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Abstract 

As an approach to syntax based statistical 
machine translation (SMT), Probabilistic 
Synchronous Dependency Insertion 
Grammars (PSDIG), introduced in (Ding 
and Palmer, 2005), are a version of syn-
chronous grammars defined on depend-
ency trees. In this paper we discuss better 
learning and decoding algorithms for a 
PSDIG MT system. We introduce two 
new grammar learners: (1) an exhaustive 
learner combining different heuristics, (2) 
an n-gram based grammar learner. Com-
bining the grammar rules learned from the 
two learners improved the performance. 
We introduce a better decoding algorithm 
which incorporates a tri-gram language 
model. According to the Bleu metric, the 
PSDIG MT system performance is sig-
nificantly better than IBM Model 4, while 
on par with the state-of-the-art phrase 
based system Pharaoh (Koehn, 2004). The 
improved integration of syntax on both 
source and target languages opens door to 
more sophisticated SMT processes. 

1 Introduction 

Syntax-based statistical machine translation (SMT) 
aims at applying statistical models to structural 
data, has begun to emerge. With the advances in 
the broad-coverage parsers trained from treebanks, 
e.g. (Collins, 1999) and (McDonald et al., 2005), 
structural analysis of different languages has been 
made possible. Ideally, by combining the natural 
language syntax and machine learning methods, a 
broad-coverage and linguistically well-motivated 
statistical MT system can be constructed. 

However, because of structural divergences be-

tween languages (Dorr, 1994)，due to either sys-
tematic differences between languages or loose 
translations in real corpora, the syntax based MT 
systems have to transduce between non-isomorphic 
tree structures, which is a major challenge. 

(Wu, 1997) and (Alshawi et al., 2000) learn the 
tree representations directly from parallel sen-
tences, and do not make allowances for non-
isomorphic structures.  (Yamada and Knight, 2001) 
used a sequence of tree operations transforming a 
syntactic tree into a string of the target language. 
(Quirck et al., 2005) used syntax structures to 
guide the phrase reorder process.  

When researchers try to use syntax trees (here 
we think of syntax as linguistic syntax, in contrast 
to formal syntax) in both languages, the problem of 
non-isomorphism must be addressed. In theory, 
stochastic tree transducers and some versions of 
synchronous grammars provide solutions for the 
non-isomorphic tree based transduction problem 
and hence possible solutions for MT. Synchronous 
Tree Adjoining Grammars was proposed by (Shie-
ber and Schabes, 1990). Eisner (2003) proposed 
viewing the MT as synchronous tree substitution 
grammar parsing. Melamed (2003) formalized the 
MT as synchronous parsing based on multi-text 
grammars. Graehl and Knight (2004) defined train-
ing and decoding algorithms for both generalized 
tree-to-tree and tree-to-string transducers. Lin 
(2004) proposed to base the MT process on parallel 
dependency paths. Ding and Palmer (2005) intro-
duced the use of Probabilistic Synchronous De-
pendency Insertion Grammars (PSDIG) to model 
machine translation. These approaches model the 
two languages using tree transduction rules or syn-
chronous grammars, possibly with multi-lemma 
elementary structures as atomic units.  

However, large scale implementation and com-
petitive performance of the above mentioned meth-
ods are still a challenging task. And to the best of 
our knowledge, the advantages of syntax based 
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statistical MT systems over pure statistical MT 
systems are yet to be empirically verified. 

We believe difficulties in inducing a synchro-
nous grammar or a set of tree transduction rules 
from large scale parallel corpora are caused by:  
1. A synchronous derivation process must exist 

between the source and target language sen-
tences. However identifying the proper level 
for the transduction is not an easy task. 

2. The induction of a synchronous grammar is 
usually computationally expensive. The ex-
haustive search for all possible corresponding 
sub-sentential structures is NP-complete. 

3. The problem is aggravated by the non-perfect 
training corpora. Loose translations are less of 
a problem for string based approaches than for 
approaches that require syntactic analysis. 

Hajic et al. (2002) limited non-isomorphism by 
n-to-m matching of nodes in the two trees.  How-
ever, even by allowing cloning operations on sub-
trees, Gildea (2003) found that parallel trees over-
constrained the alignment problem, and achieved 
better results with a tree-to-string model. In a dif-
ferent approach, Hwa et al. (2002) aligned the par-
allel sentences using SMT models and projected 
the alignments back to the parse trees. 

