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Abstract

This paper presents an improved formally
syntax-based SMT model, which is enriched
by linguistically syntactic knowledge obtained
from statistical constituent parsers. We pro-
pose a linguistically-motivated prior deriva-
tion model to score hypothesis derivations on
top of the baseline model during the trans-
lation decoding. Moreover, we devise a
fast training algorithm to achieve such im-
proved models based on tree kernel meth-
ods. Experiments on an English-to-Chinese
task demonstrate that our proposed models
outperformed the baseline formally syntax-
based models, while both of them achieved
significant improvements over a state-of-the-
art phrase-based SMT system.

1 Introduction

In recent years, syntax-based translation models
(Chiang, 2007; Galley et al., 2004; Liu et al., 2006)
have shown promising progress in improving trans-
lation quality. There are two major elements ac-
counting for such an improvement: namely the in-
corporation of phrasal translation structures adopted
from widely applied phrase-based models (Och
and Ney, 2004) to handle local fluency, and the
engagement of synchronous context-free grammars
(SCFG), which enhances the generative capacity of
the underlying model that is limited by finite-state
machinery.

Approaches to syntax-based translation models
using SCFG can be further categorized into two
classes, based on their dependency on annotated cor-

pus. Following Chiang (Chiang, 2007), we note the
following distinction between these two classes:

• Linguistically syntax-based: models that utilize
structures defined over linguistic theory and
annotations (e.g., Penn Treebank), and SCFG
rules are derived from parallel corpus that is
guided by explicitly parsing on at least one side
of the parallel corpus. Examples among others
are (Yamada and Knight, 2001) and (Galley et
al., 2004).

• Formally syntax-based: models are based on
hierarchical structures of natural language but
synchronous grammars are automatically ex-
tracted from parallel corpus without any usage
of linguistic knowledge or annotations. Exam-
ples include Wu’s (Wu, 1997) ITG and Chi-
ang’s hierarchical models (Chiang, 2007).

While these two often resemble in appearance,
from practical viewpoints, there are some distinc-
tions in training and decoding procedures differen-
tiating formally syntax-based models from linguis-
tically syntax-based models. First, the former has
no dependency on available linguistic theory and
annotations for targeting language pairs, and thus
the training and rule extraction are more efficient.
Secondly, the decoding complexity of the former is
lower 1, especially when integrating a n-gram based

1The complexity is dominated by synchronous parsing and
boundary words keeping. Thus binary SCFG employed in for-
mally syntax-based systems help to maintain efficient CKY de-
coding. Recent work by (Zhang et al., 2006) shows a practi-
cally efficient approach that binarizes linguistically SCFG rules
when possible.
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language model, which is a key element to ensure
translation output quality.

On the other hand, available linguistic theory
and annotations could provide invaluable benefits in
grammar induction and scoring, as shown by recent
progress on such models (Galley et al., 2006). In
contrast, formally syntax-based grammars often lack
explicit linguistic constraints.

In this paper, we propose a scheme to enrich for-
mally syntax-based models with linguistically syn-
tactic knowledge. In other words, we maintain our
grammar to be based on formal syntax on surface,
but incorporate linguistic knowledge into our mod-
els to leverage syntax theory and annotations.

Our goal is two-fold. First, how to score SCFG
rules whose general abstraction forms are unseen in
the training data is an important question to answer.
In hierarchical models, Chiang (Chiang, 2007) uti-
lizes heuristics where certain assumptions are made
on rule distributions to obtain relative frequency
counts. We intend to explore if additional linguisti-
cally parsing information would be beneficial to im-
prove the scoring of formally syntactic SCFG gram-
mars. Secondly, we note that SCFG-based models
often come with an excessive memory consumption
as its rule size is an order of magnitude larger com-
pared to phrase-based models, which challenges its
practical deployment for online real-time translation
tasks. Furthermore, formal syntax rules are often re-
dundant as they are automatically extracted without
linguistic supervision. Therefore, we are motivated
to study approaches to further score and rank formal
syntax rules based on syntax-inspired methods, and
eventually to prune unnecessary rules without loss
of performance in general.

In our study, we propose a linguistically-
motivated method to train prior derivation models
for formally syntax-based translation. In this frame-
work, prior derivation models can be viewed as a
smoothing of rule translation models, addressing
the weakness of the baseline model estimation that
relies on relative counts obtained from heuristics.
First, we apply automatic parsers to obtain syntax
annotations on the English side of the parallel cor-
pus. Next, we extract tree fragments associated with
phrase pairs, and measure similarity between such
tree fragments using kernel methods (Collins and
Duffy, 2002; Moschitti, 2006). Finally, we score

and rank rules based on their minimal cluster sim-
ilarity of their nonterminals, which is used to com-
pute the prior distribution of hypothesis derivations
during decoding for improved translation.

