
Coling 2008: Proceedings of the workshop on Multi-source Multilingual Information Extraction and Summarization, pages 2–9
Manchester, August 2008

Learning to Match Names Across Languages

Inderjeet Mani
The MITRE Corporation

202 Burlington Road
Bedford, MA 01730, USA
imani@mitre.org

Alex Yeh
The MITRE Corporation

202 Burlington Road
Bedford, MA 01730, USA

asy@mitre.org

Sherri Condon
The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102, USA
scondon@mitre.org

Abstract

We report on research on matching
names in different scripts across languag-
es. We explore two trainable approaches
based on comparing pronunciations. The
first, a cross-lingual approach, uses an
automatic name-matching program that
exploits rules based on phonological
comparisons of the two languages carried
out by humans. The second, monolingual
approach, relies only on automatic com-
parison of the phonological representa-
tions of each pair. Alignments produced
by each approach are fed to a machine
learning algorithm. Results show that the
monolingual approach results in ma-
chine-learning based comparison of per-
son-names in English and Chinese at an
accuracy of over 97.0 F-measure.

1 Introduction

The problem of matching pairs of names which
may have different spellings or segmentation
arises in a variety of common settings, including
integration or linking database records, mapping
from text to structured data (e.g., phonebooks,
gazetteers, and biological databases), and text to
text comparison (for information retrieval,
clustering, summarization, coreference, etc.).
For named entity recognition, a name from a
gazetteer or dictionary may be matched against
text input; even within monolingual applications,
the forms of these names might differ. In multi-
document summarization, a name may have
different forms across different sources. Systems

© 2008 The MITRE Corporation. All rights reserved. Licensed for
use in the proceedings of the Workshop on Multi-source, Multilin-
gual Information Extraction and Summarization (MIMIES2) at
COLING’2008.

that address this problem must be able to handle
variant spellings, as well as abbreviations,
missing or additional name parts, and different
orderings of name parts.

In multilingual settings, where the names
being compared can occur in different scripts in
different languages, the problem becomes
relevant to additional practical applications,
including both multilingual information retrieval
and machine translation. Here special challenges
are posed by the fact that there usually aren’t
one-to-one correspondences between sounds
across languages. Thus the name Stewart,
pronounced / s t u w ə r t / in IPA, can be
mapped to Mandarin “斯图尔特 ”, which is
Pinyin “si tu er te”, pronounced /s i tʰ u a ɻ tʰ e/,
and the name Elizabeth / I l I z ə b ɛ θ/ can map
to “伊丽莎白”, which is Pinyin “yi li sha bai”,
pronounced /I l I ʂ ɑ p aI/. Further, in a given
writing system, there may not be a one-to-one
correspondence between orthography and sound,
a well-known case in point being English. In
addition, there may be a variety of variant forms,
including dialectical variants, (e.g., Bourguiba
can map to Abu Ruqayba), orthographic
conventions (e.g., Anglophone Wasim can map
to Francophone Ouassime), and differences in
name segmentation (Abd Al Rahman can map to
Abdurrahman). Given the high degree of
variation and noise in the data, approaches based
on machine learning are needed.

The considerable differences in possible
spellings of a name also call for approaches
which can compare names based on
pronunciation. Recent work has developed
pronunciation-based models for name
comparison, e.g., (Sproat, Tao and Zhai 2006)
(Tao et al. 2006). This paper explores trainable
pronunciation-based models further.

2

Table 1: Matching “Ashburton” and “阿什伯顿”
Consider the problem of matching Chinese

script names against their English (Pinyin) Ro-
manizations. Chinese script has nearly 50,000
characters in all, with around 5,000 characters in
use by the well-educated. However, there are
only about 1,600 Pinyin syllables when tones are
counted, and as few as 400 when they aren’t.
This results in multiple Chinese script represen-
tations for a given Roman form name and many
Chinese characters that map to the same Pinyin
forms. In addition, one can find multiple Roman
forms for many names in Chinese script, and
multiple Pinyin representations for a Chinese
script representation.

