
Proceedings of ACL-08: HLT, pages 559–567,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

A Tree Sequence Alignment-based Tree-to-Tree Translation Model 
 
 

Min Zhang1  Hongfei Jiang2  Aiti Aw1  Haizhou Li1  Chew Lim Tan3 and Sheng Li2

1Institute for Infocomm Research 2Harbin Institute of Technology 3National University of Singapore
mzhang@i2r.a-star.edu.sg hfjiang@mtlab.hit.edu.cn tancl@comp.nus.edu.sg 

aaiti@i2r.a-star.edu.sg lisheng@hit.edu.cn  
hli@i2r.a-star.edu.sg   

 
  

Abstract 

This paper presents a translation model that is 
based on tree sequence alignment, where a tree 
sequence refers to a single sequence of sub-
trees that covers a phrase. The model leverages 
on the strengths of both phrase-based and lin-
guistically syntax-based method. It automati-
cally learns aligned tree sequence pairs with 
mapping probabilities from word-aligned bi-
parsed parallel texts. Compared with previous 
models, it not only captures non-syntactic 
phrases and discontinuous phrases with lin-
guistically structured features, but also sup-
ports multi-level structure reordering of tree 
typology with larger span. This gives our 
model stronger expressive power than other re-
ported models. Experimental results on the 
NIST MT-2005 Chinese-English translation 
task show that our method statistically signifi-
cantly outperforms the baseline systems.  

1 Introduction 

Phrase-based modeling method (Koehn et al., 
2003; Och and Ney, 2004a) is a simple, but power-
ful mechanism to machine translation since it can 
model local reorderings and translations of multi-
word expressions well. However, it cannot handle 
long-distance reorderings properly and does not 
exploit discontinuous phrases and linguistically 
syntactic structure features (Quirk and Menezes, 
2006). Recently, many syntax-based models have 
been proposed to address the above deficiencies 
(Wu, 1997; Chiang, 2005; Eisner, 2003; Ding and 
Palmer, 2005; Quirk et al, 2005; Cowan et al., 
2006; Zhang et al., 2007; Bod, 2007; Yamada and 
Knight, 2001; Liu et al., 2006; Liu et al., 2007; 
Gildea, 2003; Poutsma, 2000; Hearne and Way, 

2003). Although good progress has been reported, 
the fundamental issues in applying linguistic syn-
tax to SMT, such as non-isomorphic tree align-
ment, structure reordering and non-syntactic phrase 
modeling, are still worth well studying. 

In this paper, we propose a tree-to-tree transla-
tion model that is based on tree sequence align-
ment. It is designed to combine the strengths of 
phrase-based and syntax-based methods. The pro-
posed model adopts tree sequence 1  as the basic 
translation unit and utilizes tree sequence align-
ments to model the translation process. Therefore, 
it not only describes non-syntactic phrases with 
syntactic structure information, but also supports 
multi-level tree structure reordering in larger span. 
These give our model much more expressive 
power and flexibility than those previous models. 
Experiment results on the NIST MT-2005 Chinese-
English translation task show that our method sig-
nificantly outperforms Moses (Koehn et al., 2007), 
a state-of-the-art phrase-based SMT system, and 
other linguistically syntax-based methods, such as 
SCFG-based and STSG-based methods (Zhang et 
al., 2007). In addition, our study further demon-
strates that 1) structure reordering rules in our 
model are very useful for performance improve-
ment while discontinuous phrase rules have less 
contribution and 2) tree sequence rules are able to 
model non-syntactic phrases with syntactic struc-
ture information, and thus contribute much to the 
performance improvement, but those rules consist-
ing of more than three sub-trees have almost no 
contribution.  

The rest of this paper is organized as follows: 
Section 2 reviews previous work. Section 3 elabo-

                                                           
1 A tree sequence refers to an ordered sub-tree sequence that 
covers a phrase or a consecutive tree fragment in a parse tree. 
It is the same as the concept “forest” used in Liu et al (2007).  
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rates the modelling process while Sections 4 and 5 
discuss the training and decoding algorithms. The 
experimental results are reported in Section 6. Fi-
nally, we conclude our work in Section 7. 

