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Abstract

Among syntax-based translation models, the
tree-basedapproach, which takes as input a
parse tree of the source sentence, is a promis-
ing direction being faster and simpler than
its string-based counterpart. However, current
tree-based systems suffer from a major draw-
back: they only use the 1-best parse to direct
the translation, which potentially introduces
translation mistakes due to parsing errors. We
propose aforest-basedapproach that trans-
lates a packed forest of exponentially many
parses, which encodes many more alternatives
than standardn-best lists. Large-scale exper-
iments show an absolute improvement of 1.7
BLEU points over the 1-best baseline. This
result is also 0.8 points higher than decoding
with 30-best parses, and takes even less time.

1 Introduction

Syntax-based machine translation has witnessed
promising improvements in recent years. Depend-
ing on the type of input, these efforts can be di-
vided into two broad categories: thestring-based
systems whose input is a string to be simultane-
ously parsed and translated by a synchronous gram-
mar (Wu, 1997; Chiang, 2005; Galley et al., 2006),
and thetree-basedsystems whose input is already a
parse tree to be directly converted into a target tree
or string (Lin, 2004; Ding and Palmer, 2005; Quirk
et al., 2005; Liu et al., 2006; Huang et al., 2006).
Compared with their string-based counterparts, tree-
based systems offer some attractive features: they
are much faster in decoding (linear time vs. cubic

time, see (Huang et al., 2006)), do not require a
binary-branching grammar as in string-based mod-
els (Zhang et al., 2006), and can have separate gram-
mars for parsing and translation, say, a context-free
grammar for the former and a tree substitution gram-
mar for the latter (Huang et al., 2006). However, de-
spite these advantages, current tree-based systems
suffer from a major drawback: they only use the 1-
best parse tree to direct the translation, which po-
tentially introduces translation mistakes due to pars-
ing errors (Quirk and Corston-Oliver, 2006). This
situation becomes worse with resource-poor source
languages without enough Treebank data to train a
high-accuracy parser.

One obvious solution to this problem is to take as
input k-best parses, instead of a single tree. Thisk-
best list postpones some disambiguation to the de-
coder, which may recover from parsing errors by
getting a better translation from a non 1-best parse.
However, ak-best list, with its limited scope, of-
ten has too few variations and too many redundan-
cies; for example, a 50-best list typically encodes
a combination of 5 or 6 binary ambiguities (since
25 < 50 < 26), and many subtrees are repeated
across different parses (Huang, 2008). It is thus inef-
ficient either to decode separately with each of these
very similar trees. Longer sentences will also aggra-
vate this situation as the number of parses grows ex-
ponentially with the sentence length.

We instead propose a new approach,forest-based
translation (Section 3), where the decoder trans-
lates apacked forestof exponentially many parses,1

1There has been some confusion in the MT literature regard-
ing the termforest: the word “forest” in “forest-to-string rules”
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jǔx́ıng
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le

x2:NPB
→ heldx2 with x1

Figure 1: An example translation rule (r3 in Fig. 2).

which compactly encodes many more alternatives
than k-best parses. This scheme can be seen as
a compromise between the string-based and tree-
based methods, while combining the advantages of
both: decoding is still fast, yet does not commit to
a single parse. Large-scale experiments (Section 4)
show an improvement of 1.7 BLEU points over the
1-best baseline, which is also 0.8 points higher than
decoding with30-best trees, and takes even less time
thanks to the sharing of common subtrees.

2 Tree-based systems

Current tree-basedsystems perform translation in
two separate steps: parsing and decoding. A parser
first parses the source language input into a 1-best
treeT , and the decoder then searches for the best
derivation (a sequence of translation steps)d∗ that
converts source treeT into a target-language string
among all possible derivationsD:

d∗ = arg max
d∈D

P(d|T ). (1)

We will now proceed with a running example
translating from Chinese to English:

(2) �À
Bùsh́ı
Bush

Æ

yǔ
with/and

��

Sh̄alóng
Sharon1

>L

jǔx́ıng
hold

�

le
pass.