In developing a multilingual approach that can
match names from any pair of languages, we
compare an approach that relies strictly on mo-
nolingual knowledge for each language, specifi-
cally, grapheme-to-phoneme rules for each lan-
guage, with a method that relies on cross-lingual
rules which in effect map between graphemic
and/or phonemic representations for the specific
pair of languages.

The monolingual approach requires finding
data on the phonemic representations of a name
in a given language, which (as we describe in
Section 4) may be harder than finding more
graphemic representations. But once the
phonemic representation is found for names in a
given language, then as one adds more languages
to a system, no more work needs to be done in
that given language. In contrast, with the cross-
lingual approach, whenever a new language is
added, one needs to go over all the existing
languages already in the system and compare
each of them with the new language to develop
cross-lingual rules for each such language pair.
The engineering of such rules requires bilingual
expertise, and knowledge of differences between
language pairs. The cross-lingual approach is
thus more expensive to develop, especially for
applications which require coverage of a large
number of languages.

Our paper investigates whether we can address
the name-matching problem without requiring
such a knowledge-rich approach, by carrying out
a comparison of the performance of the two

approaches. We present results of large-scale
machine-learning for matching personal names
in Chinese and English, along with some
preliminary results for English and Urdu.

2 Basic Approaches

2.1 Cross-Lingual Approach

Our cross-lingual approach (called MLEV) is
based on (Freeman et al. 2006), who used a
modified Levenshtein string edit-distance
algorithm to match Arabic script person names
against their corresponding English versions. The
Levenshtein edit-distance algorithm counts the
minimum number of insertions, deletions or
substitutions required to make a pair of strings
match. Freeman et al. (2006) used (1) insights
about phonological differences between the two
languages to create rules for equivalence classes
of characters that are treated as identical in the
computation of edit-distance and (2) the use of
normalization rules applied to the English and
transliterated Arabic names based on mappings
between characters in the respective writing
systems. For example, characters corresponding
to low diphthongs in English are normalized as
“w”, the transliteration for the Arabic
 character, while high diphthongs are mapped”و“
to “y”, the transliteration for the Arabic “ي”
character.

Table 1 shows the representation and
comparison of a Roman-Chinese name pair
(shown in the title) obtained from the Linguistic
Data Consortium’s LDC Chinese-English name
pairs corpus (LDC 2005T34). This corpus
provides name part pairs, the first element in
English (Roman characters) and the second in
Chinese characters, created by the LDC from
Xinhua Newswire's proper name and who's who
databases. The name part can be a first, middle
or last name. We compare the English form of
the name with a Pinyin Romanization of the
Chinese. (Since the Chinese is being compared
with English, which is toneless, the tone part of
Pinyin is being ignored throughout this paper.)
For this study, the Levenshtein edit-distance
score (where a perfect match scores zero) is

 Roman Chinese (Pinyin) Alignment Score
LEV ashburton ashenbodu | a s h b u r t o n |

| a s h e n b o d u |
0.67

MLEV ashburton ashenbodu | a s h - - b u r t o n |
| a s h e n b o - d u - |

0.72

MALINE asVburton aseCnpotu | a sV - b < u r t o | n
| a s eC n p o - t u | -

0.48

3

normalized to a similarity score as in (Freeman et
al. 2006), where the score ranges from 0 to 1,
with 1 being a perfect match. This edit-distance
score is shown in the LEV row.

The MLEV row, under the Chinese Name
column, shows an “Englishized” normalization
of the Pinyin for Ashburton. Certain characters or
character sequences in Pinyin are pronounced
differently than in English. We therefore apply
certain transforms to the Pinyin; for example, the
following substitutions are applied at the start of
a Pinyin syllable, which makes it easier for an
English speaker to see how to pronounce it and
renders the Pinyin more similar to English
orthography: “u:” (umlaut “u”) => “u”, “zh” =>
“j”, “c” => “ts”, and “q” => “ch” (so the Pinyin
“Qian” is more or less pronounced as if it were
spelled as “Chian”, etc.). The MLEV algorithm
uses equivalence classes that allow “o” and “u”
to match, which results in a higher score than the
generic score using the LEV method.

