
ACL Lifetime Achievement Award

A Life of Language

Martin Kay∗

Stanford University

Introduction

This is a truly overwhelming experience. Since I am not a cat, I expect to have one
lifetime in which to achieve anything, and one award for it at the most. So this is it,
and I am honored and humbled and, of course, delighted. It is wonderful to be among
so many of the friends who have enriched my life in so many ways. Thank you for
permitting me to feel, for some short moments, that one or two of the things I have
done may be allowed to count as accomplishments.

There is only one thing that gave me pause for a moment when I heard about the
award, and that was its title. But my concern was soon put to rest when I checked up
on the previous three recipients and found that, as far as I could tell, they were doing
quite well.

If you will forgive me, I will tell you a little about this lifetime, such as it has been.
After all, as I have said, one has but one chance for such gross indulgence.

The ambiguities that are a linguist’s constant companion were with me from the
start for, if I say I was born in London, then do I mean that the place where I was born
was part of London at the time of my birth, or that it is part of London now? In fact,
only the second proposition is true. I was born in 1935 in Edgeware, which was in the
county of Middlesex then, but was later absorbed by London for reasons that I believe
to be unrelated.

The first event that lodged in my memory was the declaration of war in 1939. I
had no idea what it meant, but everyone took it so seriously that it made some kind of
impression on me even at the age of four. London was bombed a lot, and Edgeware a
little. My mother was afraid of the bombing, but I found it fun. My father was never
afraid of anything. He was an inspector of schools and was charged with evacuating
children from London. I was sent to a variety of places but invariably returned to
London after a few weeks because my mother could not stand to be away from the
excitement of the capital for more than a few weeks, even if it did mean being bombed.
We went to Dorchester, and Devizes, in the west country, and I encountered new
kinds of vowels and discovered that syllables could end in an “r”. I started mimicking
people and learning to associate the way people talked with where they came from.
We went to Leeds, in the north country, and I learned how diphthongs could become
monophthongs and how to tell whether a person came from Leeds or Bradford, de-
spite the fact that these cities are barely fifteen miles apart. People told me I was
destined to become a linguist. I did not know what a linguist was, and it turns out,
in retrospect, neither did they.

∗ Linguistics Department, Margaret Jacks Hall, Stanford CA 94305-2150. This paper is the text of the talk
given on receipt of the ACL’s Lifetime Achievement Award in 2005.

© 2006 Association for Computational Linguistics

Computational Linguistics Volume 31, Number 4

One of the places I was sent to avoid the bombs was Llambadarn, a small village
in southern Wales where only Welsh was spoken. The idea that there could be a place
where people did not speak English had not occurred to me before, and it fascinated
me. One of the things I still regret about the experience is that my mother could not
stand it for more than three weeks. Had she been able to, I might have learned Welsh.

Why I was called “Martin,” I do not know. The plan for my life that was begin-
ning to take shape seems to have attracted people called “Henry” in the past. For
example, there was Henry Lee Smith, who had a radio show in the United States. After
hearing somebody talk for 30 seconds, he told them where they came from, where they
went to school, where they had moved to after that, and so forth. He would give a
history of the person based on how they spoke. Something like that had already become
my “party piece” when I was six or seven. Then there was Henry Sweet, who did similar
kinds of things in Britain, and another well-known character called Henry Higgins, who
was actually based on Henry Sweet, and so should not, I suppose, really count.

In 1947, I was sent to one of those rather exclusive places the British like to call
“public schools” to get an education. Soon after, since I wanted to learn languages, I
went to Tours to learn French and Baden-Baden to learn German. Then I went into the
army to defend Britain. And, against the kinds of things that I am equipped to defend
a country against, I defended it magnificently.

After that, I went to Cambridge to get more education and, as they say in Britain,
to read modern and medieval languages. Reading a subject in Cambridge is approxi-
mately like majoring in it in America, except that there is nothing but the major. You
spend all your time on what you are reading; there is nothing else. Modern and me-
dieval languages constituted about the closest thing I could find to what I was looking
for, but somewhere in the back of my mind, I knew that what I wanted to do was
linguistics, even though all I knew about it was what adults had said to me when
I was a child. It turns out that it did exist. In fact, it existed in Michael Halliday’s
department, within walking distance of where I lived in London. Whether it would
have been better to go there, or whether the experience of going to Cambridge was
worth it in its own right, I do not know. But, instead of doing what Henry Sweet
and all those other Henrys’ did, I wound up reading Le Rouge et le Noir, La Divina
Comedia, Faust, the Chanson de Roland, Parzifal (with a “z”) and other literary monuments.
But I found myself saying all the time, “What about language? Doesn’t all this come
from ordinary language somehow? Isn’t the language that ordinary people speak a
wonderful thing that deserves to be studied in its own right?”