��

hùıtán
talk2

“Bush held a talk2 with Sharon1”

Figure 2 shows how this process works. The Chi-
nese sentence (a) is first parsed into tree (b), which
will be converted into an English string in 5 steps.
First, at the root node, we apply ruler1 preserving
top-level word-order between English and Chinese,

(r1) IP(x1:NPBx2:VP)→ x1 x2

(Liu et al., 2007) was a misnomer which actually refers to a set
of several unrelated subtrees over disjoint spans, and should not
be confused with the standard concept ofpacked forest.

(a) Bùsh́ı [yǔ Sh̄alóng]1 [jǔx́ıng le hùıtán ]2

⇓ 1-best parser
(b) IP

NPB

NR

Bùsh́ı

VP

PP

P

yǔ

NPB

NR

Sh̄alóng

VPB

VV

jǔx́ıng

AS

le

NPB

NN

hùıtán

r1 ⇓

(c) NPB

NR

Bùsh́ı

VP

PP

P

yǔ

NPB

NR

Sh̄alóng

VPB

VV

jǔx́ıng

AS

le

NPB

NN

hùıtán

r2 ⇓ r3 ⇓

(d) Bush held NPB

NN

hùıtán

with NPB

NR

Sh̄alóng

r4 ⇓ r5 ⇓

(e) Bush [held a talk]2 [with Sharon]1

Figure 2: An example derivation of tree-to-string trans-
lation. Shaded regions denote parts of the tree that is
pattern-matched with the rule being applied.

which results in two unfinished subtrees in (c). Then
rule r2 grabs theBùsh́ı subtree and transliterate it

(r2) NPB(NR(Bùsh́ı))→ Bush.

Similarly, ruler3 shown in Figure 1 is applied to
the VP subtree, which swaps the two NPBs, yielding
the situation in (d). This rule is particularly interest-
ing since it has multiple levels on the source side,
which has more expressive power than synchronous
context-free grammars where rules are flat.
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More formally, a (tree-to-string)translation rule
(Huang et al., 2006) is a tuple〈t, s, φ〉, wheret is the
source-side tree, whose internal nodes are labeled by
nonterminal symbols inN , and whose frontier nodes
are labeled by source-side terminals inΣ or vari-
ables from a setX = {x1, x2, . . .}; s ∈ (X ∪∆)∗ is
the target-side string where∆ is the target language
terminal set; andφ is a mapping fromX to nonter-
minals inN . Each variablexi ∈ X occursexactly
oncein t andexactly oncein s. We denoteR to be
the translation rule set. A similar formalism appears
in another form in (Liu et al., 2006). These rules are
in the reverse direction of the original string-to-tree
transducer rules defined by Galley et al. (2004).

Finally, from step (d) we apply rulesr4 andr5

(r4) NPB(NN(hùıtán))→ a talk

(r5) NPB(NR(Sh̄alóng))→ Sharon

which perform phrasal translations for the two re-
maining subtrees, respectively, and get the Chinese
translation in (e).

3 Forest-based translation

We now extend the tree-based idea from the previ-
ous section to the case of forest-based translation.
Again, there are two steps, parsing and decoding.
In the former, a (modified) parser will parse the in-
put sentence and output a packed forest (Section 3.1)
rather than just the 1-best tree. Such a forest is usu-
ally huge in size, so we use theforest pruning algo-
rithm (Section 3.4) to reduce it to a reasonable size.
The pruned parse forest will then be used to direct
the translation.

In the decoding step, we first convert the parse for-
est into atranslation forestusing the translation rule
set, by similar techniques of pattern-matching from
tree-based decoding (Section 3.2). Then the decoder
searches for the best derivation on the translation
forest and outputs the target string (Section 3.3).

