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Abstract

We present a global discriminative statistical
word order model for machine translation.
Our model combines syntactic movement
and surface movement information, and is
discriminatively trained to choose among
possible word orders. We show that com-
bining discriminative training with features
to detect these two different kinds of move-
ment phenomena leads to substantial im-
provements in word ordering performance
over strong baselines. Integrating this word
order model in a baseline MT system results
in a 2.4 points improvement in BLEU for
English to Japanese translation.

1 Introduction

The machine translation task can be viewed as con-
sisting of two subtasks: predicting the collection of
words in a translation, and deciding the order of the
predicted words. For some language pairs, such as
English and Japanese, the ordering problem is es-
pecially hard, because the target word order differs
significantly from the source word order.

Previous work has shown that it is useful to model
target language order in terms of movement of syn-
tactic constituents in constituency trees (Yamada
and Knight, 2001; Galley et al., 2006) or depen-
dency trees (Quirk et al., 2005), which are obtained
using a parser trained to determine linguistic con-
stituency. Alternatively, order is modelled in terms
of movement of automatically induced hierarchical
structure of sentences (Chiang, 2005; Wu, 1997).

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

The advantages of modeling how a target lan-
guage syntax tree moves with respect to a source lan-
guage syntax tree are that (i) we can capture the fact
that constituents move as a whole and generally re-
spect the phrasal cohesion constraints (Fox, 2002),
and (ii ) we can model broad syntactic reordering
phenomena, such as subject-verb-object construc-
tions translating into subject-object-verb ones, as is
generally the case for English and Japanese.

On the other hand, there is also significant amount
of information in the surface strings of the source
and target and their alignment. Many state-of-the-art
SMT systems do not use trees and base the ordering
decisions on surface phrases (Och and Ney, 2004;
Al-Onaizan and Papineni, 2006; Kuhn et al., 2006).
In this paper we develop an order model for machine
translation which makes use of both syntactic and
surface information.

The framework for our statistical model is as fol-
lows. We assume the existence of a dependency tree
for the source sentence, an unordered dependency
tree for the target sentence, and a word alignment
between the target and source sentences. Figure 1
(a) shows an example of aligned source and target
dependency trees. Our task is to order the target de-
pendency tree.

We train a statistical model to select the best or-
der of the unordered target dependency tree. An im-
portant advantage of our model is that it is global,
and does not decompose the task of ordering a tar-
get sentence into a series of local decisions, as in the
recently proposed order models for Machine Transi-
tion (Al-Onaizan and Papineni, 2006; Xiong et al.,
2006; Kuhn et al., 2006). Thus we are able to define
features over complete target sentence orders, and
avoid the independence assumptions made by these
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all constraints are satisfied

[ ] [ ] [ ] [ ][ ] [ ]

“restriction”“condition” TOPIC “all” “satisfy” PASSIVE-PRES

(a) (b)

Figure 1: (a) A sentence pair with source depen-
dency tree, projected target dependency tree, and
word alignments. (b) Example orders violating the
target tree projectivity constraints.

models. Our model is discriminatively trained to se-
lect the best order (according to the BLEU measure)
(Papineni et al., 2001) of an unordered target depen-
dency tree from the space of possible orders.

Since the space of all possible orders of an un-
ordered dependency tree is factorially large, we train
our model on N-best lists of possible orders. These
N-best lists are generated using approximate search
and simpler models, as in the re-ranking approach of
(Collins, 2000).

We first evaluate our model on the task of ordering
target sentences, given correct (reference) unordered
target dependency trees. Our results show that com-
bining features derived from the source and tar-
get dependency trees, distortion surface order-based
features (like the distortion used in Pharaoh (Koehn,
2004)) and language model-like features results in a
model which significantly outperforms models using
only some of the information sources.

We also evaluate the contribution of our model
to the performance of an MT system. We inte-
grate our order model in the MT system, by simply
re-ordering the target translation sentences output
by the system. The model resulted in an improve-
ment from 33.6 to 35.4 BLEU points in English-to-
Japanese translation on a computer domain.