The framework of PSDIG, while using trees on 
both languages, achieves flexible transduction of 
non-isomorphic trees by (1) relying on dependency 
structure, which is a deeper form of representation 
compared to phrasal structure trees; and (2) by al-
lowing multi-lemma elementary trees. The linear 
time decoding algorithm in (Ding and Palmer, 
2005) can be used as a starting point for more so-
phisticated decoding. In this paper, we examine 
various aspects of syntax based MT using PSDIG, 
such as grammar induction and decoding algo-
rithms. We aim at having the overall MT system 
perform competitively with the pure statistical MT 
systems, especially the current leading SMT sys-
tem based on phrasal translation, Pharaoh (Koehn, 
2004).  

The rest of this paper describes the system de-
tails as follows: Sections 2 sketches the concept of 
PSDIG. Section 3 describes two new algorithms to 
induce Synchronous Dependency Insertion Gram-
mars from parallel corpora. Section 4 describes a 
new decoder which incorporates several translation 
models. We evaluate our system in section 5 with 
the Bleu metric (Papineni et al., 2002) and discuss 
the results in Section 6. 

2 A Sketch of PSDIG 

The framework of using PSDIG for MT was intro-
duced in (Ding and Palmer, 2005). Fox (2002) re-
ports dependency representations have the best 
inter-lingual phrasal cohesion properties. Further-
more, dependency grammars have the advantage of 
simple formalism and CFG equivalent formal gen-
erative capacity. Being lexicalized, dependency 
grammars are friendly with probabilistic modeling. 

A monolingual Dependency Insertion Grammar 
(DIG) can be viewed as a tree substitution gram-
mar defined on dependency trees (as opposed to 
phrasal structure trees). The basic units of the 
grammar are elementary trees (ET), which are sub-
sentential dependency structures containing one or 
more lexical items. The synchronous version, Syn-
chronous Dependency Insertion Grammar (SDIG), 
assumes that the isomorphism of the two syntactic 
structures is at the ET level, rather than at the word 
level, hence allowing non-isomorphic tree to tree 
mapping. 

We illustrate how the SDIG works using the 
following pseudo-translation example (the place-
ment of the dependency arcs reflects word order): 

 [Source] The girl kissed her kitty cat. 
 [Target] The girl gave a kiss to her cat. 

 

Figure 1.
An example

 

Figure 2. 
Tree-to-tree 
transduction

Almost any tree-transduction operations de-
fined on a single node will fail to generate the tar-
get sentence from the source sentence without 
using insertion/deletion operations. However, if we 
view each dependency tree as an assembly of indi-
visible sub-sentential elementary trees (ETs), we 
can find a proper way to transduce the input tree to 
the output tree. An ET is a single “symbol” in a 
transducer’s language. As shown in Figure 2, each 
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circle stands for an ET and thick arrows denote the 
transduction of each ET as a single symbol. 

3 Improving Synchronous Dependency 
Insertion Grammar Induction 

As the start to a syntax-based SMT system, the 
PSDIG must be learned from the parallel corpora.  

3.1 Background 

One way to induce a generative grammar is using 
EM style estimation on the generative process (Ha-
jic et al., 2002; Eisner 2003; Gildea 2003; Graehl 
and Knight 2004). However, Fox (2002) reported 
that between French and English, the percentage of 
head crossings dependencies per chance is 12.62%. 
In (Ding and Palmer, 2005), using the statistics 
from a small word to word aligned Chinese-
English parallel corpus1, it is found that crossing-
dependencies between Chinese and English is 
4.7% while broken dependencies (i.e. descendents 
go to sister nodes in another language) is 59.3%. 

The large number of broken dependencies pre-
sents a major challenge for grammar induction 
based on a top-down style EM learning process. 

In (Ding and Palmer, 2005), a grammar induc-
tion algorithm that hierarchically partitions the 
parallel dependency trees was introduced. The al-
gorithm runs in an iterative fashion, in each step, it 
chooses more probable word mappings from the 
two dependency trees of the two languages, subject 
to certain category constraints and synchronously 
partitions the two dependency trees on the two 
sides at the chosen word pair. 

The “synchronous partitioning” operation can 
be viewed as the reversed procedural of Figure 2. 
Suppose we synchronously partition at word pairs 
“girl – girl” and “cat – cat” the resultant three 
treelet pairs can be collected. 