I remember asking my French supervisor this question once, and I have to admit
that the answer he gave me, wrong though it was, has remained in my memory ever
since because I simply could not find any refutation for it at the time. What he said
was, “If you want to study French, don’t you want to study it as used by those who
use it best?” In other words, would I not want to study the French of the literary giants
who created great works of art in that language?

Lord Adrian, the master of my college, and also vice chancellor of the university,
asked me to act as his interpreter when giving an honorary degree to Signor Gronchi,
president of Italy. The president had a cold and insisted on wearing his doctoral gown
over his raincoat. But he took me for a beer at the Blue Boar afterwards, and I forgave
him everything.

When I was at Cambridge, it turned out that the undergraduate engineering socie-
ty ordered a film from London, and the people at the film library put the wrong film
in the envelope. Instead of something on steam turbines, or whatever, they got Kura-
sawa’s Roshomon. I had for many years wanted to see this film. I don’t know what

426

Kay A Life of Language

it was that excited me about it. Maybe it had something to do with language, again.
Maybe the idea of four people telling essentially the same story, and it coming out
differently as different words were woven around it—maybe that was what fascinated
me. As you probably know, it is the story of a murder, told by four witnesses one
after the other. One of the accounts is that of the murdered man himself, told through
a medium.

In order to see this movie, which had always eluded me up until that point, I
had to join the undergraduate engineering society. The literature that I received
in the mail after joining told me, among many other things, that it offered a prize of
25 pounds every year for the best paper delivered by an undergraduate. I could not
avoid asking myself what a medieval linguist would have to do to secure such a prize.
A serious paper would obviously stand no chance. What I had to do was find a subject
that would cause people to laugh, because there was no intersection in the serious world
between anything I knew and what were serious matters to them.

I decided I would offer a paper on a translating machine, an idea which, surely,
nobody could take seriously. I gave the paper and stimulated some laughter. How-
ever, sitting in the audience were Margaret Masterman and Frederick Parker Rhodes.
Margaret Masterman was the director of the Cambridge Language Research Unit,
and Frederick Parker Rhodes was a senior researcher there. They had American money
to work on machine translation. Margaret Masterman’s many outstanding properties
did not include a robust sense of humor. She found my paper impertinent and in-
sisted that I visit the language unit to learn the truth about machine translation. To
cut a long story short, the following year, I became a very junior member of the
Cambridge Language Research Unit, having foresworn my evil ways and shown that
I could speak Italian and use a soldering iron.

I worked for several years with Margaret Masterman. She was the wife of Richard
Brathwaite, the Knightsbridge Professor of Ethics whose major work, however, was
on the philosophy of science. Margaret Masterman was a student of Wittgenstein, a
fact that she never let you forget, because it gave authority to even the most outrageous
things she might choose to say. She did pioneering work on semantic nets with R. H.
Richens and had a theory of translation based on thesauruses and whose principal
formal tool was lattice theory. She was a member of a shadowy society called the
“Epiphany Philosophers,” who took it as their goal to show that Christianity and sci-
ence were not only compatible but that they supported one another. My father con-
fused the Epiphany Philosophers with the Apostles, a secret society founded in the early
nineteenth century and intended to have as its members the 12 brightest undergradu-
ates in the university. My father did not know this part of the history. What he did know
was that it was based in my college—Trinity—and that its recent members had included
the infamous Cambridge Four—Kim Philby, Donald Maclean, Guy Burgess, Anthony
Blunt—all engaged in spying for the Soviet Union. A patriot who was concerned for
my welfare, as parents are wont to be, my father occasionally expressed the hope that
I was devoting my linguistic skills to worthy pursuits and that MI6 would not be
coming to visit.

Margaret Masterman was one of the cofounders of Lucy Cavendish College, a most
unusual institution that admits as undergraduates women who have been away as
mothers and who want to come back into mainstream academic life. It is a remark-
able place, and she was a remarkable woman.

The Cambridge Language Research Unit was small, but it had a number of il-
lustrious alumni. Michael Halliday had spent some time there, mainly as an expert
on Chinese. The late Roger Needham started his career there, as did his wife, Karen

427

Computational Linguistics Volume 31, Number 4

Spark Jones, the previous recipient of this award. Yorick Wilks, surely well known to
this audience, also started his career there.

After two years at the Cambridge Language Research Unit, I seized upon an op-
portunity that came up to visit the Rand Corporation in California for six months.
This was a trip to the United States that I have been extending ever since. There,
I worked for another remarkable person, David G. Hays, to whom we owe, among
other things, the Association for Computational Linguistics, the International Confer-
ences on Computational Linguistics, and the very name “Computational Linguistics.”
At the time, the Rand Corporation was working on Russian machine translation and
was ahead of its time in that it had constructed a million-word dependency tree bank
of Russian already in 1962 when such things were somewhat less fashionable than
they are today.

While I was at Rand, I took over from Hays the organization of a set of seminars
to which people interested in computers and language came every week. Several of
those people told me later that the meetings had played an important role in deter-
mining the later course of their lives. Also, about the same time, I started teaching
computational linguistics at UCLA.