2 Related Work 

Many techniques on linguistically syntax-based 
SMT have been proposed in literature. Yamada 
and Knight (2001) use noisy-channel model to 
transfer a target parse tree into a source sentence. 
Eisner (2003) studies how to learn non-isomorphic 
tree-to-tree/string mappings using a STSG. Ding 
and Palmer (2005) propose a syntax-based transla-
tion model based on a probabilistic synchronous 
dependency insertion grammar. Quirk et al. (2005) 
propose a dependency treelet-based translation 
model. Cowan et al. (2006) propose a feature-
based discriminative model for target language 
syntactic structures prediction, given a source 
parse tree. Huang et al. (2006) study a TSG-based 
tree-to-string alignment model. Liu et al. (2006) 
propose a tree-to-string model. Zhang et al. 
(2007b) present a STSG-based tree-to-tree transla-
tion model. Bod (2007) reports that the unsuper-
vised STSG-based translation model performs 
much better than the supervised one. The motiva-
tion behind all these work is to exploit linguistical-
ly syntactic structure features to model the 
translation process. However, most of them fail to 
utilize non-syntactic phrases well that are proven 
useful in the phrase-based methods (Koehn et al., 
2003). 

The formally syntax-based model for SMT was 
first advocated by Wu (1997). Xiong et al. (2006) 
propose a MaxEnt-based reordering model for 
BTG (Wu, 1997) while Setiawan et al. (2007) pro-
pose a function word-based reordering model for 
BTG. Chiang (2005)’s hierarchal phrase-based 
model achieves significant performance improve-
ment. However, no further significant improve-
ment is achieved when the model is made sensitive 
to syntactic structures by adding a constituent fea-
ture (Chiang, 2005). 

In the last two years, many research efforts were 
devoted to integrating the strengths of phrase-
based and syntax-based methods. In the following, 
we review four representatives of them.   

1) Hassan et al. (2007) integrate supertags (a 
kind of lexicalized syntactic description) into the 
target side of translation model and language mod-

el under the phrase-based translation framework, 
resulting in good performance improvement. How-
ever, neither source side syntactic knowledge nor 
reordering model is further explored.  

2) Galley et al. (2006) handle non-syntactic 
phrasal translations by traversing the tree upwards 
until a node that subsumes the phrase is reached. 
This solution requires larger applicability contexts 
(Marcu et al., 2006). However, phrases are utilized 
independently in the phrase-based method without 
depending on any contexts.  

3) Addressing the issues in Galley et al. (2006), 
Marcu et al. (2006) create an xRS rule headed by a 
pseudo, non-syntactic non-terminal symbol that 
subsumes the phrase and its corresponding multi-
headed syntactic structure; and one sibling xRS 
rule that explains how the pseudo symbol can be 
combined with other genuine non-terminals for 
acquiring the genuine parse trees. The name of the 
pseudo non-terminal is designed to reflect the full 
realization of the corresponding rule. The problem 
in this method is that it neglects alignment consis-
tency in creating sibling rules and the naming me-
chanism faces challenges in describing more 
complicated phenomena (Liu et al., 2007).  

4) Liu et al. (2006) treat all bilingual phrases as 
lexicalized tree-to-string rules, including those 
non-syntactic phrases in training corpus. Although 
the solution shows effective empirically, it only 
utilizes the source side syntactic phrases of the in-
put parse tree during decoding. Furthermore, the 
translation probabilities of the bilingual phrases 
and other tree-to-string rules are not compatible 
since they are estimated independently, thus hav-
ing different parameter spaces. To address the 
above problems, Liu et al. (2007) propose to use 
forest-to-string rules to enhance the expressive 
power of their tree-to-string model. As is inherent 
in a tree-to-string framework, Liu et al.’s method 
defines a kind of auxiliary rules to integrate forest-
to-string rules into tree-to-string models. One prob-
lem of this method is that the auxiliary rules are 
not described by probabilities since they are con-
structed during decoding, rather than learned from 
the training corpus. So, to balance the usage of dif-
ferent kinds of rules, they use a very simple feature 
counting the number of auxiliary rules used in a 
derivation for penalizing the use of forest-to-string 
and auxiliary rules. 