3.1 Parse Forest

Informally, a packed parse forest, orforest in short,
is a compact representation of all the derivations
(i.e., parse trees) for a given sentence under a
context-free grammar (Billot and Lang, 1989). For

example, consider the Chinese sentence in Exam-
ple (2) above, which has (at least) two readings de-
pending on the part-of-speech of the wordyǔ, which
can be either a preposition (P “with”) or a conjunc-
tion (CC “and”). The parse tree for the preposition
case is shown in Figure 2(b) as the 1-best parse,
while for the conjunction case, the two proper nouns
(Bùsh́ı andSh̄alóng) are combined to form a coordi-
nated NP

NPB0,1 CC1,2 NPB2,3

NP0,3 (*)

which functions as the subject of the sentence. In
this case the Chinese sentence is translated into

(3) “ [Bush and Sharon] held a talk”.

Shown in Figure 3(a), these two parse trees can
be represented as a single forest by sharing common
subtrees such as NPB0,1 and VPB3,6. Such a forest
has a structure of ahypergraph(Klein and Manning,
2001; Huang and Chiang, 2005), where items like
NP0,3 are callednodes, and deductive steps like (*)
correspond tohyperedges.

More formally, aforest is a pair〈V, E〉, whereV

is the set ofnodes, andE the set ofhyperedges. For
a given sentencew1:l = w1 . . . wl, each nodev ∈ V

is in the form ofX i,j , which denotes the recogni-
tion of nonterminalX spanning the substring from
positionsi throughj (that is,wi+1 . . . wj). Each hy-
peredgee ∈ E is a pair〈tails(e), head(e)〉, where
head(e) ∈ V is theconsequent nodein the deduc-
tive step, andtails(e) ∈ V ∗ is the list ofantecedent
nodes. For example, the hyperedge for deduction (*)
is notated:

〈(NPB0,1, CC1,2, NPB2,3), NP0,3〉.

There is also a distinguishedroot node TOP in
each forest, denoting the goal item in parsing, which
is simply S0,l where S is the start symbol andl is the
sentence length.

3.2 Translation Forest

Given a parse forest and a translation rule setR, we
can generate atranslation forestwhich has a simi-
lar hypergraph structure. Basically, just as the depth-
first traversal procedure in tree-based decoding (Fig-
ure 2), we visit in top-down order each nodev in the
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(a)

IP0,6

NP0,3

NPB0,1

NR0,1

Bùsh́ı

CC1,2

yǔ

VP1,6

PP1,3

P1,2 NPB2,3

NR2,3

Sh̄alóng

VPB3,6

VV3,4

jǔx́ıng

AS4,5

le

NPB5,6

NN5,6

hùıtán

⇓ translation rule setR

(b)

IP0,6

NP0,3

NPB0,1 CC1,2

VP1,6

PP1,3

P1,2 NPB2,3

VPB3,6

VV3,4 AS4,5 NPB5,6

e5

e2

e6

e4 e3

e1

(c)

translation hyperedge translation rule
e1 r1 IP(x1:NPBx2:VP)→ x1 x2

e2 r6 IP(x1:NPx2:VPB)→ x1 x2

e3 r3 VP(PP(P(yǔ) x1:NPB) VPB(VV(jǔx́ıng) AS(le) x2:NPB))→ heldx2 with x1

e4 r7 VP(PP(P(yǔ) x1:NPB)x2:VPB)→ x2 with x1

e5 r8 NP(x1:NPB CC(yǔ) x2:NPB)→ x1 andx2

e6 r9 VPB(VV(jǔx́ıng) AS(le) x1:NPB)→ heldx1

Figure 3: (a) the parse forest of the example sentence; solidhyperedges denote the 1-best parse in Figure 2(b) while
dashed hyperedges denote the alternative parse due to Deduction (*). (b) the corresponding translation forest after
applying the translation rules (lexical rules not shown); the derivation shown in bold solid lines (e1 ande3) corresponds
to the derivation in Figure 2; the one shown in dashed lines (e2, e5, ande6) uses the alternative parse and corresponds
to the translation in Example (3). (c) the correspondence between translation hyperedges and translation rules.

parse forest, and try to pattern-match each transla-
tion ruler against the local sub-forest under nodev.
For example, in Figure 3(a), at node VP1,6, two rules
r3 andr7 both matches the local subforest, and will
thus generate twotranslation hyperedgese3 ande4

(see Figure 3(b-c)).