At Rand, I had the great privilege of rubbing shoulders with a wonderfully
rich variety of people who either worked there or who came on extended visits.
Some names that come immediately to mind are those of George Danzig, inventor
of the Simplex Method for Linear Programming; Norman Dalkey, one of the origi-
nators of the Delphi method; Newell, Simon, and Shaw, who could be said to have
invented Artificial Intelligence; Albert Wohlsetter, who once called the Secretary of
State from my house to clarify a question that arose over dinner; Keith Uncapher,
founder of the Information Sciences Institute at the University of California; Richard
Bellman, who created dynamic programming; Daniel Ellsberg of Pentagon Papers
fame; Paul Baran, who first proposed packet switching for computer networks; and
Herman Kahn, who founded the Institute for the Future and who played war games
where the score was kept in megadeaths. I would have it known that I had been
gone from Rand for 10 years when Donald Rumsfeld became its chairman in 1981 and
20 years before Condoleezza Rice joined its board of trustees.

For some years, the linguistics project at Rand had an internship program that
included a number of people who are still prominent in our field, and for very good
reason. They include my old friends and long-time collaborators, Ron Kaplan and Lauri
Karttunen.

In 1962, the Association for Machine Translation and Computational Linguistics
(AMTCL) came into being. A couple of years later, the first International Conference
on Computational Linguistics was held in New York. These conferences have now come
to be called “Coling,” so named by a Swede, who therefore pronounced it “Cooling,”
which is also how a Swede pronounces “Koling,” the name of Albert Engström’s
much-loved cartoon character, a vagabond who made sage remarks about the world
between swigs at a bottle of wine. This name was associated with the conferences
organized every other year by the International Committee on Computational Linguis-
tics (ICCL) by the late Hans Karlgren. I became chair of the ICCL in 1984 and have been
there ever since.

The establishment of the AMTCL and ICCL foreshadowed an extremely momen-
tous event that came about because the people involved also had to do with a doc-
ument known as the ALPAC Report. This was one of the most well known, if least
read, documents ever produced concerning our field. Its full title was “Languages and
Machines: computers in translation and linguistics.” It was called the ALPAC Report

428

Kay A Life of Language

(ALPAC) after its authors, the “Automatic Language Processing Advisory Committee,”
established by the U.S. National Academy of Sciences. It was a mere quarter of an
inch thick, with a black cover altogether appropriate to its contents. The remit of the
committee was much narrower than most people usually appreciate. The committee
was supposed to tell the government how successful, how useful, how worthwhile
the research that was being devoted to machine translation with government money
was going to be. They were to concern themselves with the potential benefits for
the government, not for anybody else. But, since the money for the work came from
the government, a negative report could have dire consequences for everybody, and
it did.

ALPAC discussed a number of interesting questions, but the essential conclusion
consisted of two points. First, the government did not really need machine translation
and second, even if it did, the lines of research that were being pursued had little
chance of giving it to them. So the work should stop, and stop it did. A second
recommendation of the committee almost got lost. It was that there should be a new
focus of attention on the scientific questions that might provide a solid foundation
for later engineering enterprises like machine translation. It was with the clear aim
of responding to this recommendation that this association and these conferences came
into being.

Now anybody who competes for research grants knows that while substance and
competence play a significant role, the most important thing to have is a name, and
we did not have one for the exciting new scientific enterprise we were about to
engage upon. To be sure, the association and the committee antedated that report, but
we had inside information, and we were ready. I use the word “we” loosely. I was
precocious, but very junior, so that my role was no more than that of a fly on the wall.
However, I was indeed present at a meeting in the office of David Hays at Rand when
the name “computational linguistics” was settled upon. I remember who was there,
but in the interest of avoiding embarrassment, I will abstain from mentioning their
names. As I recall, four proposals were put forward, namely:

1. Computational Linguistics

2. Mechanolinguistics

3. Automatic Language Data Processing

4. Natural Language Processing

Strong arguments were put forward against the latter two because it was felt that they
did not sufficiently stress the scientific nature of the proposed enterprise. The term
“Natural Language Processing” is now very popular, and if you look at the proceedings
of this conference, you may well wonder whether the question of what we call ourselves
and our association should not be revisited. But I would argue against this. Indeed, let
me briefly do so.

Computational linguistics is not natural language processing. Computational lin-
guistics is trying to do what linguists do in a computational manner, not trying to
process texts, by whatever methods, for practical purposes. Natural language process-
ing, on the other hand, is motivated by engineering concerns. I suspect that nobody
would care about building probabilistic models of language unless it was thought
that they would serve some practical end. There is nothing unworthy in such an
enterprise. But ALPAC’s conclusions are as true today as they were in the 1960s—good

429

Computational Linguistics Volume 31, Number 4

engineering requires good science. If one’s view of language is that it is a probability
distribution over strings of letter or sounds, one turns one’s back on the scientific
achievements of the ages and foreswears the opportunity that computers offer to carry
that enterprise forward.