The probability of each word mapping is esti-
mated using a max entropy model, based on a set 
of heuristic functions and trained on a development 
test dataset. The algorithm then runs as follows: (1) 
it looks at all the top-NP (noun phrases) mappings, 
and synchronously partition at more confident 
mappings; (2) it looks at normal NP pairs and par-
tition the tree pair; (3) partition at all VPs (verb 

                                                           
1  Total 826 sentence pairs, 9957 Chinese words, 12660 Eng-
lish words. Data made available by the courtesy of Microsoft 
Research, Asia and IBM T.J. Watson Research. 

phrases) pairs and equivalents (4) partition at all 
the Modifiers (ADJP, PP, etc…); (5) all the num-
bers.  

The above algorithm is greedy. It cannot correct 
previous errors. Suppose a wrong partitioning op-
eration is taken at Step (1), all the partitioning op-
erations taken in step (2) to (5) are subject to this 
error, and hence hurt the accuracy of the statistics. 

Moreover, the above algorithm constraints the 
partitioning operations can only be taken between 
two nodes of the same category set. However, if a 
NP is mapped to a VP, which does happen in real 
world data, such constraints wouldn’t allow it. 

3.2 Grammar Induction by Exhaustive 
Search 

In light of the previously observed problems of the 
hierarchical partitioning algorithm, we remove the 
category constraints of the grammar induction 
process. Rather, we only rely on the heuristic score 
provided by the Max Entropy model: 

( )
,

0 1

P( | )

P | ( , ), ( , )... ( , )

1 exp ( , )

i j

i j i j n i j

k k i j s
k

y e f

y h e f h e f h e f

h e f
Z

λ λ

=

 
= + 

 
∑

        (1) 

where (0,1)y =  as labeled in the training data 
whether the two words are mapped with each other. 

kh  are the heuristic functions (details given later).  
We calculate the above probability for all the 

tentative word pairs; and filters them with a thresh-
old, thresholdθ , this means the word pairs that have a 
heuristic score higher than thresholdθ  will be used in 
the exhaustive search for PSDIG induction. The 
value of thresholdθ  is chosen by optimizing the F-
measure on the development test data.  
 [English]   I have been in Canada since 1947. 
 [Chinese]  Wo 1947 nian yilai  yizhi   zhu  zai  jianada. 
 [Glossary]  I   1947 year since always live in  Canada 

 
Figure 3a. A grammar induction example 
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Suppose in the above example, the MaxEnt 
model and the threshold predict six word pairs 
should be used to collect the treelet pairs:  

(I – wo), (Canada – jianada), (been – zhu), (in –
zai), (since – yilai), (1947 – 1947). 

For each of the permitted word pair, it has the 
freedom of going “on” and “off”, suggesting a par-
titioning operation to be “taken” or “not taken” at 
this word pair. For each combination of the 
abovementioned on/off choices of the word pairs, 
a synchronous partitioning operation is executed at 
each word pair that is currently set as “on”.  

For each abovementioned combination, the re-
sultant treelet pairs from the synchronous parti-
tioning operations taken are collected as ET pairs. 
If we use four word pairs as “on” (out of six): 

(I – wo), (been – zhu), (in – zai), (since – yilai) 
The following four ET pairs will be collected: 

 

Figure 3b. 
Collected ETs

In the above example, the ET pairs corresponding 
to the string pairs below are learned as PSDIG 
rules: 

(I have been in Canada since 1947 -- wo 1947 nian 
yilai yizhi zhu zai jianada) (have been -- yizhi zhu) (I 
have been -- wo yizhi zhu) (since 1947 -- 1947 nian yilai) 
(in -- zai) (Canada -- jianada) (have been since -- yizhi 
zhu zai) …… 

In theory, by permitting n  word pairs, 2n com-
binations are possible. Hence an exponentially 
large number of ET pairs may be learned. We 
prune the ET pairs using the following: 
 Any ET has a max size of maxsize  , (currently 

max 7size = ) 
 The ETs on two sides have a max size ratio of 

:1sizeratio , (currently 4sizeratio = ) 
 For all ET pairs that rooted at the same word 

pair, we only allow maxc  distinctive ET pairs. 
We do so by allowing only less confident 

(lower heuristic score) word pairs to have the 
freedom of going “on” and “off”, while we set 
the more confident word pair to be always 
“on”, meaning a partitioning operation is al-
ways “taken” at more confident locations. 
(currently max 1024c = ) 

 Each unique ET pair is only counted once for 
a given sentence pair. 