2 Task Setup

The ordering problem in MT can be formulated as
the task of ordering a target bag of words, given a
source sentence and word alignments between tar-
get and source words. In this work we also assume
a source dependency tree and an unordered target
dependency tree are given. Figure 1(a) shows an ex-
ample. We build a model that predicts an order of
the target dependency tree, which induces an order

on the target sentence words. The dependency tree
constrains the possible orders of the target sentence
only to the ones that are projective with respect to
the tree. An order of the sentence is projective with
respect to the tree if each word and its descendants
form a contiguous subsequence in the ordered sen-
tence. Figure 1(b) shows several orders of the sen-
tence which violate this constraint.1

Previous studies have shown that if both the
source and target dependency trees represent lin-
guistic constituency, the alignment between subtrees
in the two languages is very complex (Wellington et
al., 2006). Thus such parallel trees would be difficult
for MT systems to construct in translation. In this
work only the source dependency trees are linguisti-
cally motivated and constructed by a parser trained
to determine linguistic structure. The target depen-
dency trees are obtained through projection of the
source dependency trees, using the word alignment
(we use GIZA++ (Och and Ney, 2004)), ensuring
better parallelism of the source and target structures.

2.1 Obtaining Target Dependency Trees
Through Projection

Our algorithm for obtaining target dependency trees
by projection of the source trees via the word align-
ment is the one used in the MT system of (Quirk
et al., 2005). We describe the algorithm schemat-
ically using the example in Figure 1. Projection
of the dependency tree through alignments is not at
all straightforward. One of the reasons of difficulty
is that the alignment does not represent an isomor-
phism between the sentences, i.e. it is very often
not a one-to-one and onto mapping.2 If the align-
ment were one-to-one we could define the parent of
a wordwt in the target to be the target word aligned
to the parent of the source wordsi aligned towt. An
additional difficulty is that such a definition could re-
sult in a non-projective target dependency tree. The
projection algorithm of (Quirk et al., 2005) defines
heuristics for each of these problems. In case of
one-to-many alignments, for example, the case of
“constraints” aligning to the Japanese words for “re-
striction” and “condition”, the algorithm creates a

1For example, in the first order shown, the descendants of
word 6 are not contiguous and thus this order violates the con-
straint.

2In an onto mapping, every word on the target side is asso-
ciated with some word on the source side.
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subtree in the target rooted at the rightmost of these
words and attaches the other word(s) to it. In case of
non-projectivity, the dependency tree is modified by
re-attaching nodes higher up in the tree. Such a step
is necessary for our example sentence, because the
translations of the words “all” and “constraints” are
not contiguous in the target even though they form a
constituent in the source.

An important characteristic of the projection algo-
rithm is that all of its heuristics use thecorrecttarget
word order.3 Thus the target dependency trees en-
code more information than is present in the source
dependency trees and alignment.

2.2 Task Setup for Reference Sentences vs MT
Output

Our model uses input of the same form when
trained/tested on reference sentences and when used
in machine translation: a source sentence with a de-
pendency tree, an unordered target sentence with
and unordered target dependency tree, and word
alignments.

We train our model on reference sentences. In this
setting, the given target dependency tree contains the
correct bag of target words according to a reference
translation, and is projective with respect to the cor-
rect word order of the reference by construction. We
also evaluate our model in this setting; such an eval-
uation is useful because we can isolate the contribu-
tion of an order model, and develop it independently
of an MT system.

When translating new sentences it is not possible
to derive target dependency trees by the projection
algorithm described above. In this setting, we use
target dependency trees constructed by our baseline
MT system (described in detail in 6.1). The system
constructs dependency trees of the form shown in
Figure 1 for each translation hypothesis. In this case
the target dependency trees very often do not con-
tain the correct target words and/or are not projective
with respect to the best possible order.

3For example, checking which word is the rightmost for the
heuristic for one-to-many mappings and checking whether the
constructed tree is projective requires knowledge of the correct
word order of the target.