Statistical approaches to the processing of unannotated text bring up the thorny
philosophical question of whether the necessary properties of language are, in fact,
emergent properties of text. Could it be that at least some of the facts that one needs
to know about a text are not anywhere in it? There is one sense in which the answer
has to be “no” for, if they are not in the text, then they are not facts about the par-
ticular text, but about texts in general, or about some class of texts to which the given
one belongs. But an extreme case that might dispose one rather to answer “yes” would
be one in which the “text” simply consisted of the library call number of another text
that contained the real information. Someone who knows enough to be able to find
what the call number leads to can find what the text is really about, but it is not spelled
out in the original document. When people say that language is situated, they mean
that examples of language use always have some of this latter quality. They depend
for their understanding on outside references that their receivers must be in a position
to resolve. I will give a concrete example in a moment.

Part of the problem we are confronting comes from what the famous Swiss lin-
guist Ferdinand de Saussure called l’arbitraire du signe—the arbitrariness of signs. The
relationship between a word, a text, or any linguistic item, and its meaning is entirely
arbitrary. It therefore does not matter how long you look at a text; you will never
discover what it means unless you have some kind of inside information. It may very
well be that the relationship between a sentence and its structure is also arbitrary,
though here the situation is less clear.

This is hardly surprising. All it amounts to is that you cannot understand a
text unless you know the language. You can, however, learn a lot about the trans-
lation relation from a text and its translation. If that were not the case, Jean Franois
Chapolion would not have been able to decipher the Egyptian hieroglyphs on the
basis of a stone that contained a translation of hieroglyphic Egyptian into Greek.
It seems to follow, therefore, that meaning has little that is essentially to do with
translation. Since you cannot get the meaning from the string, but you can find out
about translation from two strings, then presumably the meaning is not directly in-
volved. Let me argue against this position by giving a counterexample. There is
nothing unusual about this counterexample. Examples of this kind are not unusual. At
least one can be found in almost any paragraph-sized example of everyday language.

I was sitting in a train in Montpelier, and an old lady got in and said, “Does
this train go to Perpignon?” The person she was addressing said, “No, it stops in
Béziers.” What could be simpler than that? Let’s try and translate it into German. “Fährt
dieser Zug nach Perpignon?” No trouble with that as far as I can see! “No, it stops in
Béziers”—“Nein, er endet in Béziers.” So, you should imagine a railway line that runs
from Montpelier to Perpignon by way of Béziers. If a train were to end its journey in
Béziers, it would never reach Perpignon.

But suppose the situation on the ground were different. Suppose that, after
leaving Montpelier, there were a fork in the line, with one branch going to Perpignon
and the other to a place called Findeligne by way of Béziers. Suppose, furthermore, that
it is well known that all trains end their journey in either Findeligne or Perpignon. The
interaction with the lady fits the new situation just as well as the old one. Since the train
stops in Béziers, it must be a Findeligne train, and Perpignon is on the other branch.
The German translation, however, must now be different. We can no longer trans-

430

Kay A Life of Language

late “No, it stops in Béziers” as “Nein, er endet in Béziers” because “endet” means
“stop” only in the sense of completing the journey. We now need to translate “stop”
in the sense of “come to a brief stop to allow passengers to get on and off,” and for
this, the appropriate word is hält. It therefore seems that, in order to be able to
translate this passage correctly, one needs intimate knowledge of the geography of
Provence and the schedules of the trains that run there.

Another problem with attempting to learn language from text is Zipf’s Law. Zipf’s
Law says that a small number of phenomena—letters, words, rules, whatever—occur
with very great frequency, whereas a very large number occur very rarely. Zipf’s Law
provides encouragement to people just starting to work on language because it means
that almost anything you try to do with language works wonderfully at first. You do
something on 100 common words with 20 rules designed for unremarkable situations
and it works wonderfully. The trouble is that new phenomena that you had not thought
of continue to appear indefinitely, but with steadily decreasing frequency. It is true
that a textual example does not have to exemplify a new phenomenon in order to
be interesting, because, as well as new phenomena, we are often interested in the
frequencies of occurrence of old ones. But as a method of learning about different
kinds of phenomena, it is subject to a crippling law of diminishing returns. Fortu-
nately, there is an alternative, which is to talk to people who speak the language and
who know what the phenomena are. This is what linguists do.

Another question is: Do the models that we build actually respect the fact that
language is in accordance with Zipf’s Law? If a probability distribution is established
over a set of characters, and random text is generated in accordance with that distri-
bution, the expected lengths of “words” will be determined by the probability of the
space character, and the distribution of words will be approximately in accordance
with Zipf’s Law. If, instead of characters, we work with covert features of some
sort, but still including one that determines when we move to the next word, we pre-
sumably get a similar distribution. But the models we actually work with rarely, if
ever, predict that language will have this striking and invariable statistical property.