In this paper, an alternative solution is presented 
to combine the strengths of phrase-based and syn-
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Figure 1: A word-aligned parse tree pairs of a Chi-
nese sentence and its English translation  

 

 
 

Figure 2: Two Examples of tree sequences 

 

 
 

Figure 3: Two examples of translation rules 

tax-based methods. Unlike previous work, our so-
lution neither requires larger applicability contexts 
(Galley et al., 2006), nor depends on pseudo nodes 
(Marcu et al., 2006) or auxiliary rules (Liu et al., 
2007). We go beyond the single sub-tree mapping 
model to propose a tree sequence alignment-based 
translation model. To the best of our knowledge, 
this is the first attempt to empirically explore the 
tree sequence alignment based model in SMT.  

3 Tree Sequence Alignment Model 

3.1 Tree Sequence Translation Rule   

The leaf nodes of a sub-tree in a tree sequence can 
be either non-terminal symbols (grammar tags) or 
terminal symbols (lexical words). Given a pair of 
source and target parse trees 1( )JT f and 1( )IT e  in 
Fig. 1, Fig. 2 illustrates two examples of tree se-
quences derived from the two parse trees. A tree 
sequence translation rule r  is a pair of aligned tree 
sequences r =< 2

1
( )j

jTS f , 2
1

( )i
iTS e , A%  >, where: 

 2
1

( )j
jTS f is a source tree sequence, covering 

the span [ 1 2,j j ] in 1( )JT f , and 

 2
1

( )i
iTS e is a target one, covering the span 

[ 1 2,i i ] in 1( )IT e , and 
 A% are the alignments between leaf nodes of 

two tree sequences, satisfying the following 
condition: 1 2 1 2( , ) :i j A i i i j j j∀ ∈ ≤ ≤ ↔ ≤ ≤% . 

Fig. 3 shows two rules extracted from the tree pair 
shown in Fig. 1, where r1 is a tree-to-tree rule and 
r2 is a tree sequence-to-tree sequence rule. Ob-
viously, tree sequence rules are more powerful 
than phrases or tree rules as they can capture all 
phrases (including both syntactic and non-syntactic 
phrases) with syntactic structure information and 
allow any tree node operations in a longer span. 
We expect that these properties can well address 
the issues of non-isomorphic structure alignments, 
structure reordering, non-syntactic phrases and 
discontinuous phrases translations. 

3.2 Tree Sequence Translation Model 

Given the source and target sentences 1
Jf and 1

Ie  

and their parse trees 1( )JT f and 1( )IT e , the tree 
sequence-to-tree sequence translation model is 
formulated as: 

1 1

1 1

1 1 1 1 1 1
( ), ( )

1 1
( ), ( )

1 1 1

1 1 1 1

( | ) ( , ( ), ( ) | )

( ( ( ) | )

( ( ) | ( ), )

( | ( ), ( ), ))

                

                      
                      

J I

J I

I J I I J J

T f T e

J J

T f T e

I J J

I I J J

r r

r

r

r

P e f P e T e T f f

P T f f

P T e T f f

P e T e T f f

=

=

⋅
⋅

∑

∑ (1) 

In our implementation, we have: 
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1) 1 1( ( ) | ) 1J JrP T f f ≡ since we only use the best 
source and target parse tree pairs in training. 