2.2 Monolingual Approach

Instead of relying on rules that require extensive
knowledge of differences between a language
pair2, the monolingual approach first builds pho-
nemic representations for each name, and then
aligns them. Earlier research by (Kondrak 2000)
used dynamic programming to align strings of
phonemes, representing the phonemes as vectors
of phonological features, which are associated
with scores to produce similarity values. His
program ALINE includes a “skip” function in the
alignment operations that can be exploited for
handling epenthetic segments, and in addition to
1:1 alignments, it also handles 1:2 and 2:1
alignments. In this research, we made extensive
modifications to ALINE to add the phonological
features for languages like Chinese and Arabic
and to normalize the similarity scores, producing
a system called MALINE.

In Table 1, the MALINE row3 shows that the
English name has a palato-alveolar modification

2As (Freeman et al., 2006) point out, these insights are
not easy to come by: “These rules are based on first
author Dr. Andrew Freeman’s experience with read-
ing and translating Arabic language texts for more
than 16 years” (Freeman et al., 2006, p. 474).
3For the MALINE row in Table 1, the ALINE docu-
mentation explains the notation as follows: “every
phonetic symbol is represented by a single lowercase
letter followed by zero or more uppercase letters. The
initial lowercase letter is the base letter most similar
to the sound represented by the phonetic symbol. The
remaining uppercase letters stand for the feature mod-

on the “s” (expressed as “sV”), so that we get the
sound corresponding to “sh”; the Pinyin name
inserts a centered “e” vowel, and devoices the
bilabial plosive /b/ to /p/. There are actually
sixteen different Chinese ‘pinyinizations’ of
Ashburton, according to our data prepared from
the LDC corpus.

3 Experimental Setup

3.1 Machine Learning Framework

Neither of the two basic approaches described so
far use machine learning. Our machine learning
framework is based on learning from alignments
produced by either approach. To view the learn-
ing problem as one amenable to a statistical clas-
sifier, we need to generate labeled feature vectors
so that each feature vector includes an additional
class feature that can have the value ‘true’ or
‘false.’ Given a set of such labeled feature vec-
tors as training data, the classifier builds a model
which is then used to classify unlabeled feature
vectors with the right labels.

A given set of attested name pairs constitutes a
set of positive examples. To create negative
pairs, we have found that randomly selecting
elements that haven’t been paired will create
negative examples in which the pairs of elements
being compared are so different that they can be
trivially separated from the positive examples.
The experiments reported here used the MLEV
score as a threshold to select negatives, so that
examples below the threshold are excluded. As
the threshold is raised, the negative examples
should become harder to discriminate from
positives (with the harder problems mirroring
some of the “confusable name” characteristics of
the real-world name-matching problems this
technology is aimed at). Positive examples below
the threshold are also eliminated. Other criteria,
including a MALINE score, could be used, but
the MLEV scores seemed adequate for these
preliminary experiments.

Raising the threshold reduces the number of
negative examples. It is highly desirable to
balance the number of positive and negative
examples in training, to avoid the learning being

ifiers which alter the sound defined by the base letter.
By default, the output contains the alignments togeth-
er with the overall similarity scores. The aligned sub-
sequences are delimited by '|' signs. The '<' sign signi-
fies that the previous phonetic segment has been
aligned with two segments in the other sequence, a
case of compression/expansion. The '-' sign denotes a
“skip”, a case of insertion/deletion.”

4

biased by a skewed distribution. However, when
one starts with a balanced distribution of positive
and negatives, and then excludes a number of
negative examples below the threshold, a
corresponding number of positive examples must
also be removed to preserve the balance. Thus,
raising the threshold reduces the size of the
training data. Machine learning algorithms,
however, can benefit from more training data.
Therefore, in the experiments below, thresholds
which provided woefully inadequate training set
sizes were eliminated.