This exhaustive search algorithm provides more 
flexibility compared to the previous hierarchical 
partitioning algorithm. We observe that the number 
of rules learned using exhaustive search is signifi-
cantly larger than that of those learned using hier-
archical partitioning.  

3.3 Heuristics for the Exhaustive Learner 

The heuristic function that is used in Equation (1) 
is based on a set of heuristics. While some of the 
heuristics are the same as those in (Ding and 
Palmer, 2005), we build two new heuristic func-
tions, incorporating word alignment results. For a 
word pair ( , )i je f for the tentative partitioning op-
eration, the heuristics functions are described as 
following: 
 Inside-outside word alignment scores. (new) 
 Inside-outside word penalties. (new) 
 Entropy: the entropy of the word to word 

translation probability of the English word ie . 
The lower the entropy, the more selective and 
hence more reliable the word alignment. 

 Part-of-Speech mapping template: whether the 
POS tags of the two words are in the “highly 
likely to match” POS tag pairs. 

 Word translation probability: P( | )j if e  
 Whether the word pair is in word alignment. 

The first two heuristics are new in this paper. 
They are built using a word alignment table gener-
ated by bi-directional training of IBM Model 4 
(Brown et al. 1993), using the method described in 
(Och and Ney, 2004). The alignments from models 
of both directions are intersected and diagonally 
grown and finalized (a.k.a. grow-diag-final).  

Suppose we have the word alignment as shown 
in Figure 4. 

Please be noted that since the align-grow-final 
method tends to align adjacent words diagonally, 
some alignments are not exact or not correct.  

We define the subtree that is rooted at the word 
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ie  as the “inside tree” of ie . And the rest of the 
dependency tree as the “outside tree” of ie . This 
idea is borrowed from the inside-outside probabili-
ties in PCFG parsing. For example, on the left side, 
the inside tree of (cat) is (a kitty cat), while the 
outside tree of (cat) is (The girl kissed). 

The

kissed

girl

kittya

cat

gave

girl

cat

tokiss

The a

her  
(The – The), (girl – girl), (kissed – gave, a, kiss), (to 

– a), (cat – cat), (kitty – her). 
Figure 4. A word alignment example 

With regards to the tentative word pair (cat –
cat), we calculate the number of word alignments 
from the inside tree on the left side to the inside 
tree on the right side. Hence, counting (cat – cat), 
(kitty – her), the inside word alignment score is: 

_ (cat,cat)=2score insideh  
Likewise we define the outside word alignment 

score being the number word alignments from the 
outside tree on the left side to the outside tree on 
the right side. Counting (The – The), (girl – girl), 
(kissed – gave, a, kiss), we have: 

_ (cat,cat)=5score outsideh  
Also, word alignments that violate inside-

outside tree consistency are counted as a penalty 
term, hence, counting (to – a), we have: 

_ (cat,cat)=1penalty in outh −  
Formally, given alignment  as the word align-

ment between two sentences, ,e fT T  being any two 
treelets on each side, define: 

, ,( , )

Count( , ) 1
i e j f i j

e f
e T f T e f alignment

T T
∈ ∈ ∈

= ∑  (2) 

Let ( )InT x , ( )OutT x  be the inside tree and out 
side tree of word x , respectively. We have: 

( )_ ( , ) Count ( ), ( )score inside i j i jh e f InT e InT f=             (3) 

( )_ ( , ) Count ( ), ( )score outside i j i jh e f OutT e OutT f=   (4)
 

( )
( )

_ ( , ) Count ( ), ( )

Count ( ), ( )

penalty in out i j i j

i j

h e f OutT e InT f

InT e OutT f

− =

+
 (5) 

The above heuristics are a set of real valued 
numbers. We use a Maximum Entropy model to 
log-linearly interpolate the heuristics, as in (1). The 
MaxEnt model is trained using the same word level 
aligned parallel corpus as the one in Section 3.1. 
The fact that we only have a handful of parameters 
to fit eased the data sparseness problem.  