2) 1 1 1 1( | ( ), ( ), ) 1I I J JrP e T e T f f ≡ since we just 

output the leaf nodes of 1( )IT e to generate 1
Ie  

regardless of source side information. 
Since 1( )JT f contains the information of 1

Jf , 
now we have: 

1 1 1 1 1

1 1

( | ) ( ( ) | ( ), )

                 ( ( ) | ( ))

I J I J J

I J

r r

r

P e f P T e T f f

P T e T f

=

=
           (2) 

By Eq. (2), translation becomes a tree structure 
mapping issue. We model it using our tree se-
quence-based translation rules. Given the source 
parse tree 1( )JT f , there are multiple derivations 

that could lead to the same target tree 1( )IT e , the 

mapping probability 1 1( ( ) | ( ))I JrP T e T f is obtained 
by summing over the probabilities of all deriva-
tions. The probability of each derivationθ is given 
as the product of the probabilities of all the rules 

( )ip r  used in the derivation (here we assume that 
a rule is applied independently in a derivation). 

2 2

1 1

1 1 1 1( | ) ( ( ) | ( ))

     = ( : ( ), ( ), )
i

I J I J

i j
i i j

r

r rP e f P T e T f

p r TS e TS f A
θ θ∈

=

< >∑∏ %    (3) 

Eq. (3) formulates the tree sequence alignment-
based translation model. Figs. 1 and 3 show how 
the proposed model works. First, the source sen-
tence is parsed into a source parse tree. Next, the 
source parse tree is detached into two source tree 
sequences (the left hand side of rules in Fig. 3). 
Then the two rules in Fig. 3 are used to map the 
two source tree sequences to two target tree se-
quences, which are then combined to generate a 
target parse tree. Finally, a target translation is 
yielded from the target tree.  

Our model is implemented under log-linear 
framework (Och and Ney, 2002). We use seven 
basic features that are analogous to the commonly 
used features in phrase-based systems (Koehn, 
2004): 1) bidirectional rule mapping probabilities; 
2) bidirectional lexical rule translation probabilities; 
3) the target language model; 4) the number of 
rules used and 5) the number of target words. In 
addition, we define two new features: 1) the num-
ber of lexical words in a rule to control the model’s 
preference for lexicalized rules over un-lexicalized 

rules and 2) the average tree depth in a rule to bal-
ance the usage of hierarchical rules and flat rules. 
Note that we do not distinguish between larger (tal-
ler) and shorter source side tree sequences, i.e. we 
let these rules compete directly with each other. 

4 Rule Extraction 

Rules are extracted from word-aligned, bi-parsed 
sentence pairs 1 1( ), ( ),J IT f T e A< > , which are 
classified into two categories: 

 initial rule, if all leaf nodes of the rule are 
terminals (i.e. lexical word), and 

 abstract rule, otherwise, i.e. at least one leaf 
node is a non-terminal (POS or phrase tag). 

Given an initial rule 2 2
1 1

( ), ( ),j i
j iTS f TS e A< >% , 

its sub initial rule is defined as a triple 
4 4

3 3
ˆ( ), ( ),j i

j iTS f TS e A< >  if and only if: 

 4 4
3 3

ˆ( ), ( ),j i
j iTS f TS e A< > is an initial rule. 

 3 4 3 4( , ) :i j A i i i j j j∀ ∈ ≤ ≤ ↔ ≤ ≤% , i.e. 

Â A⊆ %  

 4
3

( )j
jTS f is a sub-graph of 2

1
( )j

jTS f while  

4
3

( )i
iTS e  is a sub-graph of 2

1
( )i

iTS e . 
Rules are extracted in two steps: 
1) Extracting initial rules first. 
2) Extracting abstract rules from extracted ini-

tial rules with the help of sub initial rules. 
It is straightforward to extract initial rules. We 

first generate all fully lexicalized source and target 
tree sequences using a dynamic programming algo-
rithm and then iterate over all generated source and 
target tree sequence pairs 2 2