3 Language Model with Syntactic
Constraints: A Pilot Study

In this section we report the results of a pilot study to
evaluate the difficulty of ordering a target sentence if
we are given a target dependency tree as the one in
Figure 1, versus if we are just given an unordered
bag of target language words.

The difference between those two settings is that
when ordering a target dependency tree, many of the
orders of the sentence are not allowed, because they
would be non-projective with respect to the tree.
Figure 1 (b) shows some orders which violate the
projectivity constraint. If the given target depen-
dency tree is projective with respect to the correct
word order, constraining the possible orders to the
ones consistent with the tree can only help perfor-
mance. In our experiments on reference sentences,
the target dependency trees are projective by con-
struction. If, however, the target dependency tree
provided is not necessarily projective with respect
to the best word order, the constraint may or may
not be useful. This could happen in our experiments
on ordering MT output sentences.

Thus in this section we aim to evaluate the use-
fulness of the constraint in both settings: reference
sentences with projective dependency trees, and MT
output sentences with possibly non-projective de-
pendency trees. We also seek to establish a baseline
for our task. Our methodology is to test a simple
and effective order model, which is used by all state
of the art SMT systems – a trigram language model
– in the two settings: ordering an unordered bag of
words, and ordering a target dependency tree.

Our experimental design is as follows. Given an
unordered sentencet and an unordered target de-
pendency treetree(t), we define two spaces of tar-
get sentence orders. These are the unconstrained
space of all permutations, denoted byPermutations(t)
and the space of all orders oft which are projec-
tive with respect to the target dependency tree, de-
noted byTargetProjective(t,tree(t)). For both spaces
S, we apply a standard trigram target language
model to select a most likely order from the space;
i.e., we find a target orderorder∗S (t) such that:
order∗S (t) = argmaxorder(t)∈SPrLM (order(t)).
The operator which findsorder∗S (t) is difficult to
implement since the task is NP-hard in both set-
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Reference Sentences
Space BLEU Avg. Size
Permutations 58.8 2

61

TargetProjective 83.9 2
29

MT Output Sentences
Space BLEU Avg. Size
Permutations 26.3 2

56

TargetProjective 31.7 2
25

Table 1: Performance of a tri-gram language model
on ordering reference and MT output sentences: un-
constrained or subject to target tree projectivity con-
straints.

tings, even for a bi-gram language model (Eisner
and Tromble, 2006).4 We implemented left-to-right
beam A* search for thePermutations space, and a
tree-based bottom up beam A* search for theTar-

getProjective space. To give an estimate of the search
error in each case, we computed the number of times
the correct order had a better language model score
than the order returned by the search algorithm.5

The lower bounds on search error were 4% forPer-

mutations and 2% forTargetProjective, computed on
reference sentences.

We compare the performance in BLEU of orders
selected from both spaces. We evaluate the perfor-
mance on reference sentences and on MT output
sentences. Table 1 shows the results. In addition
to BLEU scores, the table shows the median number
of possible orders per sentence for the two spaces.

The highest achievable BLEU on reference sen-
tences is 100, because we are given the correct bag
of words. The highest achievable BLEU on MT out-
put sentences is well below 100 (the BLEU score of
the MT output sentences is 33). Table 3 describes
the characteristics of the main data-sets used in the
experiments in this paper; the test sets we use in the
present pilot study are the reference test set (Ref-
test) of 1K sentences and the MT test set (MT-test)
of 1,000 sentences.

The results from our experiment show that the tar-
get tree projectivity constraint is extremely powerful
on reference sentences, where the tree given is in-
deed projective. (Recall that in order to obtain the
target dependency tree in this setting we have used
information from the true order, which explains in
part the large performance gain.)

4Even though the dependency tree constrains the space, the
number of children of a node is not bounded by a constant.

5This is an underestimate of search error, because we don’t
know if there was another (non-reference) order which had a
better score, but was not found.