The remainder of the paper is organized as fol-
lows. We start with a brief review of some related
work in Sec. 2. In Sec. 3, we describe our formally
syntax-based models and decoder implementation,
that is established as our baseline system. Sec. 4
presents the approach to score formal SCFG rules
using kernel methods. Experimental results are pro-
vided in Sec. 5. Finally, Sec. 6 summarized our con-
tributions with discussions and future work.

2 Related Work

Syntax-based translation models engaged with
SCFG have been actively investigated in the liter-
ature (Wu, 1997; Yamada and Knight, 2001; Gildea,
2003; Galley et al., 2004; Satta and Peserico, 2005).
Recent work by (Chiang, 2007; Galley et al.,
2006) shows promising improvements compared to
phrase-based models for large-scale tasks. How-
ever, few previous work directly applied linguisti-
cally syntactic information into a formally syntax-
based models, which is explored in this paper.

Kernel methods leverage the fact that the only op-
eration in a procedure is the evaluation of inner dot
products between pairs of observations, where the
inner product is thus replaced with a Mercer kernel
that provides an efficient way to carry out computa-
tion when original feature dimension is large or even
infinite. Collins and Duffy (Collins and Duffy, 2002)
suggested to employ convolution kernels to measure
similarity between two trees in terms of their sub-
structures, and more recently, Moschitti (Moschitti,
2006) described in details a fast implementation of
tree kernels. To our knowledge, this paper is one of
the few efforts of applying kernel methods for im-
proved translation.

3 Formally Syntax-based Models

An SCFG is a synchronous rewriting system gen-
erating source and target side string pairs simulta-
neously based on context-free grammar. Each syn-
chronous production (i.e., rule) rewrites a nonter-
minal into a pair of strings, γ and α, with both
terminals and nonterminals in both languages, sub-
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ject to the constraint that there is a one-to-one cor-
respondence between nonterminal occurrences on
the source and target side. In particular, formally
syntax-based models explore hierarchical structures
of natural language and utilize only a unified nonter-
minal symbol X in the grammar,

X → 〈γ, α,∼〉, (1)

where ∼ is the one-to-one correspondence between
X’s in γ and α, which is indicated by under-
scripted co-indices on both sides. For example,
some English-to-Chinese production rules can be
represented as follows:

X → 〈X1enjoy readingX2, (2)
X1xihuan(enjoy) yuedu(reading)X2〉

X → 〈X1enjoy readingX2,

X1xihuan(enjoy)X2yuedu(reading)〉

The set of rules, denoted as R, are automatically ex-
tracted from sentence-aligned parallel corpus (Chi-
ang, 2007). First, bidirectional word-level align-
ment is carried out on the parallel corpus running
GIZA++ (Och and Ney, 2000). Based on the result-
ing Viterbi alignments Ae2f and Af2e, the union,
AU = Ae2f ∪ Af2e, is taken as the symmetrized
word-level alignment. Next, bilingual phrase pairs
consistent with word alignments are extracted from
AU (Och and Ney, 2004). Specifically, any pair
of consecutive sequences of words below a maxi-
mum length M is considered to be a phrase pair
if its component words are aligned only within the
phrase pair and not to any words outside. The re-
sulting bilingual phrase pair inventory is denoted as
BP . Each phrase pair PP ∈ BP is represented as
a production rule X → 〈f j

i , el
k〉, which we refer to

as phrasal rules. The SCFG rule set encloses all
phrase pairs, i.e., BP ⊂ R. Next, we loop through
each phrase pair PP and generalize the sub-phrase
pair contained in PP, denoted as SPe and SPf sub-
ject to SP = (SPf , SPe) ∈ BP , with co-indexed
nonterminal symbols. We thereby obtain a new rule.