More formally, we define a functionmatch(r, v)
which attempts to pattern-match ruler at nodev in
the parse forest, and in case of success, returns a
list of descendent nodes ofv that are matched to the
variables inr, or returns an empty list if the match
fails. Note that this procedure is recursive and may
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Pseudocode 1 The conversion algorithm.
1: Input: parse forestHp and rule setR
2: Output: translation forestHt

3: for each nodev ∈ Vp in top-down orderdo
4: for each translation ruler ∈ R do
5: vars ← match(r, v) ⊲ variables
6: if vars is not emptythen
7: e← 〈vars, v, s(r)〉
8: add translation hyperedgee to Ht

involve multiple parse hyperedges. For example,

match(r3, VP1,6) = (NPB2,3, NPB5,6),

which covers three parse hyperedges, while nodes
in gray do not pattern-match any rule (although they
are involved in the matching of other nodes, where
they matchinterior nodesof the source-side tree
fragments in a rule). We can thus construct a transla-
tion hyperedge frommatch(r, v) to v for each node
v and ruler. In addition, we also need to keep track
of thetarget strings(r) specified by ruler, which in-
cludes target-language terminals and variables. For
example,s(r3) = “held x2 with x1”. The subtrans-
lations of the matched variable nodes will be sub-
stituted for the variables ins(r) to get a complete
translation for nodev. So a translation hyperedgee
is a triple〈tails(e), head(e), s〉 wheres is the target
string from the rule, for example,

e3 = 〈(NPB2,3, NPB5,6), VP1,6, “held x2 with x1”〉.

This procedure is summarized in Pseudocode 1.

3.3 Decoding Algorithms

The decoder performs two tasks on the translation
forest: 1-best search with integrated language model
(LM), andk-best search with LM to be used in min-
imum error rate training. Both tasks can be done ef-
ficiently by forest-based algorithms based onk-best
parsing (Huang and Chiang, 2005).

For 1-best search, we use thecube pruningtech-
nique (Chiang, 2007; Huang and Chiang, 2007)
which approximately intersects the translation forest
with the LM. Basically, cube pruning works bottom
up in a forest, keeping at mostk +LM items at each
node, and uses the best-first expansion idea from the
Algorithm 2 of Huang and Chiang (2005) to speed

up the computation. An +LM item of nodev has the
form (va⋆b), wherea andb are the target-language
boundary words. For example,(VP held⋆ Sharon

1,6 ) is an
+LM item with its translation starting with “held”
and ending with “Sharon”. This scheme can be eas-
ily extended to work with a generaln-gram by stor-
ing n− 1 words at both ends (Chiang, 2007).

For k-best search after getting 1-best derivation,
we use the lazy Algorithm 3 of Huang and Chiang
(2005) that works backwards from the root node,
incrementally computing the second, third, through
thekth best alternatives. However, this time we work
on a finer-grained forest, calledtranslation+LM for-
est, resulting from the intersection of the translation
forest and the LM, with its nodes being the +LM
items during cube pruning. Although this new forest
is prohibitively large, Algorithm 3 is very efficient
with minimal overhead on top of 1-best.

