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Abstract

A new model for statistical translation is
presented. A novel feature of this model
is that the alignments it produces are hier-
archically arranged. The generative pro-
cess begins by splitting the input sen-
tence in two parts. Each of the parts is
translated by a recursive application of
the model and the resulting translation
are then concatenated. If the sentence
is small enough, a simpler model (in our
case IBM’s model 1) is applied.

The training of the model is explained. Fi-
nally, the model is evaluated using the cor-
pora from a large vocabulary shared task.

1 Introduction

Suppose you were to find an English translation for
a Spanish sentence. One possible approach is to as-
sume that every English sentence is a candidate but
that different English sentences have different prob-
abilities of being the correct translation. Then, the
translation task can be divided in two parts: define
an adequate probability distribution that answers to
the question “given this English sentence, which is
the probability that it is a good translation of that
Spanish sentence?”; and use that distribution in or-
der to find the most likely translation of your input
sentence.

∗Work partially supported by Bancaixa through the project
“Sistemas Inductivos, Estadı́sticos y Estructurales, para la Tra-
duccíon Autoḿatica (Siesta)”.

This approach is referred to as the statistical ap-
proach to machine translation. The usual approach
is to define an statistical model and train its parame-
ters from a training corpus consisting in pairs of sen-
tences that are known to be translation of each other.
Different models have been presented in the litera-
ture, see for instance (Brown et al., 1993; Och and
Ney, 2004; Vidal et al., 1993; Vogel et al., 1996).
Most of them rely on the concept of alignment: a
mapping from words or groups of words in a sen-
tence into words or groups in the other (in the case
of (Vidal et al., 1993) the mapping goes from rules
in a grammar for a language into rules of a grammar
for the other language). This concept of alignment
has been also used for tasks like authomatic vocab-
ulary derivation and corpus alignment (Dagan et al.,
1993).

A new statistical model is proposed in this pa-
per, which was initially introduced in (Vilar Torres,
1998). This model is designed so that the align-
ment between two sentences can be seen in an struc-
tured manner: each sentence is divided in two parts
and they are put in correspondence; then each of
those parts is similarly divided and related to its
translation. This way, the alignment can be seen as
a tree structure which aligns progressively smaller
segments of the sentences. This recursive procedure
gives its name to the model: MAR, which comes
from “Modelo de Alineamiento Recursivo”, which
is Spanish for “Recursive Alignment Model”.

The rest of the paper is structured as follows: af-
ter a comment on previous works, we introduce the
notation that we will use throughout the paper, then
we briefly explain the model 1 from IBM, next we
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introduce our model, then we explain the process
of parameter estimation, and how to use the model
to translate new test sentences. Finally, we present
some experiments and results, together with conclu-
sions.

2 Previous works

The initial formulation of the proposed model,
including the training procedures, was presented
in (Vilar Torres, 1998), along with preliminary ex-
periments in a small translation task which provided
encouraging results.

This model shares some similarities with the
stochastic inversion transduction grammars (SITG)
presented by Wu in (Wu, 1997). The main point
in common is the type of possible alignments con-
sidered in both models. Some of the properties
of these alignments are studied in (Zens and Ney,
2003). However, the parametrizations of SITGs and
the MAR are completely different. The generative
process of SITGs produces simultaneously the in-
put and output sentences and the parameters of the
model refer to the rules of the nonterminals. This
provides a symmetry to both input and output sen-
tences. In contrast, our model clearly distinguishes
the input and output sentences and the parameters
are based on observable properties of the strings
(their lengths and the words composing them). On
the other hand, the MAR idea of splitting the sen-
tences until a simple structure is found, also ap-
pears in the Divisive Clustering approach presented
in (Deng et al., 2004). Again, the main difference
lies in the probabilistic modeling of the alignments.
In Divisive Clustering a uniform distribution on the
alignments is assumed while MAR uses a explicit
parametrization.