We limit the number of nonterminals in each rule
no more than two, thus ensuring the rank of SCFG is
two. To reduce rule size and spurious ambiguity, we
apply constraints described in (Chiang, 2007). In
addition, we require that the sub-phrases being ab-
stracted by correspondent nonterminals have to be

aligned together in the original phrase pair, which
significantly reduces the number of rules. We will
hereafter refer to rules with nonterminal symbols as
abstract rules to distinguish them from phrasal rules.
Finally, an implicit glue rule is embedded with de-
coder to allow for translations that can be achieved
by sequentially linking sub-translations generated
chunk-by-chunk:

X → 〈X1X2, X1X2〉. (3)

That is, X is also our sentence start symbol.
During such a rule extraction procedure, we note

that there is a many-to-many mapping between
phrase pairs (contiguous word sequences without
nonterminals) and derived rules (a mixed combina-
tion of word and nonterminal sequences). In other
words, one original phrase pair can induce a num-
ber of different rules, and the same rule can also be
derived from a number of different phrase pairs.

3.1 Models

All rules in R are paired with statistical parame-
ters (i.e., weighted SCFG), which combines with
other features to form our models using a log-linear
framework. Translation using SCFG for an input
sentence f is casted as to find the optimal derivation
on source and target side (as the grammar is syn-
chronous, the derivations on source and target sides
are identical). By “optimal”, it indicates that the
derivation D maximizes following log-linear mod-
els over all possible derivations:

P (D) ∝ PLM (e)λLM×
∏

i

∏
X→<γ,α>∈D φi(X →< γ, α >)λi , (4)

where the set of φi(X →< γ, α >) are features
defined over given production rule, and PLM (e) is
the language model score on hypothesized output,
the λi is the feature weight.

Our baseline model follows Chiang’s hierarchical
model (Chiang, 2007) in conjunction with additional
features:

• conditional probabilities in both directions:
P (γ|α) and P (α|γ);

• lexical weights (Koehn et al., 2003) in both di-
rections: Pw(γ|α) and Pw(α|γ);
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• word counts |e|;

• rule counts |D|;

• target n-gram language model PLM (e);

• glue rule penalty to learn preference of non-
terminal rewriting over serial combination
through Eq. 3;

Moreover, we propose an additional feature, namely
the abstraction penalty, to account for the accumu-
lated number of nonterminals applied in D:

• abstraction penalty exp(−Na), where Na =∑
X→<γ,α>∈D n(γ)

where n(γ) is the number of nonterminals in γ. This
feature aims to learn the preference among phrasal
rules, and abstract rules with one or two nontermi-
nals. This makes our syntax-based model includes a
total of nine features.

The training procedure described in (Chiang,
2007) employs heuristics to hypothesize a distri-
bution of possible rules. A count one is assigned
to every phrase pair occurrence, which is equally
distributed among rules that are derived from this
phrase pair. Hypothesizing this distribution as our
observations on rule occurrence, relative-frequency
estimation is used to obtain P (γ|α) and P (α|γ).

We note that, however, these parameters are of-
ten poorly estimated due to the usage of inaccurate
heuristics, which is the major problem that we alle-
viate in Sec. 4.

3.2 Decoder

The objective of our syntax-based decoder is to
search for the optimal derivation tree D from a for-
est of trees that can represent the input sentence. The
target side is mapped accordingly at each nontermi-
nal node in the tree, and a traverse of these nodes
obtains the target translation. Fig. 1 shows an ex-
ample for chart parsing that produces the translation
from the best parse.

Our decoder implements a modified CKY parser
in C++ with integrated n-gram language model scor-
ing. During search, chart cells are filled in a bottom-
up fashion until a tree rooted from nonterminal is
generated that covers the entire input sentence. The
dynamic programming item we bookkeep is denoted

Figure 1: A chart parsing-based decoding on SCFG pro-
duces translation from the best parse: f1f2f3f4f5 →
e5e6e3e4e1e2.

as [X, i, j; eb], indicating a sub-tree rooted with X

that has covered input from position i to j generat-
ing target translation with boundary words eb. To
speed up the decoding, a pruning scheme similar to
the cube pruning (Chiang, 2007) is performed dur-
ing search.

4 Prior Derivation Models

As mentioned above, decoding searches for the op-
timal tree on source side to cover the input sentence
with respect to given models, as shown in Eq. 4.
Among these feature functions, φi measures how
likely the source and hypothesized target sub-trees
rooted from same X are paired together through
symmetric conditional probabilities (e.g., P (γ|α)
and P (α|γ)), and the target language model mea-
sures the fluency on target string. It should be noted
that, however, the baseline models do not discrim-
inate between different parses on source side when
the target side is unknown.