3.4 Forest Pruning Algorithm

We use the pruning algorithm of (Jonathan Graehl,
p.c.; Huang, 2008) that is very similar to the method
based on marginal probability (Charniak and John-
son, 2005), except that it prunes hyperedges as well
as nodes. Basically, we use an Inside-Outside algo-
rithm to compute the Viterbi inside costβ(v) and the
Viterbi outside costα(v) for each nodev, and then
compute themerit αβ(e) for each hyperedge:

αβ(e) = α(head(e)) +
∑

ui∈tails(e)

β(ui) (4)

Intuitively, this merit is the cost of the best derivation
that traversese, and the differenceδ(e) = αβ(e) −
β(TOP) can be seen as the distance away from the
globally best derivation. We prune away a hyper-
edgee if δ(e) > p for a thresholdp. Nodes with
all incoming hyperedges pruned are also pruned.

4 Experiments

We can extend the simple model in Equation 1 to a
log-linear one (Liu et al., 2006; Huang et al., 2006):

d∗ = arg max
d∈D

P(d | T )λ0 · eλ1|d| · Plm(s)λ2 · eλ3|s|

(5)
whereT is the 1-best parse,eλ1|d| is the penalty term
on the number of rules in a derivation,Plm(s) is the
language model andeλ3|s| is the length penalty term
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on target translation. The derivation probability con-
ditioned on 1-best tree,P(d | T ), should now be
replaced byP(d | Hp) whereHp is the parse forest,
which decomposes into the product of probabilities
of translation rulesr ∈ d:

P(d | Hp) =
∏

r∈d

P(r) (6)

where eachP(r) is the product of five probabilities:

P(r) = P(t | s)λ4 · Plex(t | s)
λ5 ·

P(s | t)λ6 · Plex(s | t)
λ7 · P(t | Hp)

λ8

.
(7)

Here t and s are the source-side tree and target-
side string of ruler, respectively,P(t | s) and
P(s | t) are the two translation probabilities, and
Plex(·) are the lexical probabilities. The only extra
term in forest-based decoding isP(t | Hp) denot-
ing the source side parsing probability of the current
translation ruler in the parse forest, which is the
product of probabilities of each parse hyperedgeep

covered in the pattern-match oft againstHp (which
can be recorded at conversion time):

P(t | Hp) =
∏

ep∈Hp, ep covered byt

P(ep). (8)

4.1 Data preparation

Our experiments are on Chinese-to-English transla-
tion, and we use the Chinese parser of Xiong et al.
(2005) to parse the source side of the bitext. Follow-
ing Huang (2008), we modify the parser to output a
packed forest for each sentence.

Our training corpus consists of 31,011 sentence
pairs with 0.8M Chinese words and 0.9M English
words. We first word-align them by GIZA++ refined
by “diagand” from Koehn et al. (2003), and apply
the tree-to-string rule extraction algorithm (Galley et
al., 2006; Liu et al., 2006), which resulted in 346K
translation rules. Note that our rule extraction is still
done on 1-best parses, while decoding is onk-best
parses or packed forests. We also use the SRI Lan-
guage Modeling Toolkit (Stolcke, 2002) to train a
trigram language model with Kneser-Ney smooth-
ing on the English side of the bitext.

We use the 2002 NIST MT Evaluation test set as
our development set (878 sentences) and the 2005
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Figure 4: Comparison of decoding on forests with decod-
ing onk-best trees.

NIST MT Evaluation test set as our test set (1082
sentences), with on average 28.28 and 26.31 words
per sentence, respectively. We evaluate the transla-
tion quality using thecase-sensitiveBLEU-4 met-
ric (Papineni et al., 2002). We use the standard min-
imum error-rate training (Och, 2003) to tune the fea-
ture weights to maximize the system’s BLEU score
on the dev set. On dev and test sets, we prune the
Chinese parse forests by the forest pruning algo-
rithm in Section 3.4 with a threshold ofp = 12, and
then convert them into translation forests using the
algorithm in Section 3.2. To increase the coverage
of the rule set, we also introduce adefault transla-
tion hyperedgefor each parse hyperedge by mono-
tonically translating each tail node, so that we can
always at least get a complete translation in the end.