3 Some notation

In the rest of the paper, we use the following nota-
tion. Sentences are taken as concatenations of sym-
bols (words) and represented using a letter and a
small bar, like inx̄. The individual words are de-
signed by the name of the sentence and a subindex
indicating the position, sōx = x1x2 . . . xn. The
length of a sentence is indicated by|x̄|. Segments
of a sentence are denoted byx̄j

i = xi . . . xj . For the

substrings of the form̄x|x̄|i we use the notation̄x.
i.

Consistently,̄x denotes the input sentence andȳ
its translation and both are assumed to have at least
one word. The input and output vocabularies areX
andY, respectively. Finally, we assume that we are
presentend a setM for training our models. The ele-
ments of this set are pairs(x̄, ȳ) whereȳ is a possible
translation for̄x.

4 IBM’s model 1

IBM’s model 1 is the simplest of a hierarchy of five
statistical models introduced in (Brown et al., 1993).
Each model of the hierarchy can be seen as a refine-
ment of the previous ones. Although model 1, which
we study here, relies on the concept of alignment,
its formulation allows an interpretation of it as a re-
lationship between multisets of words (the order of
the words is irrelevant in the final formula).

A word of warning is in order here. The model we
are going to present has an important difference with
the original: we do not use the empty word. This is
a virtual word which does not belong to the vocabu-
lary of the task and that is added to the beginning of
each sentence in order to allow words in the output
that cannot be justified by the words in the input. We
have decided not to incorporate it because of the use
we are going to make of the model. As we will see,
model 1 is going to be used repeatedly over different
substrings of the input sentence in order to analyze
their contribution to the total translation. This means
that we would have an empty word in each of these
substrings. We have decided to avoid this “prolifer-
ation” of empty words. Future work may introduce
the concept in a more appropriate way.

The model 1 makes two assumptions. That a
stochastic dictionarycan be employed to model the
probability that wordy is the translation of wordx
and that all the words in the input sentence have the
same weight in producing a word in the output. This
leads to:

pI(ȳ | x̄) =
ε(|x̄|, |ȳ|)
|x̄||ȳ|

|ȳ|∏
j=1

|x̄|∑
i=1

t(yj | xi). (1)

Wheret is the stochastic dictionary andε represents
a table that relates the length of the alignment with
the length of the input sentence (we assume that
there is a finite range of possible lengths). This ex-
plicit relations between the lengths is not present in
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the original formulation of the model, but we prefer
to include it so that the probabilities are adequately
normalized.

Clearly, this model is not adequate to describe
complex translations in which complicated patterns
and word order changes may appear. Nevertheless,
this model can do a good job to describe the transla-
tion of short segments of texts. For example, it can
be adequate to model the translation of the Spanish
“gracias” into the English “thank you”.

5 A Recursive Alignment Model

To overcome that limitation of the model we will
take the following approach: if the sentence is com-
plex enough, it will be divided in two and the two
halves will be translated independently and joined
later; if the sentence is simple, the model 1 will be
used.

Let us formalize this intuition for the generative
model. We are given an input sentencex̄ and the first
decission is whether̄x is going to be translated by
IBM’s model 1 or it is complex enough to be trans-
lated by MAR. In the second case, three steps are
taken: a cut point of̄x is defined, each of the result-
ing parts are translated, and the corresponding trans-
lations are concatenated. For the translation of the
second step, the same process isrecursivelyapplied.
The concatenation of the third step can be done in
a “direct” way (the translation of the first part and
then the translation of the second) or in an “inverse”
way (the translation of the second part and then the
translation of the first). The aim of this choice is to
allow for the differences in word order between the
input and ouput languages.

So, we are proposing an alignment model in
which IBM’s model 1 will account for translation
of elementary segments or individual words while
translation of larger and more complex segments or
whole sentences will rely on a hierarchical align-
ment pattern in which model 1 alignments will be
on the lowest level of the hierarchy.

Following this discussion, the model can be for-
mally described through a series of four random ex-
periments:

• The first is the selection of the model. It has
two possible outcomes: IBM and MAR, with
obvious meanings.