Therefore, if we could obtain some prior distribu-
tions for the source side derivations, we can rewrite
Eq. 4 as:

P (D) ∝ PLM (e)λLM ×∏
X→<γ,α>∈D

(
∏

i φi(X →< γ, α >)λi)L(X →< γ, ∗ >)λL ,

(5)

where L(·) is a feature function defined over a pro-
duction but only depending on one side of the rules
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and asterisk denotes arbitrary symbol sequences on
the other side consistent with our grammars 2. The
production of L(·) over all rules observed in a
derivation D measures the prior distribution of D.
In the baseline model, as a special case, we can see
that L(·) is a constant function.

The motivation is straightforward since some
derivations should be preferred over others. One
may make an analogy between our prior derivation
distributions to non-uniform source side segmenta-
tion models in phrase-based systems. However, it
should be noted that prior derivation models influ-
ence not only on phrase choices as what segmenta-
tion models do, but also on ordering options due to
the nonterminal usage in syntax-based models.

In principle, some quantitative schemes are
needed to evaluate the monolingual derivation prior
probability. Our scheme links the source side deriva-
tion prior probability with the expected ambiguity
on target side generation when mapping the source
side to target side given the derivation. That is, a
given source side derivation is favored if it intro-
duces less ambiguity on target generation compared
to others.

Let us revisit the rules in Eq. 2. We notice that
the same source side maps into different target or-
ders depending on the syntactic role (e.g., NP or PP)
of X2 in the rule. Furthermore, the following are
example rules trained from real data (see Sec. 5):

X → 〈X1passX2, X1gei (give)X2〉 (6)
X → 〈X1passX2, X1jingguo (traverse)X2〉 (7)

X → 〈X1passX2, X1piao (ticket)X2〉 (8)

Above three rules cover pretty well for different us-
ages of pass in English and its correspondence in
Chinese. Typically, applying the rule to inputs such
as “my pass expired” obtains reasonable translations
with baseline models. However, it will fail on inputs
like “my pass to the zoo” as none of th rules provides
a correct translation of X1X2piao (ticket) when X2

is a prepositional phrase.
Such linguistic phenomena, among others, indi-

cates that the higher variation of syntax structures

2In general, we can plug in either L(X →< γ, ∗ >) or
L(X →< ∗, α >) here. For illustration purposes, we assume
that the model is on the source side.

the nonterminal embodies, the more translation op-
tions on target side needed to account for various
syntactic roles on source side. This suggests that
our prior derivation models should prefer nonter-
minals that cover more syntactically homogeneous
constituents. Such a model is thus proposed in
Sec. 4.1.

The prior derivation model can also be viewed
as a smoothing on rule translation probabilities esti-
mated using heuristics, as we mentioned in Sec. 3.1.
When there are more translation options, we deem
that there are more ambiguity for this rule. In cases
where some dominating translation option is overes-
timated from hypothesized distributions, all transla-
tion options of this rule are discounted as they are
less favored by prior derivation models.

4.1 Model Syntactic Variations

Each abstract rule is generalized from a set of origi-
nal relevant phrase pairs by grouping an appropriate
set of sub-phrases into a nonterminal symbol, with
each sub-phrase linked to a tree list. Therefore, the
joined tree lists form a forest for this nonterminal
symbol in the rule. For every abstract rule, we de-
fine the rule forest to be the set of tree fragments of
all sub-phrases abstracted within this rule.

We parse the English side of parallel corpus to ob-
tain a syntactic tree for each English sentence. For
each phrase extracted from this sentence, we de-
fine the tree fragment for this phrase as the mini-
mal set of internal tree whose leaves span exactly
over this phrase. As a common practice, we pre-
serve all phrase pairs in BP including those who
are not consistent with parser sub-trees. Therefore,
there will be many phrases that cross over syntactic
sub-trees, which subsequently produced tree frag-
ments lacking a root. We label those as “incom-
plete” tree fragments, and introduce a parent node of
“INC” on top of them to form a single-rooted sub-
tree. For example, Fig. 2 shows the tree fragments
for phrases of “reading books” and “enjoy reading”,
where the latter is an “incomplete” tree fragment.
Moreover, for sentences failed on parsing, we la-
bel all phrases extracted from those sentences with a
root of “EMPTY”.

Subset trees of tree fragments are defined as any
sub-graph that contains more than one nodes, with
the restriction that entire rule productions must be
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Figure 2: Syntax parsing tree (a) and tree fragments for
phrases “reading books” (b) and “enjoy reading” (c).
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Figure 3: Subset trees of the NP covering “reading
books”.

included (Collins and Duffy, 2002). Fig. 3 enumer-
ates a list of subset trees for fragment (b) in Fig. 2.