1 1
( ), ( )j i

j iTS f TS e< > . If 

the condition “ ( , )i j∀ 1 2 1 2:A i i i j j j∈ ≤ ≤ ↔ ≤ ≤ ” 

is satisfied, the triple 2 2
1 1

( ), ( ),j i
j iTS f TS e A< >% is 

an initial rule, where A%  are alignments between 
leaf nodes of 2

1
( )j

jTS f  and 2
1

( )i
iTS e . We then de-

rive abstract rules from initial rules by removing 
one or more of its sub initial rules. The abstract 
rule extraction algorithm presented next is imple-
mented using dynamic programming. Due to space 
limitation, we skip the details here. In order to con-
trol the number of rules, we set three constraints 
for both finally extracted initial and abstract rules:  

1) The depth of a tree in a rule is not greater 
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than h . 
2) The number of non-terminals as leaf nodes is 

not greater than c . 
3) The tree number in a rule is not greater than d. 
In addition, we limit initial rules to have at most 

seven lexical words as leaf nodes on either side. 
However, in order to extract long-distance reorder-
ing rules, we also generate those initial rules with 
more than seven lexical words for abstract rules 
extraction only (not used in decoding). This makes 
our abstract rules more powerful in handling 
global structure reordering. Moreover, by configur-
ing these parameters we can implement other 
translation models easily: 1) STSG-based model  
when 1d = ; 2) SCFG-based model when 1d =  
and 2h = ; 3) phrase-based translation model only 
(no reordering model) when 0c =  and 1h = . 
 

Algorithm 1: abstract rules extraction 

Input: initial rule set inir  
Output: abstract rule set absr  

1: for each i inir r∈ , do 

2:    put all sub initial rules of ir  into a set subini
ir

3:    for each subset subini
irΘ ⊆ do 

4:          if there are spans overlapping between 
any two rules in the subset Θ  then 

5:                    continue   //go to line 3 
6:           end if  
7:           generate an abstract rule by removing 

the portions covered by Θ  from ir  and 
co-indexing the pairs of non-terminals 
that rooting the removed source and 
target parts 

8:           add them into the abstract rule set absr  
9:     end do 
10: end do  

 

5 Decoding 

Given 1( )JT f , the decoder is to find the best deri-

vation θ  that generates < 1( )JT f , 1( )IT e >.  

1

1

1 1

,

ˆ arg max ( ( ) | ( ))

  arg max ( )

I

I
i

I J

e

i
e r

re P T e T f

p r
θ θ∈

=

≈ ∏
             (4) 

Algorithm 2: Tree Sequence-based Decoder 

 Input: 1( )JT f   Output: 1( )IT e  

 Data structures: 
1 2[ , ]h j j    To store translations to a span 1 2[ , ]j j  

1: for s = 0 to J -1 do      // s: span length 
2:     for 1j = 1 to J - s , 2j = 1j + s  do  
3:          for each rule r spanning 1 2[ , ]j j  do  
4:               if r  is an initial rule then 
5:                    insert r into 1 2[ , ]h j j  
6:               else 
7:      generate new translations from 

r by replacing non-terminal leaf 
nodes of r with their correspond-
ing spans’ translations that are al-
ready translated in previous steps 

8:      insert them into 1 2[ , ]h j j  
9:  end if 
10: end for 
11: end for 
12: end for 
13: output the hypothesis with the highest score  

in [1, ]h J  as the final best translation 
 

The decoder is a span-based beam search to-
gether with a function for mapping the source deri-
vations to the target ones. Algorithm 2 illustrates 
the decoding algorithm. It translates each span ite-
ratively from small one to large one (lines 1-2).  
This strategy can guarantee that when translating 
the current span, all spans smaller than the current 
one have already been translated before if they are 
translatable (line 7). When translating a span, if the 
usable rule is an initial rule, then the tree sequence 
on the target side of the rule is a candidate transla-
tion (lines 4-5). Otherwise, we replace the non-
terminal leaf nodes of the current abstract rule 
with their corresponding spans’ translations that 
are already translated in previous steps (line 7). To 
speed up the decoder, we use several thresholds to 
limit search beams for each span:  

1) α , the maximal number of rules used 
2) β , the minimal log probability of rules 
3) γ , the maximal number of translations yield  
It is worth noting that the decoder does not force 

a complete target parse tree to be generated. If no 
rules can be used to generate a complete target 
parse tree, the decoder just outputs whatever have 
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been translated so far monotonically as one hy-
pothesis. 