• The second is the choice ofb, a cut point ofx̄.
The segment̄xb

1 will be used to generate one of
the parts of the translation, the segmentx̄.

b+1

will generate the other. It takes values from1
to |x̄| − 1.

• The third is the decision about the order of the
concatenation. It has two possible outcomes:
D (for direct) andI (for inverse).

• The fourth is the translation of each of the
halves ofx̄. They take values inY+.

The translation probability can be approximated
as follows:

pT (ȳ | x̄) = Pr(M = IBM | x̄)pI(ȳ | x̄)
+ Pr(M = MAR | x̄)pM (ȳ | x̄).

The value of pI(ȳ | x̄) corresponds to IBM’s
model 1 (Equation 1). To derivepM (ȳ | x̄), we ob-
serve that:

pM (ȳ | x̄) =
|x̄|−1∑
b=1

Pr(b | x̄)∑
d∈{D,I}

Pr(d | b, x̄)

∑
ȳ1∈Y+

Pr(ȳ1 | b, d, x̄)

∑
ȳ2∈Y+

Pr(ȳ2 | b, d, x̄, ȳ1) Pr(ȳ | d, b, x̄, ȳ1, ȳ2).

Note that the probability that̄y is generated from
a pair(ȳ1, ȳ2) is 0 if ȳ 6= ȳ1ȳ2 and1 if ȳ = ȳ1ȳ2, so
the last two lines can be rewritten as:∑
ȳ1∈Y+

Pr(ȳ1 | b, d, x̄)

∑
ȳ2∈Y+

Pr(ȳ2 | b, d, x̄, ȳ1) Pr(ȳ | b, d, x̄, ȳ1, ȳ2)

=
∑

ȳ1,ȳ2∈Y
+

ȳ=ȳ1ȳ2

Pr(ȳ1 | b, d, x̄) Pr(ȳ2 | b, d, x̄, ȳ1)

=
∑

ȳ1 ∈ pref(ȳ)− ȳ

Pr(ȳ1 | b, d, x̄) Pr(ȳ−1
1 ȳ | b, d, x̄, ȳ1)

=
|ȳ|−1∑
c=1

Pr(ȳc
1 | b, d, x̄) Pr(ȳ.

c+1 | b, d, x̄, ȳc
1),
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wherepref(ȳ) is the set ofprefixesof ȳ. And finally:

pM (ȳ | x̄) =
|x̄|−1∑
b=1

Pr(b | x̄)∑
d∈{D,I}

Pr(d | b, x̄)

|ȳ|−1∑
c=1

Pr(ȳc
1 | b, d, x̄) Pr(ȳ.

c+1 | b, d, x̄, ȳc
1).

(2)

The number of parameters of this model is very
large, so it is necessary to introduce some simplifi-
cations in it. The first one relates to the decision of
thetranslation model: we assume that it can be done
just on the basis of the length of the input sentence.
That is, we cat set up two tables,MI andMM , so
that

Pr(M = IBM | x̄) ≈MI(|x̄|),
Pr(M = MAR | x̄) ≈MM (|x̄|).

Obviously, for anȳx ∈ X+, we will haveMI(|x̄|)+
MM (|x̄|) = 1. On the other hand, since it is not
possible to break a one word sentence, we define
MI(1) = 1. This restriction comes in the line men-
tioned before: the translation of longer sentences
will be structured whereas shorter ones can be trans-
lated directly.

In order to decide thecut point, we will assume
that the probability of cutting the input sentence at
a given positionb is most influenced by the words
around it:xb andxb+1. We use a tableB such that:

Pr(b | x̄) ≈ B(xb, xb+1)∑|x̄|−1
i=1 B(xi, xi+1)

.

This can be interpreted as having a weight for each
pair of words and normalizing these weights in each
sentence in order to obtaing a proper probability dis-
tribution.