Time to return to serious things. For me, the event that most clearly marked the
birth of computational linguistics was the invention by John Cocke in 1960 of what I
always took to be the first context-free parsing algorithm that allowed for ambiguity. If
it indeed was the first—and that turns out not to be beyond doubt—then this was the
first algorithm designed expressly to meet needs that arose in our field. This happened
at Rand just before I got there, and it became a source of great excitement for me.

The algorithm works only with binary rules, that is, rules with two symbols on
the right-hand side. In its simplest form, the algorithm is based on a triangular matrix,
which we can call a chart, with a box for each substring of the string being parsed.
The idea is to fill the boxes one by one in such an order that the boxes containing
potential constituents of the phrases in the current box will already have been filled.
We assume that the boxes corresponding to single words are filled in an initial dic-
tionary look-up phase. The remaining boxes are filled in order of increasing length of
the corresponding substring, thus maintaining the required invariant. Several other
regimes would have the same effect.

The original algorithm was embodied in a Fortran program with five loops, as
follows:

1. for Length from 2 to string.length

2. for Position from 0 to string.length − Length + 1

431

Computational Linguistics Volume 31, Number 4

3. for FirstLength from 1 to Length − 1

4. for FirstConstituent in Chart[Position, FirstLength − 1]

5. for SecondConstituent in Chart[Position + FirstLength, length − FirstLength − 1]

The maximum number of iterations of the first three loops is determined by the length
of the sentence, and this corresponds nicely with the observation, made later, that the
time complexity of chart parsing with context-free grammar is O(n3) where n is the
string length. The number of iterations of the last two loops, on the other hand, is
controlled by the number of items that there could be in a single box in the chart which,
in the original algorithm, could grow exponentially with string length.

Ron Kaplan and I recognized that, with only very minor adjustments, this
algorithm can be turned into one with the O(n3) time complexity I just mentioned.
One way to do this would be to give the chart an additional dimension so that, for
each substring of the input, there comes to be a separate box for each grammatical
symbol. The boxes contain the various structures that the given substring has, and
whose top node is labeled with the corresponding symbol. The parser never needs to
rehearse these different structures because, for the purposes of building larger struc-
tures, they are all equivalent. This means that loops 4 and 5 are no longer controlled by
the length of the string, but only by the number of nonterminal symbols in the grammar.
What could be more inspiring than this elegant algorithm to a young person trying to
see a little bit of rationality in an otherwise apparently random field?

Another change that we made to the original algorithm involved the introduction
of partial phrases, sometimes known as active edges because they could be thought of
as on the lookout for complete edges that they could absorb, thus creating either a
new complete edge or a partial edge that was nearer to completion. Since one can
obviously construct a phrase of arbitrary size by assimilating words one by one to
partial phrases, any algorithm that works only with binary context-free rules can
easily be turned into one that operates with arbitrary rules. More importantly, par-
tial phrases enabled us to break loose from the rigid regime of loops embedded in
a particular way, effectively replacing the algorithm with what I came to refer to as
an algorithm schema (Kay, 1982). The basic idea was this: At any given moment, a
phrase, or partial phrase that had been recognized, was stored in just one of two data
structures, which we referred to as the agenda and the chart. If it was on the agenda,
then the possibility that it might be extended by absorbing other edges had not been
explored. But if it was in the chart, all such interactions with other phrases already in the
chart had been systematically explored. The parsing algorithm consisted in moving
phrases and partial phrases from the agenda to the chart in such a way as to maintain
this invariant. In other words, repeat the following cycle until the agenda is empty:

1. Remove an arbitrary partial or complete phrase from the agenda.

2. Locate all current items in the chart that it could either absorb or that could
be absorbed by it, putting all resulting new phrases and partial phrases on
the agenda.

In 1974, Ron Kaplan and I joined Xerox PARC, and before long, I had an Alto
computer in my office with 64K of memory just for me. This was one of the machines
that Steve Jobs saw during a legendary visit. My intellectual history, if I may use such
a pompous term, is studded with programming languages, and one that I encountered

432

Kay A Life of Language

soon after arriving at PARC was Prolog. Yes, I encountered Smalltalk, but Prolog made
a more lasting impression, and I still use it today. Prolog is a way of extracting general-
izations from algorithmic problems which, if they are just the right problems, cannot
be done as effectively in any other way. Here, for example, is a top-down parser.

parse([], String, String).
parse([Goal | Goals], [Goal | String0], String) :-
parse(Goals, String0, String).

parse([Goal | Goals], String0, String) :-
rule(Goal, Rhs),
parse(Rhs, String0, String1),
parse(Goals, String1, String).

It defines a single predicate, called parse, which is true of a sequence of goals and a
pair of lists of words or phrases if the first list of words and phrases has a prefix that
can be broken into sublists that match the goals in the given order, and the remaining
suffix is identical with the second string. Notice that, if there is a single goal, namely,
Sentence, and if the third argument is the empty list, then the second argument must
be a sentence. Given particular arguments, there are three ways in which we can
attempt to show the predicate to be true of them; hence the three clauses that make
up the program. Here is what the three cases do:

1. If the list of goals is empty, then they can be met only by the empty string
and the second and the third arguments are identical.