3.4 N-Gram based Grammar Learner 

Observing the success of Phrase based models, we 
built a second grammar learner that focuses on 
treelets that are n-gram phrase. This grammar 
learner extracts all the corresponding n-grams from 
the parallel trees if they are treelets on both sides. 
Formally, a pair of treelets eET  and fET  would 
be extracted if the following conditions suffice:  

,
( , )

( , )
i e j f

i j
i j

e ET f ET
e f

e f alignment
 ∉ ∈   = Φ ∈  

                (6.1) 

and 
,

( , )
( , )

i e j f
i j

i j

e ET f ET
e f

e f alignment
 ∈ ∉   = Φ ∈  

                (6.2) 

while eET  and fET  are both treelets that have n-
grams as surface strings. For example, in Figure 4, 
the following are acceptable treelet pairs: 
(The girl – The girl), (kissed – gave, a, kiss) … 
On the other hand, (a kitty – to her) , while being n-
grams on both sides, is not acceptable since the 
right hand side is not a treelet.  

4 The Machine Translation System 

4.1 System Architecture 

As discussed before (see Figure 1 and 2), the archi-
tecture of our syntax based statistical MT system is 
illustrated in Figure 5. This is a non-deterministic 
process. The MT decoding starts first by decom-
posing the input dependency tree in to elementary 
trees. Each decomposition is indeed a derivation 
process on the foreign side of PSDIG. Then the 
elementary trees go through a transfer phase and 
target ETs are combined together. 
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Figure 5. System architecture 

4.2 The Original Model for PSDIG 

The stochastic tree-to-tree transducer we propose 
models MT as a probabilistic optimization process. 

Let f  be the input sentence (foreign), and e  
be the output  (English). The best translation is: 

 * arg max P( | )P( )
e

e f e e=    (7) 

Assuming the decomposition of the foreign tree 
is given, our approach, which is based on ETs, uses 
the graphical model shown in Figure 6. The left 
side is the input dependency tree (foreign) and the 
right side is the output dependency tree (English). 
Each circle stands for an ET. The solid lines denote 
the syntactical dependencies while the dashed ar-
rows denote the statistical dependencies. 

ET-f3

ET-f1

ET-f2

ET-f4

ET-e3

ET-e1

ET-e2

ET-e4  

Figure 6 
The graphical 

model 

Let T( )x be the dependency tree constructed 
from sentence x . A tree-decomposition function  
D( )t  is defined on a dependency tree t , and out-
puts a certain ET derivation tree of  t , which is 
generated by decomposing t  into ETs. Given t , 
there could be multiple decompositions. Condi-
tioned on decomposition D , we can rewrite (7) as: 

* arg max P( , | )P( )

arg max P( | , )P( | )P( )
e D

e D

e f e D D

f e D e D D

=

=

∑

∑
 (8) 

By definition, the ET derivation trees of the in-
put and output trees should be isomorphic: 
D(T( )) D(T( ))f e≅ . Let Tran( )u  be a set of possi-
ble translations for the ET u . We have: 

D(T( )), D(T( )), Tran( )

P( | , ) P(T( ) | P(T( ), )
P( | )

u f v e v u

f e D f e D
u v

∈ ∈ ∈

=

= ∏           (9) 

For any ET v  in a given ET derivation tree d , 
let Root( )d  be the root ET of d , and let 

Parent( )v  denote the parent ET of  v . We have: 

( )( )

D(T( )), Root(D(T( ))

P( | ) P(T( ) | ) P Root D(T( )

P( | Parent( ))
v e v e

e D e D e

v v
∈ ≠

= = ⋅

 
⋅  
 

∏
        (10) 

( ) ( )
( ) ( )

P | Parent( ) P | Parent( )

P | Parent( ) P | Parent( )
lex

sync direction

v v v v

v v v v

= ⋅

⋅ ⋅
      (11) 

Due to space limitations, further details of (11) are 
not discussed in this paper. 

The prior probability of tree decomposition is 
defined as: ( )

D(T( ))

P D(T( )) P( )
u f

f u
∈

= ∏             (12) 

For efficiency reasons, we use maximum approxi-
mation for (3). Instead of summing over all the 
possible decompositions, we only search for the 
best decomposition as follows: 

,
*, * arg max P( | , )P( | )P( )

e D
e D f e D e D D=      (13) 

So bringing equations (4) to (9) together, the 
best translation would maximize: 

( )P( | ) P Root( ) P( | Parent( )) P( )u v e v v u 
⋅ ⋅ ⋅ 

 
∏ ∏ ∏ (14) 

We refer to (14) as “the original model”.  