One can think of both the machine learning
method and the basic name comparison methods
(MLEV and MALINE) as taking each pair of
names with a known label and returning a
system-assigned class for that pair. Precision,
Recall, and F-Measure can be defined in an
identical manner for both machine learning and
basic name comparison methods. In such a
scheme, a threshold on the similarity score is
used to determine whether the basic comparison
match is a positive match or not. Learning the
best threshold for a dataset can be determined by
searching over different values for the threshold.

In short, the methodology employed for this
study involves two types of thresholds: the
MLEV threshold used to identify negative
examples and the threshold that is applied to the
basic comparison methods, MLEV and
MALINE, to identify matches. To avoid
confusion, the term negative threshold refers to
the former, while the term positive threshold is
used for the latter.

The basic comparison methods were used as
baselines in this research. To be able to provide a
fair basic comparison score at each negative
threshold, we “trained” each basic comparison
matcher at twenty different positive thresholds
on the same training set used by the learner. For
each negative threshold, we picked the positive
threshold that gave the best performance on the
training data, and used that to score the matcher
on the same test data as used by the learner.

3.2 Feature Extraction

Consider the MLEV alignment in Table 1. It can
be seen that the first three characters are matched
identically across both strings; after that, we get
an “e” inserted, an “n” inserted, a “b” matched
identically, a “u” matched to an “o”, a “r” de-
leted, a “t” matched to a “d”, an “o” matched to a
“u”, and an “n” deleted. The match unigrams are
thus “a:a”, “s:s”, “h:h”, “-:e”, “-:n”, “b:b”, “u:o”,
“r:-“, “t:d”, “o:u”, and “n:-”. Match bigrams

were generated by considering any insertion, de-
letion, and (non-identical) substitution unigram,
and noting the unigram, if any, to its left, pre-
pending that left unigram to it (delimited by a
comma). Thus, the match bigrams in the above
example include “h:h,-:e”, “-:e,-:n”, “b:b,u:o”,
“u:o,r:-“, “r:-,t:d”, “t:d,o:u”, “o:u,n:-”.

These match unigram and match bigram
features are generated from just a single MLEV
match. The composite feature set is the union of
the complete match unigram and bigram feature
sets. Given the composite feature set, each match
pair is turned into a feature vector consisting of
the following features: string1, string2, the match
score according to each of the basic comparison
matchers (MLEV and MALINE), and the
Boolean value of each feature in the composite
feature set.

3.3 Data Set

Our data is a (roughly 470,000 pair) subset of the
Chinese-English personal name pairs in LDC
2005T34. About 150,000 of the pairs had more
than 1 way to pronounce the English and/or Chi-
nese. For these, to keep the size of the experi-
ments manageable from the point of view of
training the learners, one pronunciation was ran-
domly chosen as the one to use. (Even with this
restriction, a minimum negative threshold results
in over half a million examples). Chinese charac-
ters were mapped into Hanyu Pinyin representa-
tions, which are used for MLEV alignment and
string comparisons. Since the input to MALINE
uses a phonemic representation that encodes
phonemic features in one or more letters, both
Pinyin and English forms were mapped into the
MALINE notation.

There are a number of slightly varying ways to
map Pinyin into an international pronunciation
system like IPA. For example, (Wikipedia 2006)
and (Salafra 2006) have mappings that differ
from each other and also each of these two
sources have changed its mapping over time. We
used a version of Salafra from 2006 (but we
ignored the ejectives). For English, the CMU
pronouncing dictionary (CMU 2008) provided
phonemic representations that were then mapped
into the MALINE notation. The dictionary had
entries for 12% of our data set. For the names not
in the CMU dictionary, a simple grapheme to
phoneme script provided an approximate
phonemic form. We did not use a monolingual
mapping of Chinese characters (Mandarin
pronunciation) into IPA because we did not find
any.