To measure syntactic homogeneity, we define the
fragment similarity K(T1, T2) as the number of
common subset trees between two tree fragments T1

and T2. Conceptually, if we enumerate all possible
subset trees 1, . . . ,M , we can represent each tree
fragment T as a vector h(T ) = (c1, . . . , cM ) with
each element as the count of occurrences of each
subset tree in T . Thus, the similarity can be ex-
pressed by the inner products of these two vectors.
Note that M will be a huge number for our problem,
and thus we need kernel methods presented below to
make computation tractable.

4.2 Kernel Methods

Collins and Duffy (Collins and Duffy, 2002) intro-
duced a method employing convolution kernels to
measure similarity between two trees in terms of

their sub-structures. If we define an indicator func-
tion Ii(n) to be 1 if subset tree i is rooted at node n

and 0 otherwise, we have:

K(T1, T2) =
∑

n1∈N1

∑

n2∈N2

C(n1, n2) (9)

where C(n1, n2) =
∑

i Ii(n1)Ii(n2) and N1, N2

are the set of nodes in the tree fragment T1 and T2

respectively. It is noted that C(n1, n2) can be com-
puted recursively (Collins and Duffy, 2002):

1. C(n1, n2) = 0 if the productions at n1 and n2

are different;

2. C(n1, n2) = 1 if the productions at n1 and n2

are the same and both are pre-terminals;

3. Otherwise,

C(n1, n2) = λ

nc(n1)∏

j=1

(1 + C(chj
n1

, chj
n2

)) (10)

where ch
j
n1

is the jth child of node n1, nc(n1) is
the number of children at n1 and 0 < λ ≤ 1 is a
decay factor to discount the effects of deeper tree
structures.

In principle, the computational complexity of
Eq. 10 is O(|N1| × |N2|). However, as noted by
(Collins and Duffy, 2002), the worst case is quite un-
common to natural language syntactic trees. More
recently, Moschitti (Moschitti, 2006) introduced in
details a fast implementation of tree kernels, where a
node pair set is first constructed for those associated
with same production rules. Our work follows Mos-
chitti’s implementation, which runs in linear time on
average. We compute the normalized similarity as
K ′(T1, T2) = K(T1,T2)√

K(T1,T1)×
√

K(T2,T2)
to ensure simi-

larity is normalized between 0 and 1.

4.3 Prior Derivation Cost

First we define the purity of a nonterminal forest
(with respect to a given rule) Pur(X) as the aver-
age similarity of all tree fragments in the cluster:

Pur(X) =
2

N(N − 1)

∑

j

∑

i<j

K ′(Ti, Tj), (11)

where N is number of tree fragments in the forest of
X . We now can define the derivation cost L(X →<
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γ, ∗ >) for a rule production as:

L(X →< γ, ∗ >) =

− log(( min
X1,X2∈γ

(Pur(X1), Pur(X2)))
k), (12)

where k ≥ 1 is the degree of smoothness. Note that
the prior derivation cost is set as L(·) = 0 by defini-
tion for phrasal rules.

Eq. 11 is quadratic complexity with N , however,
we note that rules with a large N will typically score
poorly on prior derivation models, and thus we can
avoid the computation for those by assigning them
a large cost. With the fast kernel computation, the
training procedure involved with the prior derivation
models for the task presented in Sec. 5 is about 5
times slower on a single machine, compared with
the training of the baseline system. However, we
note that our training procedure can be computed in
parallel, and therefore the training speed is not a bot-
tleneck when multiple CPUs are available.

5 Experiments

We perform our experiments on an English-to-
Chinese translation task in travel domain. Our train-
ing set contains 482017 parallel sentences (with
4.4M words on the English side), which are col-
lected from transcription and human translation of
conversations. The vocabulary size is 37K for En-
glish and 44K for Chinese after segmentation.

Our evaluation data is a held out data set of 2755
sentences pairs. We extracted every one out of two
sentence pairs into the dev-set, and left the remain-
der as the test-set. We thereby obtained a dev-set of
1378 sentence pairs, and a test-set with 1377 sen-
tence pairs. In both cases, there are about 15K run-
ning words on English side. All Chinese sentences
in training, dev and test sets are all automatically
segmented into words. Minimum-error-rate training
(Och, 2003) are conducted on dev-set to optimize
feature weights maximizing the BLEU score up to 4-
grams, and the obtained feature weights are blindly
applied on the test-set. To compare performances
excluding tokenization effects, all BLEU scores are
optimized (on dev-set) and reported (on test-set) at
Chinese character-level.