4.3 Interpolating the Models 

As discussed in (Och, 2003), interpolating several 
probabilistic models in a log-linear fashion en-
hances the MT system performance. So, in addi-
tion to the original probabilistic model defined for 
PSDIG, we want to add the following models: 
 A tri-gram language model using modified 

Kneser-Ney smoothing (Chen and Goodman, 
1998). We refer to the tri-gram language 
model as P ( )trigram e . 

 Word count of the output sentence l  to inhibit 
too short outputs, also called length penalty. 

 Similarly, we add IBM Model 1 for both di-
rections to optimize lexical choices, we call 
these two models P ( | )m f e  and P ( | )m e f . 

 Lastly, it is also desirable to have (14) in an 
opposite direction (the foreign side generating 
the English side). We added P( | , )e f D . 

Hence, the best translation according to the inter-
polated model will maximize: 
P( | , ) P( | , ) P( ) P( | )

P ( | ) P ( | ) P ( )

fe ef depD

mfe mef trigram dw
m m trigram

f e D e f D D e D

f e e f e l

λ λ λλ

λ λ λ λ

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
 (15) 
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4.4 Greedy Decoding 

It was shown in (Ding and Palmer, 2005) that for 
the original model of PSDIG, as in (14), a linear 
time decoding algorithm can be found, excluding 
the parsing time for the input string. With the addi-
tion of a trigram language model, the ETs are 
globally coupled together and the conditions for 
dynamic programming no longer hold. Hence, we 
use greedy search for decoding. 

The decoder starts with one possible output 0s , 
and randomly changes the choices made for the ET 
transfer process, and a resulting solution 1s  is gen-
erated. 1s  is accepted if the score (15) improves 
and is rejected otherwise. Same is true for transi-
tioning from solution is  to solution 1is + . 

Interestingly, the dynamic programming de-
coder which only optimizes (14) can be used as a 
convenient starting point of the greedy decoder. 

5 Evaluation  

We implemented the above approach for a Chi-
nese-English machine translation system. We used 
an automatic dependency parser (McDonald et al., 
2005), trained using the Penn English/Chinese 
Treebanks. The training set consists of Xinhua 
newswire data from LDC and the FBIS data, total 
words: 7.4M English + 6.2M Chinese. The lan-
guage model is trained using the Xinhua portion of 
the Gigaword corpus (30.0M words) with modified 
Kneser-Ney smoothing. The MT systems were 
evaluated using the n-gram based Bleu (Papineni et 
al., 2002), configured as case insensitive. 

We compared to two systems: IBM Model 4 
(Brown et al., 1993, Germann et al., 2001) and 
phrased based SMT system Pharaoh (Koehn, 2004).  

Following (Och, 2003), we used the develop-
ment test data from the 2001 NIST MT evaluation 
workshop to run error minimization training (206 
sentences, 4 references each, 5945 words).  

We used the oracle score for the top 100 trans-
lations as the measure for the potential of possible 
discriminative training. The “oracle” translations 
are picked by comparing with the references. 

Model 4 PSDIG PSDIG 
Top-100 
Oracle 

Pharaoh Pharaoh 
Top-100 
Oracle 

13.1 30.6 36.8 30.8 34.7 
Table 1. Results on NIST 2001 devtest 

The system in (Ding and Palmer, 2005) 
achieves Bleu score 14.5. Hence the improved 
techniques in this paper doubled the bleu score of 
the system. 

The current results for the PSDIG system is 
achieved by merging the rules learned using both 
the exhaustive learner and the n-gram learner, the 
details of the two learners are given below: 

 Exhaustive N-gram Merged 
Bleu 27.9 25.7 30.6 

# rules 1.8M 0.7M 2.3M 
Table 2. Merging the rules 

As shown above, merging the rules learned by 
both grammar learners improved system perform-
ance. Interestingly, only a small percentage of the 
resultant rules from the two learners overlaps. The 
Pharaoh system has 3.3M phrase translation rules. 