Two more tables,DD andDI , are used to store the
probabilities that thealignment be direct or inverse.
As before, we assume that the decission can be made
on the basis of the symbols around the cut point:

Pr(d = D | b, x̄) = DD(xb, xb+1),
Pr(d = I | b, x̄) = DI(xb, xb+1).

Again, we haveDD(xb, xb+1) + DI(xb, xb+1) = 1
for every pair of words(xb, xb+1).

Finally, a probability must be assigned to the
translation of the two halves. Assuming that they are
independent we can apply the model in a recursive
manner:

Pr(ȳc
1 | b, d, x̄) ≈

{
pT (ȳc

1 | x̄b
1) if d = D,

pT (ȳc
1 | x̄.

b+1) if d = I,

Pr(ȳ.
c+1 | b, d, x̄, ȳc

1) ≈

{
pT (ȳ.

c+1 | x̄.
b+1) if d = D,

pT (ȳ.
c+1 | x̄b

1) if d = I.

Finally, we can rewrite (2) as:

pM (ȳ | x̄) =
|x̄|−1∑
b=1

B(xb, xb+1)∑|x̄|−1
i=1 B(xi, xi+1)

·

(
DD(xb, xb+1)

|ȳ|−1∑
c=1

pT (ȳc
1 | x̄b

1)pT (ȳ.
c+1 | x̄.

b+1)

+DI(xb, xb+1)
|ȳ|−1∑
c=1

pT (ȳ.
c+1 | x̄b

1)pT (ȳc
1 | x̄.

b+1)

)
.

The final form of the complete model is then:

pT (ȳ | x̄) =
MI(|x̄|)pI(ȳ | x̄)

+MM (|x̄|)
|x̄|−1∑
b=1

B(xb, xb+1)∑|x̄|−1
i=1 B(xi, xi+1)

·

(
DD(xb, xb+1)

|ȳ|−1∑
c=1

pT (ȳc
1 | x̄b

1)pT (ȳ.
c+1 | x̄.

b+1)

+DI(xb, xb+1)
|ȳ|−1∑
c=1

pT (ȳ.
c+1 | x̄b

1)pT (ȳc
1 | x̄.

b+1)

)
.

(3)

6 Parameter estimation

Once the model is defined, it is necessary to find
a way of estimating its parameters given a training
corpusM. We will use maximun likelihood estima-
tion. In our case, the likelihood of the sample corpus
is:

V =
∏

(x̄,ȳ)∈M

pT (ȳ | x̄).
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In order to maximizeV , initial values are given
to the parameters and they are reestimated using re-
peatedly Baum-Eagon’s (Baum and Eagon, 1967)
and Gopalakrishnan’s (Gopalakrishnan et al., 1991)
inequalities. LetP be a parameter of the model (ex-
cept for those inB) and letF(P ) be its “family” (i.e.
the set of parameters such that

∑
Q∈F(P ) Q = 1).

Then, a new value ofP can be computed as follows:

N (P ) =
P

∂ V

∂ P∑
Q∈F(P )

Q
∂ V

∂ Q

=

∑
(x̄,ȳ)∈M

P

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ P∑
Q∈F(P )

∑
(x̄,ȳ)∈M

Q

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ Q

=
C(P )∑

Q∈F(P )

C(Q)
,

(4)

where

C(P ) =
∑

(x̄,ȳ)∈M

P

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ P
, (5)

are the “counts” of parameterP . This is correct as
long asV is a polynomial inP . However, we have a
problem forB sinceV is a rational function of these
parameters. We can solve it by assuming, without
lose of generality, that

∑
x1,x2∈X B(x1, x2) = 1.