2. If the first goal is met trivially, by matching the first item in the list that is
the second argument, then if the remainder of that argument is identical to
the third argument, the clause succeeds.

3. If the grammar contains a rule that would replace the first goal by a
sequence of other goals, and if parsing some prefix of the second argument
meets these goals, and if, furthermore, it can be shown that the remaining
part of the string meets the remainder of the initial goals, then the clause
will have succeeded.

This is a Prolog implementation of the classical recursive-descent parser, or top-down
left-to-right parser, celebrated for its inability to handle grammars with left-recursive
rules. The Prolog implementation reveals in a unique way the similarity between this
parser and the following bottom-up left-corner parser:

parse([], String, String).
parse([Goal | Goals], [Goal | String], String) :-
parse(Goals, String0, String).

parse([Goal | Goals], [First | String0], String) :-
rule(Lhs, [First | Rhs]),
parse(Rhs, String0, String1),
parse([Goal | Goals], [Lhs | String1], String).

433

Computational Linguistics Volume 31, Number 4

There are only minor changes, and they are all in the third clause. Instead of look-
ing for a grammar rule that expands the next goal, we look for one with a right-
hand side whose first item matches the first item in the second argument. If such a
rule can be found, we treat the remaining items as goals that we try to find in what
remains of the second argument. If this can be done, we can replace the matching
sequence with the single symbol that constitutes the left-hand side of the rule, and we
attempt to meet the original set of goals with a string modified in this way.1

The parallelism exemplified is surely elegant almost to the point of being beautiful
and, in the design of algorithms, as Richard O’Keefe said, elegance is not optional
(O’Keefe 1999).

Ron Kaplan had spent a lot of time working on augmented transitions networks
(ATNs) before coming to PARC and, when we got together again, I became interested
in them also. They seemed to me to have the power one needed for syntactic analysis,
but they lacked a property that I thought crucial, namely reversibility. An ATN that
did a good job in analysis was of no use when it came to generation. An ATN, as
you doubtless know, is different from a standard finite-state automaton in two key
ways. First, the condition for making a transition in a given network can be that the
symbols starting at the current state in the string are acceptable to some other network
named in the transition. In other words, they are recursive. The second difference
is that networks produce output by making assignments to variables, or registers.
The collection of these registers at the end of the network traversal constitutes the
output.

Consider a greatly simplified example. Suppose the Sentence network is applied to
the string The book was accepted by the publisher. We can assume that one of the transi-
tions from the initial state calls the Noun Phrase network, which recognizes the first two
words. The transition in the Sentence network puts the phrase in the subject register
and moves to the next state, where one of the transitions allows a part of the verb
to be, which is put in the verb register. At the next state, one of the possibilities is the
past participle of a transitive verb. The system now abandons the search for an active
sentence and proceeds on the assumption that it is passive. However, the work that
has been done is not abandoned. The noun phrase in the subject register is simply
moved to the object register because, if the sentence is passive, it will presumably fill the
role of deep object. The subject register is cleared at this point. The Sentence automaton
will presumably now be in a final state because the sentence could end here. But, if
the word by follows, and then another noun phrase, this latter goes into the subject
register.

Notice that, given the contents of the registers as they would be at the end of this
process, it would not be possible to follow the same path through the network and
generate the original string. To start with, the publisher would be in the subject register,
and not the book.

In retrospect, it seems that the answer to this problem should have been obvious.
But it is often so. Ron noticed that the key thing here is that you must never replace
substantive contents of a register with a new one. If the register is still empty, you
can put something in it, but once it has a value, that value must stay there. In other
words, registers must be variables, in the mathematical understanding of that term, and

1 No award acceptance speech would be complete without a homework problem. So the question is: Why
is it important to write [Goal | Goals] in the third clause, and not simply Goals?

434

Kay A Life of Language

not Fortran variables that can be assigned and reassigned indefinitely. And so, he pro-
posed what he called the same predicate. It meant:

1. If the contents are the same as the argument to the predicate, continue.

2. If the register is empty, and the current item in the string matches the
predicate’s argument, put that item in the register, and

3. otherwise fail.

On the first branch, it seems that we are indeed dealing with a predicate. On the
second, we have an assignment operator, and on the last, a predicate. This mixture is
now quite familiar and we refer to it as unification.

In everyday terms, unification can be thought of like this. The CIA sends out a
couple of observers to write reports on people they are watching, and given their
reports, the question arises as to whether they could be watching the same person.
One report says that the person’s eyes are blue, and the other one does too, so they
could be watching the same person. One says the subject’s hair is black or brown and
the other one says it is brown or red so, if we assume that it is brown, they could
still be watching the same person. Furthermore, we have more specific information
on the person’s hair color than either observer gave us individually. One report says the
person had an Italian accent. The other one does not have any idea, so we will take
it that he is Italian. As long as the properties remain compatible with one another, we
take the most specific version of that property that you can and add it to the output.
As soon as they become incompatible, we decide that the reports cannot be about the
same person and the process fails.