We further compared the systems using the 
Xinhua portion of the NIST MT evaluation 2003 
test set (424 sentences, 4 references each, 10731 
words). Results are shown below: 

Model 4 PSDIG PSDIG 
Top-100 
Oracle 

Pharaoh Pharaoh 
Top-100 
Oracle 

12.3 23.1 28.8 23.0 28.8 
Table 3. Results on NIST 2003 Xinhua portion 

It is interesting to compare PSDIG outputs and 
the Pharaoh outputs. To do so we computed the 
oracle of merging the two outputs together. More 
specifically, we calculated the oracle score for 
merging the top-1 outputs and top-100 outputs of 
the two systems. To put the scores in context, we 
also calculated the bleu score for human transla-
tions. (Each human translation is evaluated using 
the rest 3 as references, and the results are aver-
aged).  

The result we got on the same two datasets 
mentioned above are as follows: 

 PSDIG 
+  

Pharaoh

Top 1 
Oracle 

PSDIG 
 +  

Pharaoh 

Top-100 
Oracle 

Human
(3 refs 

average)

Bleu 35.0 40.7 37.4 
Table 4. Oracles of merging the two systems 

on NIST 2001 devtest data 
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 PSDIG 
 + 

Pharaoh 

Top 1 
Oracle 

PSDIG  
+  

Pharaoh 

Top-100 
Oracle 

Human
(3 refs 

average)

Bleu 27.7 32.9 37.0 
Table 5. Oracles of merging the two systems 

on NIST 2003 Xinhua portion 

Comparing with single system scores, we con-
clude that PSDIG and Pharaoh each excel on dif-
ferent sentences. The oracle of merging the two 
systems points to the possibility of future work in 
combining phrase-based MT and PSDIG together.  

6 Discussions 

By conducting a qualitative error analysis, we 
found that the PSDIG system performance is hurt 
mainly by the following reasons: 

 Parsing errors result in “broken dependen-
cies”: Suppose for the English phrase “24.7 
per cent”, instead of (24.7 (per (cent))), the 
parser parsed it as (24.7) (per (cent)), i.e. two 
separate dependency sub-trees. If the Chinese 
side it is written as one token “bai-fen-zhi-
24.7” (in pinyin form), the grammar learner 
cannot learn this rule correctly. This does not 
affect the phrase system, however. 

 

Figure 7. 
Dependency tree for 

“a big red apple” 

 Currently an ET in a dependency tree has to 
contain a root. Linguistically, it has to be a 
constituent minus some child constituents. An 
ET cannot be a constituent plus a constituent. 
For example, in Figure 7, for the structure ((a) 
(big) (red) apple), the PSDIG is able to learn 
how ((a) apple), ((a) (big) apple), ((a) (red) 
apple) or ((a) (big) (red) apple) are translated, 
but it currently cannot use ((a) (big) (red))  as 
an ET– since it does not have a root. 

 Sometimes the input is fragmented, e.g. tele-
gram heads. Fragmented words tend to be 
sprayed all over the  English side, since each 
word has the freedom to move on the English 
side and movements near the top of the de-
pendency tree may result very long distance 
movements in the surface string. 

We intend to address the above issues by adding to 
the grammar learner the capability to handle more 
complicated root-unlexicalized ETs in the future, 
e.g. ((a) (big) (red) X ).  

One possible strength of the PSDIG system is 
that the dependency trees on both languages pro-
vide a richer set of features for stronger models to 
handle more sophisticated language phenomena, 
e.g. case consistency, number consistency, me-
chanical translation of numerical values, etc. 

We believe the system performance can be fur-
ther improved by introducing other grammar learn-
ers and better quality control of the learned treelets. 

On the other hand, it is reported in (Charniak et 
al. 2003) that the Bleu evaluation metric tends to 
reward more local word choices rather than global 
accuracy. In our system, whether the incorporation 
of syntax for both source and target languages has 
provided additional advantages beyond what is 
measured by Bleu needs further investigation. 

7 Conclusions and Future Work 

In this paper our work is based on a syntax-based 
statistical MT system using Probabilistic Synchro-
nous Dependency Insertion Grammars. We im-
proved the system performance by introducing two 
new grammar learners and a new decoder that in-
corporates several models, including a tri-gram 
language model.  

Future work includes a learner to induce the 
more complicated root-unlexicalized ETs for the 
PSDIG and possibly stronger models to handle 
more sophisticated language phenomena. Another 
possibility is to combine the outputs of a phrase 
based MT system and PSDIG together. 
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