The gain in BLEU due to the constraint was not
as large on MT output sentences, but was still con-
siderable. The reduction in search space size due
to the constraint is enormous. There are about230

times fewer orders to consider in the space of tar-
get projective orders, compared to the space of all
permutations. From these experiments we conclude
that the constraints imposed by a projective target
dependency tree are extremely informative. We also
conclude that the constraints imposed by the target
dependency trees constructed by our baseline MT
system are very informative as well, even though
the trees are not necessarily projective with respect
to the best order. Thus the projectivity constraint
with respect to a reasonably good target dependency
tree is useful for addressing the search and modeling
problems for MT ordering.

4 A Global Order Model for Target
Dependency Trees

In the rest of the paper we present our new word or-
der model and evaluate it on reference sentences and
in machine translation. In line with previous work
on NLP tasks such as parsing and recent work on
machine translation, we develop a discriminative or-
der model. An advantage of such a model is that we
can easily combine different kinds of features (such
as syntax-based and surface-based), and that we can
optimize the parameters of our model directly for the
evaluation measures of interest.

Additionally, we develop a globally normalized
model, which avoids the independence assumptions
in locally normalized conditional models.6 We train
a global log-linear model with a rich set of syntactic
and surface features. Because the space of possible
orders of an unordered dependency tree is factori-
ally large, we use simpler models to generate N-best
orders, which we then re-rank with a global model.

4.1 Generating N-best Orders

The simpler models which we use to generate N-best
orders of the unordered target dependency trees are
the standard trigram language model used in Section
3, and another statistical model, which we call a Lo-
cal Tree Order Model (LTOM). The LTOM model

6Those models often assume that current decisions are inde-
pendent of future observations.
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[ ]

this
-1

eliminates the six minute delay
+1

[ -2] [ ] [6] [ ] [ ] [ ] [ -1] [ ] [ ]

Pron Verb Det Funcw Funcw Noun

[kore] [niyori] [roku] [fun] [kan] [no] [okure] [ga] [kaishou] [saremasu]

Pron Posp Noun Noun Noun Posp Noun Posp Vn Auxv
“this” “by” 6 “minute” “period” “of” “delay” “eliminate” PASSIVE

Figure 2: Dependency parse on the source (English)
sentence, alignment and projected tree on the target
(Japanese) sentence. Notice that the projected tree
is only partial and is used to show the head-relative
movement.

uses syntactic information from the source and tar-
get dependency trees, and orders each local tree of
the target dependency tree independently. It follows
the order model defined in (Quirk et al., 2005).

The model assigns a probability to the position
of each target node (modifier) relative to its par-
ent (head), based on information in both the source
and target trees. The probability of an order of the
complete target dependency tree decomposes into a
product over probabilities of positions for each node
in the tree as follows:

P (order(t)|s, t) =
∏

n∈t

P (pos(n, parent(n))|s, t)

Here, position is modelled in terms of closeness
to the head in the dependency tree. The closest
pre-modifier of a given head has position−1; the
closest post-modifier has a position1. Figure 2
shows an example dependency tree pair annotated
with head-relative positions. A small set of features
is used to reflect local information in the dependency
tree to modelP (pos(n, parent(n))|s, t): (i) lexical
items ofn andparent(n), (ii ) lexical items of the
source nodes aligned ton andparent(n), (iii ) part-
of-speech of the source nodes aligned to the node
and its parent, and (iv) head-relative position of the
source node aligned to the target node.

We train a log-linear model which uses these fea-
tures on a training set of aligned sentences with
source and target dependency trees in the form of
Figure 2. The model is a local (non-sequence) clas-
sifier, because the decision on where to place each
node does not depend on the placement of any other
nodes.

Since the local tree order model learns to order
whole subtrees of the target dependency tree, and

since it uses syntactic information from the source, it
provides an alternative view compared to the trigram
language model. The example in Figure 2 shows
that the head word “eliminates” takes a dependent
“this” to the left (position−1), and on the Japanese
side, the head word “kaishou” (corresponding to
“eliminates”) takes a dependent “kore” (correspond-
ing to “this”) to the left (position−2). The trigram
language model would not capture the position of
“kore” with respect to “kaishou”, because the words
are farther than three positions away.