4.2 Results

The BLEU score of the baseline 1-best decoding is
0.2325, which is consistent with the result of 0.2302
in (Liu et al., 2007) on the same training, develop-
ment and test sets, and with the same rule extrac-
tion procedure. The corresponding BLEU score of
Pharaoh (Koehn, 2004) is 0.2182 on this dataset.

Figure 4 compares forest decoding with decoding
on k-best trees in terms of speed and quality. Us-
ing more than one parse tree apparently improves the
BLEU score, but at the cost of much slower decod-
ing, since each of the top-k trees has to be decoded
individually although they share many common sub-
trees. Forest decoding, by contrast, is much faster
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and produces consistently better BLEU scores. With
pruning thresholdp = 12, it achieved a BLEU
score of 0.2485, which is an absolute improvement
of 1.6% points over the 1-best baseline, and is statis-
tically significant using thesign-testof Collins et al.
(2005) (p < 0.01).

We also investigate the question of how often the
ith-best parse tree is picked to direct the translation
(i = 1, 2, . . .), in both k-best and forest decoding
schemes. A packed forest can be roughly viewed as
a (virtual)∞-best list, and we can thus ask how of-
ten is a parse beyond top-k used by a forest, which
relates to the fundamental limitation ofk-best lists.
Figure 5 shows that, the 1-best parse is still preferred
25% of the time among 30-best trees, and 23% of
the time by the forest decoder. These ratios decrease
dramatically asi increases, but the forest curve has a
much longer tail in largei. Indeed, 40% of the trees
preferred by a forest is beyond top-30, 32% is be-
yond top-100, and even 20% beyond top-1000. This
confirms the fact that we need exponentially largek-
best lists with the explosion of alternatives, whereas
a forest can encode these information compactly.

4.3 Scaling to large data

We also conduct experiments on a larger dataset,
which contains 2.2M training sentence pairs. Be-
sides the trigram language model trained on the En-
glish side of these bitext, we also use another tri-
gram model trained on the first 1/3 of the Xinhua
portion of Gigaword corpus. The two LMs have dis-

approach\ ruleset TR TR+BP
1-best tree 0.2666 0.2939

30-best trees 0.2755 0.3084
forest (p = 12) 0.2839 0.3149

Table 1: BLEU score results from training on large data.

tinct weights tuned by minimum error rate training.
The dev and test sets remain the same as above.

Furthermore, we also make use of bilingual
phrases to improve the coverage of the ruleset. Fol-
lowing Liu et al. (2006), we prepare a phrase-table
from a phrase-extractor, e.g. Pharaoh, and at decod-
ing time, for each node, we construct on-the-fly flat
translation rules from phrases that match the source-
side span of the node. These phrases are calledsyn-
tactic phraseswhich are consistent with syntactic
constituents (Chiang, 2005), and have been shown to
be helpful in tree-based systems (Galley et al., 2006;
Liu et al., 2006).

The final results are shown in Table 1, where TR
denotes translation rule only, and TR+BP denotes
the inclusion of bilingual phrases. The BLEU score
of forest decoder with TR is 0.2839, which is a 1.7%
points improvement over the 1-best baseline, and
this difference is statistically significant (p < 0.01).
Using bilingual phrases further improves the BLEU
score by 3.1% points, which is 2.1% points higher
than the respective 1-best baseline. We suspect this
larger improvement is due to the alternative con-
stituents in the forest, which activates many syntac-
tic phrases suppressed by the 1-best parse.

5 Conclusion and future work

We have presented a novel forest-based translation
approach which uses a packed forest rather than the
1-best parse tree (ork-best parse trees) to direct the
translation. Forest provides a compact data-structure
for efficient handling of exponentially many tree
structures, and is shown to be a promising direc-
tion with state-of-the-art translation results and rea-
sonable decoding speed. This work can thus be
viewed as a compromise between string-based and
tree-based paradigms, with a good trade-off between
speed and accuarcy. For future work, we would like
to use packed forests not only in decoding, but also
for translation rule extraction during training.
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