So much for what unification is. Now what about the name? Here is the true
and unblemished story. I formulated the scheme I have just outlined and wanted
a name for it. Until it fails, the process is conflating information from the two ob-
servers and is thus somewhat like the union operation on sets. But it is not exactly
union, because it can fail. So I settled on a name like “union”, namely, unification.
However it was soon brought to my attention that this word already had a meaning
in logic programming. So I started working on two problems in parallel. I started
looking for another name and at the same time, I started trying to find out how my
first choice was used in logic programming. To my great surprise, I discovered that,
although some of the details were different—in particular, the logic programmers
did not have the attributes that I had taken over from ATNs—we were doing essen-
tially the same thing. So I did not have to give up the word.

Out of this, there came a whole new view of how the deep structure of a
sentence might be related to its surface structure, or how its predicate–argument
structure might be related to its tree structure. The dominant view—and it is still
dominant today—is that you produce a deep structure, of the same data type as
the surface structure, and you carry out a number of transformations. They may not
be specified by transformational rules, but they are changes, perhaps in accordance
with some principles, that replace one structure by a different one of the same gen-
eral kind. When the sequence of transformations comes to an end, what is left is
the surface structure. This scheme, as you know, has been complicated in a variety
of different ways that need not concern us. According to this view, the relation-
ship between the deep structure and the surface structure is an essentially proce-
dural one. Now, a computationalist never wants to be handed a set of procedures
designed by someone else and asked to implement it, because the procedures may

435

Computational Linguistics Volume 31, Number 4

be hard or impossible to implement, or to reverse, or even to understand in usual
computational terms. The computationalist wants to be given a declarative state-
ment about relationships and allowed to work on the procedures himself; that is
his job.

What came out of these considerations is a view that there is one data structure
that represents both deep and surface structures. It is a tree2 whose nodes have
complex labels, and this object as a whole more or less corresponds to the surface
structure. The topmost label of the tree, however, has enough articulation to constitute
the entire deep structure. So the label will not just simply say ‘S’; it will say that the
structure represents a sentence and, furthermore, that it has this subject and that object,
that the subject is definite and singular, and so forth. So all that led to unification
grammar.

Another thing we worked on at PARC was finite-state technology, something that
is probably still hot enough for many of you to be quite familiar with it. We noticed
that it is a fact about regular languages, which are generated and accepted by finite-
state automata and which occupy a position almost at the bottom of the Chomsky
hierarchy, that they are closed under the operations of set theory and concatenation.
This means that, if you can write an algebraic expression that describes the language
that you are interested in, then the computing of it will be straightforward and can be
specified algebraically.

Regular relations, which are modeled by finite-state transducers and are very
closely related to finite-state machines of the standard kind, have just the power that
is needed for many linguistic operations, particularly at the low end of the hierarchy—
phonology, morphology, and spelling rules. In particular, as Ron and I pointed out
(Kay and Kaplan 1994), a slight adjustment to the rules of engagement, as they are
called in military circles these days, moves simple string-rewriting rules right from
the top of the Chomsky hierarchy to the bottom or, at least, one step from the bottom.
The rules I have in mind are of the form:

α → β/γ δ

meaning “replace α by β if there is γ on the left and δ on the right”. If we stipulate
that no rule be allowed to rewrite any part of the string that is part of the output of
a previous application of that same rule, and if the rules are ordered, then the set of
them can be modeled by a finite-state transducer that we can construct automatically
from the rules. In this form, they are highly efficient to apply and reversible.

My professional life almost encompasses the history of computational linguistics.
But I was only fourteen when Warren Weaver wrote his celebrated memorandum
drawing a parallel between machine translation and code breaking. He said that, when
he saw a Russian article, he imagined it to be basically in English, but encrypted
in some way. To translate it, what we would have to do is break the code, and the
statistical techniques that he and others had developed during the second world war
would be a major step in that direction. However, neither the computer power nor
large bilingual corpora were at hand, and so the suggestions were not taken up vigor-
ously at the time. But the wheel has turned, and now statistical approaches are pur-
sued with great confidence and disdain for what went before. In a recent meeting,

2 Actually, it usually allows reentrancy and is therefore not strictly a tree, but this need not concern us here.

436

Kay A Life of Language

I heard a well-known researcher claim that the field had finally come to realize that
quantity was more important than quality.

The young Turks blame their predecessors, the advocates of so-called symbolic
systems, for many things. Here are just four of them. First, symbolic systems are not
robust in the sense that there are many inputs for which they are not able to produce
any output at all. Second, each new language is a new challenge and the work that is
done on it can profit little, if at all, from what was done previously on other languages.
Third, symbolic systems are driven by the highly idiosyncratic concerns of linguists
rather than real needs of the technology. Fourth, linguists delight in uncovering ambi-
guities but do nothing to resolve them. This is actually a variant of the third point.