We use the language model and the local tree or-
der model to create N-best target dependency tree
orders. In particular, we generate the N-best lists
from a simple log-linear combination of the two
models:

P (o(t)|s, t) ∝ PLM (o(t)|t)PLTOM (o(t)|s, t)λ

whereo(t) denotes an order of the target.7 We used
a bottom-up beam A* search to generate N-best or-
ders. The performance of each of these two models
and their combination, together with the 30-best or-
acle performance on reference sentences is shown in
Table 2. As we can see, the 30-best oracle perfor-
mance of the combined model (98.0) is much higher
than the 1-best performance (92.6) and thus there is
a lot of room for improvement.

4.2 Model

The log-linear reranking model is defined as fol-
lows. For each sentence pairspl (l = 1, 2, ..., L) in
the training data, we haveN candidate target word
ordersol,1, ol,2, ..., ol,N , which are the orders gener-
ated from the simpler models. Without loss of gen-
erality, we defineol,1 to be the order with the highest
BLEU score with respect to the correct order.8

We define a set of feature functionsfm(ol,n, spl)
to describe a target word orderol,n of a given sen-
tence pairspl. In the log-linear model, a correspond-
ing weights vectorλ is used to define the distribution
over all possible candidate orders:

p(ol,n|spl, λ) = e
λF (ol,n,spl)∑

n′
e
λF (o

l,n′ ,spl)

7We used the valueλ = .5, which we selected on a devel-
opment set to maximize BLEU.

8To avoid the problem that all orders could have a BLEU
score of 0 if none of them contains a correct word four-gram,
we define sentence-level k-gram BLEU, where k is the highest
order,k ≤ 4, for which there exists a correctk-gram in at least
one of the N-Best orders.
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We train the parametersλ by minimizing the neg-
ative log-likelihood of the training data plus a
quadratic regularization term:

L(λ) = −
∑

l log p(ol,1|spi, λ) + 1
2σ2

∑
m λm

2

We also explored maximizing expected BLEU as
our objective function, but since it is not convex, the
performance was less stable and ultimately slightly
worse, as compared to the log-likelihood objective.

4.3 Features

We design features to capture both the head-relative
movement and the surface sequence movement of
words in a sentence. We experiment with different
combinations of features and show their contribu-
tion in Table 2 for reference sentences and Table 4
in machine translation. The notations used in the ta-
bles are defined as follows:
Baseline: LTOM+LM as described in Section 4.1
Word Bigram: Word bigrams of the target sen-
tence. Examples from Figure 2:“kore”+“niyori” ,
“niyori”+“roku” .
DISP: Displacement feature. For each word posi-
tion in the target sentence, we examine the align-
ment of the current word and the previous word, and
categorize the possible patterns into 3 kinds: (a) par-
allel, (b) crossing, and (c) widening. Figure 3 shows
how these three categories are defined.
Pharaoh DISP: Displacement as used in Pharaoh
(Koehn, 2004). For each position in the sentence,
the value of the feature is one less than the difference
(absolute value) of the positions of the source words
aligned to the current and the previous target word.
POSs andPOSt: POS tags on the source and target
sides. For Japanese, we have a set of 19 POS tags.
’+’ means making conjunction of features and
prev() means using the information associated with
the word from position−1.

In all explored models, we include the log-
probability of an order according to the language
model and the log-probability according to the lo-
cal tree order model, the two features used by the
baseline model.

5 Evaluation on Reference Sentences

Our experiments on ordering reference sentences
use a set of 445K English sentences with their ref-
erence Japanese translations. This is a subset of the

(a) parallel (b) crossing (c) widening

Figure 3: Displacement feature: different alignment
patterns of two contiguous words in the target sen-
tence.

set MT-train in Table 3. The sentences were anno-
tated with alignment (using GIZA++ (Och and Ney,
2004)) and syntactic dependency structures of the
source and target, obtained as described in Section
2. Japanese POS tags were assigned by an automatic
POS tagger, which is a local classifier not using tag
sequence information.