Then Gopalakrishnan’s inequality can be applied
similarly and we get:

N (P ) =
C + C(P )∑

Q∈F(P )

C + C(Q)
, (6)

whereC is an adequate constant. Now it is easy
to design a reestimation algorithm. The algorithm
gives arbitrary initial values to the parameters (typi-
cally those corresponding to uniform probabilities),
computes the counts of the parameters for the corpus
and, using either (4) or (6), gets new values for the
parameters. This cycle is repeated until a stopping
criterion (in our case a prefixed number of iterations)
is met. This algorithm can be seen in Figure 1

7 Some notes on efficiency

Estimating the parameters as discussed above entails
high computational costs: computingpT (ȳ | x̄) re-
quiresO(mn) arithmetic operations involving the
values ofpT (ȳj

i | x̄l
k) for every possible value of

i, j, k andl, which areO(m2n2). This results in a
global cost ofO(m3n3). On the other hand, com-
puting ∂ pT

∂ P costs as much as computingpT . So it is
interesting to keep the number of computed deriva-
tives low.

7.1 Reduction of the parameters to train

In the experiments we have followed some heuristics
in order not to reestimate certain parameters:

• The values of MI —and, consequently,
of MM— for lengths higher than a threshold
are assumed to be0 and therefore there is no
need to estimate them.

• As a consequence, the values ofε for lengths
above the same threshold, need not be reesti-
mated.

• The values oft for pairs of words with counts
under a certain threshold are not reestimated.

Furthermore, during the computation of counts, the
recursion is cut on those substring pairs where the
value of the probability for the translation is very
small.

7.2 Efficient computation of model 1

Other source of optimization is the realization that
for computingpT (ȳ | x̄), it is necessary to com-
pute the value ofpI for each possible pair(x̄ie

ib, ȳ
oe
ob)

(whereib, ie, ob andoe stand forinput begin, in-
put end, output beginandoutput end, respectively).
Fortunately, it is possible to accelerate this compu-
tations. First, define:

I(ib, ie, ob, oe) =
pI(x̄ie

ib, ȳ
oe
ob)

ε(ie− ib + 1, oe− ob + 1)

=
1

(ie− ib + 1)oe−ob+1

oe∏
j=ob

ie∑
i=ib

t(ȳj | x̄i).

Now let

S(ib, ie, j) =
ie∑

i=ib

t(ȳj | x̄i).
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Algorithm Maximum likelihood estimation
give initial values to the parameters;
repeat

initialize the counts to0;
for each (x̄, ȳ) ∈M do

computepT (ȳ | x̄);
for eachparameterP involved in the alignment of(x̄, ȳ) do

CP := CP +
P

pT (ȳ | x̄)
∂ pT (ȳ | x̄)

∂ P
;

endfor
endfor
for eachparameterP do

reestimateP using (4) or (6);
endfor

until the stopping criterion is met;
End Maximum likelihood estimation

Figure 1: Algorithm for maximum likelihood estimation of the parameters of MAR

This leads to

I(ib, ie, ob, oe) = S(ib, ie, ob),

if ob = oe, and to

I(ib, ie, ob, oe) =
I(ib, ie, ob, oe− 1)S(ib, ie, ob)

(ie− ib + 1)
,

if ob 6= oe.
So we can compute all values ofI with the algo-

rithm in Figure 2.

7.3 Splitting the corpora

Another way of reducing the costs of training has
been the use of a heuristic to split long sentences
into smaller parts with a length less thanl words.

Suppose we are to split sentencesx̄ and ȳ. We
begin by aligning each word in̄y to a word in x̄.
Then, a score and a translation is assigned to each
substrinḡxj

i with a length belowl. The translation is
produced by looking for the substring ofȳ which has
a length belowl and which has the largest number
of words aligned to positions betweeni andj. The
pair so obtained is given a score equal to sum of: (a)
the square of the length of̄xj

i ; (b) the square of the
number of words in the output aligned to the input;
and (c) minus ten times the sum of the square of the
number of words aligned to a nonempty position out
of x̄j

i and the number of words outside the segment
chosen that are aligned tōxj

i .

After the segments of̄x are so scored, the partition
of x̄ that maximizes the sum of scores is computed
by dynamic programming.