6 Experiments 

6.1 Experimental Settings 

We conducted Chinese-to-English translation ex-
periments. We trained the translation model on the 
FBIS corpus (7.2M+9.2M words) and trained a 4-
gram language model on the Xinhua portion of the 
English Gigaword corpus (181M words) using the 
SRILM Toolkits (Stolcke, 2002) with modified 
Kneser-Ney smoothing. We used sentences with 
less than 50 characters from the NIST MT-2002 
test set as our development set and the NIST MT-
2005 test set as our test set. We used the Stanford 
parser (Klein and Manning, 2003) to parse bilin-
gual sentences on the training set and Chinese sen-
tences on the development and test sets. The 
evaluation metric is case-sensitive BLEU-4 (Papi-
neni et al., 2002). We used GIZA++ (Och and Ney, 
2004) and the heuristics “grow-diag-final” to gen-
erate m-to-n word alignments. For the MER train-
ing (Och, 2003), we modified Koehn’s MER 
trainer (Koehn, 2004) for our tree sequence-based 
system. For significance test, we used Zhang et al’s 
implementation (Zhang et al, 2004). 

We set three baseline systems: Moses (Koehn et 
al., 2007), and SCFG-based and STSG-based tree-
to-tree translation models (Zhang et al., 2007). For 
Moses, we used its default settings. For the 
SCFG/STSG and our proposed model, we used the 
same settings except for the parameters d and h  
( 1d = and 2h = for the SCFG; 1d = and 6h = for 
the STSG; 4d =  and 6h = for our model). We 
optimized these parameters on the training and de-
velopment sets: c =3, α =20, β =-100 and γ =100. 

6.2 Experimental Results   

We carried out a number of experiments to ex-
amine the proposed tree sequence alignment-based 
translation model. In this subsection, we first re-
port the rule distributions and compare our model 
with the three baseline systems. Then we study the 
model’s expressive ability by comparing the con-
tributions made by different kinds of rules, includ-
ing strict tree sequence rules, non-syntactic phrase 
rules, structure reordering rules and discontinuous 

phrase rules2. Finally, we investigate the impact of 
maximal sub-tree number and sub-tree depth in our 
model. All of the following discussions are held on 
the training and test data. 
 
 
Rule 

 Initial Rules  Abstract Rules  
L P U Total 

BP 322,965 0 0  322,965
TR 443,010 144,459 24,871  612,340
TSR 225,570 103,932 714  330,216

 

Table 1: # of rules used in the testing ( 4d = , h =  6) 
(BP: bilingual phrase (used in Moses), TR: tree rule (on-
ly 1 tree), TSR: tree sequence rule (> 1 tree), L: fully 
lexicalized, P: partially lexicalized, U: unlexicalized) 
 

Table 1 reports the statistics of rules used in the 
experiments. It shows that:  

1) We verify that the BPs are fully covered by 
the initial rules (i.e. lexicalized rules), in which the 
lexicalized TSRs model all non-syntactic phrase 
pairs with rich syntactic information. In addition, 
we find that the number of initial rules is greater 
than that of bilingual phrases. This is because one 
bilingual phrase can be covered by more than one 
initial rule which having different sub-tree struc-
tures. 

2) Abstract rules generalize initial rules to un-
seen data and with structure reordering ability. The 
number of the abstract rule is far less than that of 
the initial rules. This is because leaf nodes of an 
abstract rule can be non-terminals that can 
represent any sub-trees using the non-terminals as 
roots.   

Fig. 4 compares the performance of different 
models. It illustrates that: 

1) Our tree sequence-based model significantly 
outperforms (p < 0.01) previous phrase-based and 
linguistically syntax-based methods. This empirical-
ly verifies the effect of the proposed method. 