We used 400K sentence pairs from the complete
set to train the first pass models: the language model
was trained on 400K sentences, and the local tree
order model was trained on 100K of them. We gen-
erated N-best target tree orders for the rest of the
data (45K sentence pairs), and used it for training
and evaluating the re-ranking model. The re-ranking
model was trained on 44K sentence pairs. All mod-
els were evaluated on the remaining 1,000 sentence
pairs set, which is the set Ref-test in Table 3.

The top part of Table 2 presents the 1-best
BLEU scores (actual performance) and 30-best or-
acle BLEU scores of the first-pass models and their
log-linear combination, described in Section 4. We
can see that the combination of the language model
and the local tree order model outperformed either
model by a large margin. This indicates that combin-
ing syntactic (from the LTOM model) and surface-
based (from the language model) information is very
effective even at this stage of selecting N-best orders
for re-ranking. According to the 30-best oracle per-
formance of the combined model LTOM+LM, 98.0
BLEU is the upper bound on performance of our re-
ranking approach.

The bottom part of the table shows the perfor-
mance of the global log-linear model, when features
in addition to the scores from the two first-pass mod-
els are added to the model. Adding word-bigram
features increased performance by about 0.6 BLEU
points, indicating that training language-model like
features discriminatively to optimize ordering per-
formance, is indeed worthwhile. Next we compare
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First-pass models
Model BLEU

1 best 30 best

Lang Model (Permutations) 58.8 71.2
Lang Model (TargetProjective) 83.9 95.0
Local Tree Order Model 75.8 87.3
Local Tree Order Model + Lang Model 92.6 98.0

Re-ranking Models
Features BLEU

Baseline 92.60
Word Bigram 93.19
Pharaoh DISP 92.94
DISP 93.57
DISP+POSs 94.04
DISP+POSs+POSt 94.14
DISP+POSs+POSt, prev(DISP)+POSs+POSt 94.34
DISP+POSs+POSt, prev(DISP)+POSs+POSt, WB 94.50

Table 2: Performance of the first-pass order models
and 30-best oracle performance, followed by perfor-
mance of re-ranking model for different feature sets.
Results are on reference sentences.

the Pharaoh displacement feature to the displace-
ment feature we illustrated in Figure 3. We can
see that the Pharaoh displacement feature improves
performance of the baseline by .34 points, whereas
our displacement feature improves performance by
nearly 1 BLEU point. Concatenating the DISP fea-
ture with the POS tag of the source word aligned to
the current word improved performance slightly.

The results show that surface movement features
(i.e. the DISP feature) improve the performance
of a model using syntactic-movement features (i.e.
the LTOM model). Additionally, adding part-of-
speech information from both languages in combi-
nation with displacement, and using a higher order
on the displacement features was useful. The per-
formance of our best model, which included all in-
formation sources, is 94.5 BLEU points, which is a
35% improvement over the fist-pass models, relative
to the upper bound.

6 Evaluation in Machine Translation

We apply our model to machine translation by re-
ordering the translation produced by a baseline MT
system. Our baseline MT system constructs, for
each target translation hypothesis, a target depen-
dency tree. Thus we can apply our model to MT
output in exactly the same way as for reference sen-
tences, but using much noisier input: a source sen-
tence with a dependency tree, word alignment and
an unordered target dependency tree as the example
shown in Figure 2. The difference is that the target
dependency tree will likely not contain the correct

data set num sent. English Japanese
avg. len vocab avg. len vocab

MT-train 500K 15.8 77K 18.7 79K
MT-test 1K 17.5 – 20.9 –
Ref-test 1K 17.5 – 21.2 –

Table 3: Main data sets used in experiments.

target words and/or will not be projective with re-
spect to the best possible order.

6.1 Baseline MT System

Our baseline SMT system is the system of Quirk et
al. (2005). It translates by first deriving a depen-
dency tree for the source sentence and then trans-
lating the source dependency tree to a target depen-
dency tree, using a set of probabilistic models. The
translation is based on treelet pairs. A treelet is a
connected subgraph of the source or target depen-
dency tree. A treelet translation pair is a pair of
word-aligned source and target treelets.