From training data, we extracted an initial phrase
pair set with 3.7M entries for phrases up to 8 words

on Chinese side. We trained a 4-gram language
model for Chinese at word level, which is shared by
all translation systems reported in this paper, using
the Chinese side of the parallel corpus that contains
around 2M segmented words.

We compare the proposed models with two base-
lines: a state-of-the-art phrase-based system and a
formal syntax-based system as described in Sec. 3.
The phrase-based system employs the 3.7M phrase
pairs to build the translation model, and it con-
tains a total set of 8 features, most of which are
identical to our baseline formal syntax-based model.
The difference only lies on that the glue and ab-
straction penalty are not applicable for phrase-based
system. Instead, a lexicalized reordering model is
trained from the word-aligned parallel corpus for
the phrase-based system. More details about our
multiple-graph based phrasal SMT can be found in
(Zhou et al., 2006; Zhou et al., 2008). For the base-
line syntax-based system, we generated a total of
15M rules and used 9 features.

We chose the Stanford parser (Klein and Man-
ning, 2002) as the English parser in our experiments
due to its high accuracy and relatively faster speed.
It was trained on the Wall Street Journal section of
the Penn Treebank. During the parsing, the input
English sentences were tokenized first, in a style
consistent with the data in the Penn Treebank.

We sent 482017 English sentences to the parser.
There were 1221 long sentences failed, less than
0.3% of the whole set. After the word alignment
and phrase extraction on the parallel corpus, we ob-
tained 2.2M unique English phrases. Among them
there are about 34K phrases having an empty tree
in their corresponding tree lists, due to the failure
in parsing. The number of unique tree fragments
for English phrases is 2.5M. Out of them there are
750K marked as incomplete. As mentioned previ-
ously, each rule covers a set of phrases, with each
phrase linked to a tree list. The total number of rules
with unique English side is around 8M.

The distribution of the number of rules over the
number of corresponding trees is shown in Table 1.
We observe that the majority of rules in our model
has less than 150 tree fragments. Therefore, consid-
ering the quadratic complexity in Eq. 11, we pun-
ish the rules with more than 150 unique tree frag-
ments with some floor cluster purity to speed up
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Table 1: Distribution of rules over trees
Number of trees Number of rules

(0, 10] 3636766
(10, 20] 1556806
(20, 30] 989848
(30, 40] 916606
(40, 50] 488469
(50, 60] 270484
(60, 70] 198438
(70, 80] 86921
(80, 90] 58280
(90, 100] 29147
(100, 150] 437231

> 150 81060

the training. Not surprisingly, the rules with a large
number of tree fragments are typically those with
few stop words as terminals. For instance, the rule
X →< X1aX2, ∗ > comes with more than 100K
trees for the X1.

Table 2: English-to-Chinese BLEU score result on test-
set (character-based)

Models BLEU(4-gram)

Phrase-based 42.11
Formally Syntax-based 43.75
Formally Syntax-based

with prior derivation 44.51

Translation results are presented in Table 2
with character-based BLEU scores using 2 refer-
ences. Our baseline formally syntax-based mod-
els achieved the BLEU score of 43.75, an abso-
lute improvement of 1.6 point improvement over
phrase-based models. The improvement is statisti-
cally significant with p < 0.01 using the sign-test
described by (Collins et al., 2005). Applying the
prior derivation model into the syntax-based system,
BLEU score is further improved to 44.51, obtained
an another absolute improvement of 0.8 point, which
is also significantly better than our baseline syntax-
based models (p < 0.05).

6 Discussion and Summary

We introduced a prior derivation model to enhance
formally syntax-based SCFG for translation. Our

approach links a prior rule distribution with the syn-
tactic variations of abstracted sub-phrases, which
is modeled by distance measuring of linguistically
syntax parsing tree fragments using kernel meth-
ods. The proposed model has improved translation
performance over both phrase-based and formally
syntax-based models. Moreover, such a prior dis-
tribution can also be used to rank and prune SCFG
rules to reduce memory usage for online translation
systems based on syntax-based models.

Although the experiments in this paper are con-
ducted for prior derivation models on source side
in an English-to-Chinese task, we are interested in
applying this to foreign-to-English models as well.
As what we pointed out in Sec. 4, target side prior
derivation model fits with our framework as well.
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