
AMTA-2006

Panel: Hybrid Machine Translation: Why and How?

PANEL MODERATOR(S):
Violetta Cavalli-Sforza violetta@cs.cmu.edu
Alon Lavie alavie@cs.cmu.edu

PANELISTS:
 Jaime Carbonell (CMU) jgc@cs.cmu.edu
 Nizar Habash (Columbia U.) habash@cs.columbia.edu
 Philipp Koehn (U. of Edinburgh) pkoehn@inf.ed.ac.uk
 Stephanie Seneff (MIT) seneff@csail.mit.edu
 John White (Systran) white@systransoft.com

In recent years, statistical machine translation has made great strides, example-based
approaches have pushed forward, but systems based on linguistic knowledge have not
been abandoned. In fact, we have seen the pendulum swing back a little towards the
latter through the inclusion of linguistic knowledge in statistical systems and vice versa.
Much current research in machine translation is neither based purely on linguistic
knowledge nor on statistics, but includes some degree of hybridization. At AMTA 2004
and MT Summit 2005 just about all commercial MT developers also claimed to have
hybrid systems. But is this mostly a good way to allow painting oneself into whatever
paradigm that current "fashion" suggests one should be? And, given that no system still
has approached human first draft quality, is hybridization little more than rearranging the
furniture, or is there real progress or promise behind the mixing of different paradigms?
Looking at it in the framework of the Vauquois' triangle, if the original SMT was just an
automated return to the "direct" MT paradigm (the bottom of the triangle), are we now
just ascending the same mountain again, but with different mountaineering tools? Will
any hybrid of current paradigms take us any higher, more robustly, than in the past?

This panel/round table aims to explore the motivation for hybrid systems, the challenges
they pose, and the benefits they offer, by addressing questions such as:

* Are there circumstances in which one of the traditional approaches (statistical,
example-based, interlingua, transfer-based) is clearly better used alone than any of the
others approaches used alone or in combination?

* In general, no MT developer strictly adheres to the claimed theoretical framework
because there are many compromises in building a working system. Which components
of a hybrid system tend to be empirically based and which are based on linguistic
knowledge? In answering this question we can use the traditional subdivision into
morphology, syntax and semantics, but are there other frameworks that we can apply?

* Some systems do use linguistic knowledge (morphology, grammar rules) but learn it
from data through machine learning techniques. How successfully do they learn and to

what extent does the automatically learned knowledge contribute to overall system
performance? Is automatically learned knowledge used together with hand-written rules
and, if so, in what combination? Learning from data usually requires tagged training data
of some sort, but the development of tagged corpora is not expense-free. Considering the
cost of developing correctly tagged data, are automatic learning approaches really
financially advantageous?

* What are the factors involved in determining which component(s) of a system to make
statistical and which linguistically based? The scarcity of parallel corpora might push
towards the choice of a rule-based approach, but where there is little parallel corpora,
there is often also very limited funding or "commercial feasibility", making a rule-based
approach too expensive. In other cases, the parallel corpora may exist in the hands of
commercial translation companies or their clients, but may be expensive or impossible to
obtain. For a particular application, given the choice of spending money to build
linguistic knowledge or to buy or build a parallel corpus, which should be chosen? And
how does one build a parallel corpus increase the chances of a maximally performing
empirically-based system?

* Finally, hybrid systems may be providing performance gains and reducing some
development expenses, but is this at the cost of more complex systems that are harder to
document, understand, and use? And is the complexity making it increasingly difficult to
perform blame/credit attribution and to ultimately further improve the overall
performance of the system?