The baseline SMT model combines this treelet
translation model with other feature functions — a
target language model, a tree order model, lexical
weighting features to smooth the translation prob-
abilities, word count feature, and treelet-pairs count
feature. These models are combined as feature func-
tions in a (log)linear model for predicting a target
sentence given a source sentence, in the framework
proposed by (Och and Ney, 2002). The weights
of this model are trained to maximize BLEU (Och
and Ney, 2004). The SMT system is trained using
the same form of data as our order model: parallel
source and target dependency trees as in Figure 2.

Of particular interest are the components in the
baseline SMT system contributing most to word or-
der decisions. The SMT system uses the same target
language trigram model and local tree order model,
as we are using for generating N-best orders for re-
ranking. Thus the baseline system already uses our
first-pass order models and only lacks the additional
information provided by our re-ranking order model.

6.2 Data and Experimental Results

The baseline MT system was trained on the MT-train
dataset described in Table 3. The test set for the MT
experiment is a 1K sentences set from the same do-
main (shown as MT-test in the table). The weights
in the linear model used by the baseline SMT system
were tuned on a separate development set.

Table 4 shows the performance of the first-pass
models in the top part, and the performance of our
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First-pass models
Model BLEU

1 best 30 best

Baseline MT System 33.0 –
Lang Model (Permutations) 26.3 28.7
Lang Model (TargetCohesive) 31.7 35.0
Local Tree Order Model 27.2 31.5
Local Tree Order Model + Lang Model 33.6 36.0

Re-ranking Models
Features BLEU

Baseline 33.56
Word Bigram 34.11
Pharaoh DISP 34.67
DISP 34.90
DISP+POSs 35.28
DISP+POSs+POSt 35.22
DISP+POSs+POSt, prev(DISP)+POSs+POSt 35.33
DISP+POSs+POSt, prev(DISP)+POSs+POSt, WB 35.37

Table 4: Performance of the first pass order models
and 30-best oracle performance, followed by perfor-
mance of re-ranking model for different feature sets.
Results are in MT.

re-ranking model in the bottom part. The first row
of the table shows the performance of the baseline
MT system, which is a BLEU score of 33. Our first-
pass and re-ranking models re-order the words of
this 1-best output from the MT system. As for ref-
erence sentences, the combination of the two first-
pass models outperforms the individual models. The
1-best performance of the combination is 33.6 and
the 30-best oracle is 36.0. Thus the best we could
do with our re-ranking model in this setting is 36
BLEU points.9 Our best re-ranking model achieves
2.4 BLEU points improvement over the baseline MT
system and 1.8 points improvement over the first-
pass models, as shown in the table. The trends here
are similar to the ones observed in our reference ex-
periments, with the difference that target POS tags
were less useful (perhaps due to ungrammatical can-
didates) and the displacement features were more
useful. We can see that our re-ranking model al-
most reached the upper bound oracle performance,
reducing the gap between the first-pass models per-
formance (33.6) and the oracle (36.0) by 75%.

7 Conclusions and Future Work

We have presented a discriminative syntax-based or-
der model for machine translation, trained to to se-

9Notice that the combination of our two first-pass models
outperforms the baseline MT system by half a point (33.6 ver-
sus 33.0). This is perhaps due to the fact that the MT system
searches through a much larger space (possible word transla-
tions in addition to word orders), and thus could have a higher
search error.

lect from the space of orders projective with respect
to a target dependency tree. We investigated a com-
bination of features modeling surface movement and
syntactic movement phenomena and showed that
these two information sources are complementary
and their combination is powerful. Our results on or-
dering MT output and reference sentences were very
encouraging. We obtained substantial improvement
by the simple method of post-processing the 1-best
MT output to re-order the proposed translation. In
the future, we would like to explore tighter integra-
tion of our order model with the SMT system and to
develop more accurate algorithms for constructing
projective target dependency trees in translation.
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