This is a bad rap, and the old-school computational linguists who have made such
a resounding success of their field should not take it sitting down. Let me say a quick
word about the first three points and then expand a little more on the last.

First, robustness is an engineering issue. To throw out the theory because of in-
adequate engineering is to throw out the baby with the bath water. There are many
approaches that could, and should, be taken to this problem, some statistical, and some
not. Second, one of the things that linguists know that often surprises others is that
the similarities among languages are much more striking and important than their
differences. They can and do profit from these insights. Third, what look like the cute
examples and arbitrary infatuations of linguists often, though not always, represent a
distillation of important and wide-ranging issues.

Now I come to the fourth point, which is ambiguity. This, I take it, is where
statistics really come into their own. Symbolic language processing is highly nonde-
terministic and often delivers large numbers of alternative results because it has no
means of resolving the ambiguities that characterize ordinary language. This is for the
clear and obvious reason that the resolution of ambiguities is not a linguistic matter.
After a responsible job has been done of linguistic analysis, what remain are questions
about the world. They are questions of what would be a reasonable thing to say
under the given circumstances, what it would be reasonable to believe, suspect, fear,
or desire in the given situation. If these questions are in the purview of any academic
discipline, it is presumably artificial intelligence. But artificial intelligence has a lot on
its plate and to attempt to fill the void that it leaves open, in whatever way comes
to hand, is entirely reasonable and proper. But it is important to understand what
we are doing when we do this and to calibrate our expectations accordingly. What
we are doing is to allow statistics over words that occur very close to one another
in a string to stand in for the world construed widely, so as to include myths, and
beliefs, and cultures, and truths and lies and so forth. As a stop-gap for the time being,
this may be as good as we can do, but we should clearly have only the most limited
expectations of it because, for the purpose it is intended to serve, it is clearly patheti-
cally inadequate. The statistics are standing in for a vast number of things for which we
have no computer model. They are therefore what I call an “ignorance model.”

Finally, a very quick word about machine translation. The days of the ALPAC
Report are long gone, and there can no longer be any doubt that there is a need
for machine translation. There are two kinds of people who need machine transla-
tion. There are people who need it because they need to disseminate documents in
more than one language. The European Union needs to produce material in 20 lan-
guages, either because it has an operational need for it in 20 languages, or because
the law says it must be available in 20 languages—not always the same thing. So
it must be translated, and the result must be readable. Some of it has to be very
readable because, in most cases, a document that has legal force has the property

437

Computational Linguistics Volume 31, Number 4

that, if you have to go to court, you can choose which one of those 20 versions
you are going to base your case on. Caterpillar Corporation produces huge amounts
of documentation—almost more weight of documentation than of bulldozers—in an
average of 14 languages. These have to be high-quality translations. What is required
in these situations is entirely different from what people need who are consumers
of translation. The canonical examples of these are people who are concerned with
homeland security or people at Google. They are interested in anything you can tell
them about a document. If you can’t tell them anything, well that is too bad. If you
can tell them a little, then they will be grateful for what you can tell them. Any kind
of translation is better than no translation at all.

Not surprisingly, what the very word “translation” means for these two sets of
people is entirely different. And I just would like to hope that you, the computational
linguists of the future, will keep in mind the needs of both of these very worthy
communities.

So, just a couple of final reflections. Statistical NLP has opened the road to appli-
cations, funding, and respectability for our field. I wish it well. I think it is a great
enterprise, despite what I may have seemed to say to the contrary.

Language, however, remains a valid and respectable object of study, and I earnestly
hope that the ACL will continue to pursue it.

We have made little headway in computational psycholinguistics, which to me
has always been the nub, the center, the thing that computational linguistics stood
the greatest chance of providing to humanity. To build models of language that reflect
in some interesting way on the ways in which people use language. There has been
some wonderfully interesting work on such matters, but not nearly enough. I am
sorry that it has not been pursued as earnestly as I think it could have been, but it
is a difficult field and perhaps that is enough reason in itself. My friends, I have spent
some 40 years with you in this association, and I hope to spend many more.

References
Kay, Martin. 1982. Algorithm schemata

and data structures in syntactic processing.
In Sture Allen, editor, Text Processing:
Proceedings of Nobel Symposium 51.
Almqvist and Wiksell International,
Stockholm. Reprinted in B. J. Grosz, K.
Spark Jones and B. L. Webber, editors,

Readings in Natural Language Processing,
Morgan Kaufmann, 1986. San Francisco.

Kay, Martin and Ronald M. Kaplan.
1994. Regular models of phonological
rule systems. Computational Linguistics,
20(3), pages 331–378.

O’Keefe, Richard. 1999. The Craft of Prolog.
MIT Press Cambridge, MA.

438