2) Both our method and STSG outperform Mos-
es significantly. Our method also clearly outper-
forms STSG. These results suggest that: 

 The linguistically motivated structure features 
are very useful for SMT, which can be cap-

                                                           
2 To be precise, we examine the contributions of strict tree 
sequence rules and single tree rules separately in this section. 
Therefore, unless specified, the term “tree sequence rules” 
used in this section only refers to the strict tree sequence rules, 
which must contain at least two sub-trees on the source side. 
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tured by the two syntax-based models through 
tree node operations. 

 Our model is much more effective in utilizing 
linguistic structures than STSG since it uses 
tree sequence as basic translation unit. This 
allows our model not only to handle structure 
reordering by tree node operations in a larger 
span, but also to capture non-syntactic phras-
es, which circumvents previous syntactic 
constraints, thus giving our model more ex-
pressive power. 

3) The linguistically motivated SCFG shows 
much lower performance. This is largely because 
SCFG only allows sibling nodes reordering and fails 
to utilize both non-syntactic phrases and those syn-
tactic phrases that cannot be covered by a single 
CFG rule. It thereby suggests that SCFG is less 
effective in modelling parse tree structure transfer 
between Chinese and English when using Penn 
Treebank style linguistic grammar and under word-
alignment constraints. However, formal SCFG 
show much better performance in the formally syn-
tax-based translation framework (Chiang, 2005). 
This is because the formal syntax is learned from 
phrases directly without relying on any linguistic 
theory (Chiang, 2005). As a result, it is more ro-
bust to the issue of non-syntactic phrase usage and 
non-isomorphic structure alignment.  

24.71

26.07

23.86
22.72

21.5

22.5

23.5

24.5

25.5

26.5

SCFG Moses STSG Ours

B
LE

U
(%

)

 
Figure 4: Performance comparison of different methods 
 
Rule  
Type 

TR 
(STSG) 

TR 
+TSR_L 

TR+TSR_L
+TSR_P 

TR 
+TSR 

BLEU(%) 24.71 25.72 25.93 26.07 
 

Table 2: Contributions of TSRs (see Table 1 for the de-
finitions of the abbreviations used in this table) 
 
Table 2 measures the contributions of different 

kinds of tree sequence rules. It suggests that: 
1) All the three kinds of TSRs contribute to the 

performance improvement and their combination 

further improves the performance. It suggests that 
they are complementary to each other since the 
lexicalized TSRs are used to model non-syntactic 
phrases while the other two kinds of TSRs can ge-
neralize the lexicalized rules to unseen phrases. 

2)  The lexicalized TSRs make the major con-
tribution since they can capture non-syntactic 
phrases with syntactic structure features. 

 
Rule Type BLEU (%) 
TR+TSR 26.07 
(TR+TSR) w/o SRR 24.62 
(TR+TSR) w/o DPR 25.78 

 
Table 3: Effect of Structure Reordering Rules (SRR: 
refers to the structure reordering rules that have at least 
two non-terminal leaf nodes with inverted order in the 
source and target sides, which are usually not captured 
by phrase-based models. Note that the reordering be-
tween lexical words and non-terminal leaf nodes is not 
considered here) and Discontinuous Phrase Rules (DPR: 
refers to these rules having at least one non-terminal 
leaf node between two lexicalized leaf nodes) in our 
tree sequence-based model ( 4d =  and 6h = ) 
 

Rule Type # of rules # of rules overlapped 
(Intersection) 

SRR 68,217 18,379 (26.9%) 
DPR 57,244 18,379 (32.1%) 

 
Table 4: numbers of SRR and DPR rules 

 
Table 3 shows the contributions of SRR and 

DPR. It clearly indicates that SRRs are very effec-
tive in reordering structures, which improve per-
formance by 1.45 (26.07-24.62) BLEU score. 
However, DPRs have less impact on performance 
in our tree sequence-based model. This seems in 
contradiction to the previous observations3 in lite-
rature. However, it is not surprising simply be-
cause we use tree sequences as the basic translation 
units. Thereby, our model can capture all phrases. 
In this sense, our model behaves like a phrase-
based model, less sensitive to discontinuous phras-