8 Translating the test sentences

The MAR model can be used to obtain adequate
bilingual templates which can be used to translate
new test sentences using an appropriate template-
based translation system. Here we have adopted the
pharaoh program (Koehn, 2004).

8.1 Finding the templates

The parameters of the MAR were trained using the
algorithm above: first ten IBM model 1 iterations
were used for giving initial values to the dictionary
probabilities and then five more iterations for re-
training the dictionary together with the rest of the
parameters.

The alignment of a pair has the form of a tree sim-
ilar to the one in Figure 3 (this is one of the sen-
tences from the Spanish-English part of the training
corpus). Each interior node has two children corre-
sponding to the translation of the two parts in which
the input sentence is divided. The leaves of the tree
correspond to those segments that were translated by
model 1. The templates generated were those de-
fined by the leaves. Further templates were obtained
by interpreting each pair of words in the dictionary
as a template.
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Algorithm all IBM
for ob := 1 to |ȳ| do

for oe := ob to |ȳ| do
for ib := 1 to |x̄| do

S := 0;
for ie := ib to |x̄| do

S := S + t(yoe | xie);

I(ib, ie, ob, oe) :=

{
S/(ie− ib + 1) if ob = oe,

I(ib, ie, ob, oe− 1)× S/(ie− ib + 1) otherwise;
End all IBM

Figure 2: Efficient computation of different values of IBM’s model 1.

Equipos a presión transportables

Transportable pressure equipment

Equipos

equipment

a presión transportables

Transportable pressure

a presión

pressure

transportables

Transportable

Figure 3: A sample alignment represented as a tree.

Each template was assigned four weights1 in or-
der to use thepharaoh program. For the templates
obtained from the alignments, the first weight was
the probability assigned to it by MAR, the second
weight was the count for the template, i.e., the num-
ber of times that template was found in the corpus,
the third weight was the normalized count, i.e., the
number of times the template appeared in the corpus
divided by the number of times the input part was
present in the corpus, finally, the fourth weight was
a small constant (10−30). The intention of this last
weight was to ease the combination with the tem-
plates from the dictionary. For these, the first three
weights were assigned the same small constant and
the fourth was the probability of the translation of
the pair obtained from the stochastic dictionary. This
weighting schema allowed to separate the influence
of the dictionary in smoothing the templates.

1They should have been probabilities, but in two of the cases
there was no normalization and in one they were even greater
than one!

Table 1: Statistics of the training corpora. The
languages are German (De), English (En), Span-
ish (Es), Finnish (Fi) and French (Fr).

Languages Sentences Words (input/output)

De-En 751 088 15 257 871 / 16 052 702
Es-En 730 740 15 725 136 / 15 222 505
Fi-En 716 960 11 318 863 / 15 493 334
Fr-En 688 031 15 599 184 / 13 808 505

9 Experiments

In order to test the model, we have decided to par-
ticipate in the shared task for this workshop.

9.1 The task

The aim of the task was to translate a set of 2,000
sentences from German, Spanish, Finnish and
French into English. Those sentences were ex-
tracted from the Europarl corpus (Koehn, Unpub-
lished). As training material, four different corpora
were provided, one for each language pair, compris-
ing around700 000 sentence pairs each. Some de-
tails about these corpora can be seen in Table 1. An
automatic alignment for each corpus was also pro-
vided.

The original sentence pairs were splitted using the
techniques discussed in section 7.3. The total num-
ber of sentences after the split is presented in Ta-
ble 2. Two different alignments were used: (a) the
one provided in the definition of the task and (b)
one obtained using GIZA++ (Och and Ney, 2003)
to train an IBM’s model 4. As it can be seen, the
number of parts is very similar in both cases. The
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Table 2: Number of training pairs after splitting to
a maximum length of ten. “Provided” refers to the
alignment provided in the task, “GIZA++” to those
obtained with GIZA++.

