and evaluation
– in the present work we are looking for similarities
between pairs of parse trees rather than at features
of a single tree. This means that the syntax-based
evaluation measures can succeed even when the tree
structure for a poor hypothesis looks reasonable on
its own, as long as it is sufficiently distinct from the
structures used in the references.

We speculate that by discriminatively training
weights for the individual subtrees and headword
chains used by the syntax-based metrics, further im-
provements in evaluation accuracy are possible.
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