                                                           
3 Wellington et al. (2006) reports that discontinuities are very 
useful for translational equivalence analysis using binary-
branching structures under word alignment and parse tree 
constraints while they are almost of no use if under word 
alignment constraints only. Bod (2007) finds that discontinues 
phrase rules make significant performance improvement in 
linguistically STSG-based SMT models. 
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es (Wellington et al., 2006). Our additional expe-
riments also verify that discontinuous phrase rules 
are complementary to syntactic phrase rules (Bod, 
2007) while non-syntactic phrase rules may com-
promise the contribution of discontinuous phrase 
rules. Table 4 reports the numbers of these two 
kinds of rules. It shows that around 30% rules are 
shared by the two kinds of rule sets. These over-
lapped rules contain at least two non-terminal leaf 
nodes plus two terminal leaf nodes, which implies 
that longer rules do not affect performance too 
much. 
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Figure 5: Accuracy changing with different max-
imal tree depths ( h = 1 to 6 when 4d = ) 
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Figure 6: Accuracy changing with the different maximal 
number of trees in a tree sequence ( d =1 to 5), the upper 
line is for 6h =  while the lower line is for 2h = .  

 
Fig. 5 studies the impact when setting different 

maximal tree depth ( h ) in a rule on the perfor-
mance. It demonstrates that:  

1) Significant performance improvement is 
achieved when the value of h  is increased from 1 
to 2. This can be easily explained by the fact that 
when h = 1, only monotonic search is conducted, 
while h = 2 allows non-terminals to be leaf nodes, 
thus introducing preliminary structure features to 
the search and allowing non-monotonic search. 

2) Internal structures and large span (due to h  
increasing) are also useful as attested by the gain 

of 0.86 (26.14-25.28) Blue score when the value of 
h  increases from 2 to 4. 

Fig. 6 studies the impact on performance by set-
ting different maximal tree number (d) in a rule. It 
further indicates that: 

1) Tree sequence rules (d >1) are useful and 
even more helpful if we limit the tree depth to no 
more than two (lower line, h=2). However, tree 
sequence rules consisting of more than three sub-
trees have almost no contribution to the perform-
ance improvement. This is mainly due to data 
sparseness issue when d >3. 

2) Even if only two-layer sub-trees (lower line) 
are allowed, our method still outperforms STSG 
and Moses when d>1. This further validates the 
effectiveness of our design philosophy of using 
multi-sub-trees as basic translation unit in SMT. 

7 Conclusions and Future Work 

In this paper, we present a tree sequence align-
ment-based translation model to combine the 
strengths of phrase-based and syntax-based me-
thods. The experimental results on the NIST MT-
2005 Chinese-English translation task demonstrate 
the effectiveness of the proposed model. Our study 
also finds that in our model the tree sequence rules 
are very useful since they can model non-syntactic 
phrases and reorderings with rich linguistic struc-
ture features while discontinuous phrases and tree 
sequence rules with more than three sub-trees have 
less impact on performance. 

There are many interesting research topics on 
the tree sequence-based translation model worth 
exploring in the future. The current method ex-
tracts large amount of rules. Many of them are re-
dundant, which make decoding very slow. Thus, 
effective rule optimization and pruning algorithms 
are highly desirable. Ideally, a linguistically and 
empirically motivated theory can be worked out, 
suggesting what kinds of rules should be extracted 
given an input phrase pair. For example, most 
function words and headwords can be kept in ab-
stract rules as features. In addition, word align-
ment is a hard constraint in our rule extraction. We 
will study direct structure alignments to reduce the 
impact of word alignment errors. We are also in-
terested in comparing our method with the forest-
to-string model (Liu et al., 2007). Finally, we 
would also like to study unsupervised learning-
based bilingual parsing for SMT.  
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