Sentence pairs
Languages Provided GIZA++

De-En 2 351 121 2 282 316
Es-En 2 160 039 2 137 301
Fi-En 2 099 634 2 017 130
Fr-En 2 112 931 2 080 200

Table 3: Number of templates for each language
pair: “Alignment” shows the number of templates
derived from the alignments; “dictionary”, those ob-
tained from the dictionary; and “total” is the sum.

(a) Using the alignments provided with the task.

Lang. Alignment Dictionary Total

De-En 2 660 745 1 840 582 4 501 327
Es-En 2 241 344 1 385 086 3 626 430
Fi-En 2 830 433 2 852 583 5 683 016
Fr-En 2 178 890 1 222 266 3 401 156

(b) Using GIZA++.

Lang. Alignment Dictionary Total

De-En 2 672 079 1 796 887 4 468 966
Es-En 2 220 533 1 350 526 3 571 059
Fi-En 2 823 769 2 769 929 5 593 698
Fr-En 2 140 041 1 181 990 3 322 031

number of pairs after splitting is roughly three times
the original.

Templates were extracted as described in sec-
tion 8.1. The number of templates we obtained can
be seen in Table 3. Again, the influence of the
type of alignment was small. Except for Finnish,
the number of dictionary templates was roughly two
thirds of the templates extracted from the align-
ments.

9.2 Obtaining the translations

Once the templates were obtained, the development
corpora were used to search for adequate values of

Table 4: Best weights for each language pair. The
columns are for the probability given by the model,
the counts of the templates, the normalized counts
and the weight given to the dictionary.

(a) Using the alignments provided with the task.

Languages Model Count Norm Dict

De-En 0.0 3.0 0.0 0.3
Es-En 0.0 2.9 0.0 0.4
Fi-En 0.0 7.0 0.0 0.0
Fr-En 0.0 7.0 1.0 1.0

(b) Using GIZA++.

Languages Model Count Norm Dict

De-En 0.0 3.0 0.0 0.0
Es-En 0.0 2.9 0.0 0.4
Fi-En 0.0 3.0 1.5 0.0
Fr-En 0.0 3.0 1.0 0.4

Table 5: BLEU scores of the translations.

BLEU
Languages Provided GIZA++

De-En 18.08 18.89
Es-En 21.65 21.48
Fi-En 13.31 13.79
Fr-En 21.25 19.86

the weights thatpharaoh uses for each template
(these are the weights passed to optionweight-t ,
the other weights were not changed as an initial ex-
ploration seemed to indicate that they had little im-
pact). As expected, the best weights differed be-
tween language pairs. The values can be seen in
table 4.

It is interesting to note that the probabilities as-
signed by the model to the templates seemed to
be better not taken into account. The most impor-
tant feature was the counts of the templates, which
sometimes were helped by the use of the dictionary,
although that effect was small. Normalization of
counts also had little impact.
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10 Results and discussion

The results over the test sets can be seen in Table 5.
It can be seen that, except for French, the influence
of the initial alignment is very small. Also, the best
results are obtained for Spanish and French, which
are more similar to English that German or Finnish.

There are still many open questions that deserve
more experimentation. The first is the influence of
the split of the original corpora. Although the simi-
larity of results seem to indicate that it has little in-
fluence, this has to be tested. Two more relevant as-
pects are whether the weighting schema is the best
for the decoder. In particular, it is surprising that the
normalization of counts had so little effect.

Finally, the average number of words per template
is below two, which probably is too low. It is inter-
esting to find alternate ways of obtaining the tem-
plates, for instance using internal nodes up to a given
height or covering portions of the sentences up to a
predefined number of words.

11 Conclusions

A new translation model has been presented. This
model produces translations in a recursive way: the
input sentence is divided in two parts, each is trans-
lated using the same procedure recursively and the
translations are concatenated. The model has been
used for finding the templates in a large vocabulary
translation task. This involved using several heuris-
tics to improve training time, including a method for
splitting the input before training the models. Fi-
nally, the influence of using a stochastic dictionary
together with the templates as a means of smoothing
has been explored.
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de Sistemas Inforḿaticos y Computación, Universidad
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