5

60
65
70
75
80
85
90
95

100
105

0 0.2 0.4 0.6 0.8

M
X
C
MB
XB
CB

Note that we could insist that all pairs in our
dataset be distinct, requiring that there be exactly
one match for each Roman name and exactly one
match for each Pinyin name. This in our view is
unrealistic, since large corpora will be skewed
towards names which tend to occur frequently
(e.g., international figures in news) and occur
with multiple translations. We included attested
match pairs in our test corpora, regardless of the
number of matches that were associated with a
member of the pair.

4 Results

A variety of machine learning algorithms were
tested. Results are reported, unless otherwise in-
dicated, using SVM Lite, a Support Vector Ma-
chine (SVM4) classifier5 that scales well to large
data sets.

Testing with SVM Lite was done with a 90/10
train-test split. Further testing was carried out
with the weka SMO SVM classifier, which used
built-in cross-validation. Although the latter clas-
sifier didn’t scale to the larger data sets we used,
it did show that cross-validation didn’t change
the basic results for the data sets it was tried on.
4.1 Machine Learning with Different Fea-

ture Sets

Figure 1: F-measure with Different Fea-
ture Sets

Figure 1 shows the F-measure of learning for
monolingual features (M, based on MALINE),
cross-lingual features (X, based on MLEV), and
a combined feature set (C) of both types of fea-
tures6 at different negative thresholds (shown on
the horizontal axis). Baselines are shown with
the suffix B, e.g., the basic MALINE without
learning is MB. When using both monolingual
and cross-lingual features (C), the baseline (CB)

4We used a linear kernel function in our SVM expe-
riments; using polynomial or radial basis kernels did
not improve performance.
5 From svmlight.joachims.org.
6In Figure 1, the X curve is more or less under the C
curve.

is set to a system response of “true” only when
both the MALINE and MLEV baseline systems
by themselves respond “true”. Table 2 shows the
number of examples at each negative threshold
and the Precision and Recall for these methods,
along with baselines using the basic methods
shown in square brackets.

The results show that the learning method (i)
outperforms the baselines (basic methods), and
(ii) the gap between learning and basic compari-
son widens as the problem becomes harder (i.e.,
as the threshold is raised).

For separate monolingual and cross-lingual
learning, the increase in accuracy of the learning
over the baseline (non-learning) results7 was sta-
tistically significant at all negative thresholds
except 0.6 and 0.7. For learning with combined
monolingual and cross-lingual features (C), the
increase over the baseline (non-learning) com-
bined results was statistically significant at all
negative thresholds except for 0.7.

In comparing the mono-lingual and cross-
lingual learning approaches, however, the only
statistically significant differences were that the
cross-lingual features were more accurate than
the monolingual features at the 0 to 0.4 negative
thresholds. This suggests that (iii) the mono-
lingual learning approach is as viable as the
cross-lingual one as the problem of confusable
names becomes harder.

However, using the combined learning ap-
proach (C) is better than using either one. Learn-
ing accuracy with both monolingual and cross-
lingual features is statistically significantly better
than learning with monolingual features at the
0.0 to 0.4 negative thresholds, and better than
learning with cross-lingual features at the 0.0 to
0.2, and 0.4 negative thresholds.

7Statistical significance between F-measures is not
directly computable since the overall F-measure is not
an average of the F-measures of the data samples.
Instead, we checked the statistical significance of the
increase in accuracy (accuracy is not shown for rea-
sons of space) due to learning over the baseline. The
statistical significance test was done by assuming that
the accuracy scores were binomials that were approx-
imately Gaussian. When the Gaussian approximation
assumption failed (due to the binomial being too
skewed), a looser, more general bound was used
(Chebyshev’s inequality, which applies to all proba-
bility distributions). All statistically significant differ-
ences are at the 1% level (2-sided).

6

4.2 Feature Set Analyses

The unigram features reflect common correspon-
dences between Chinese and English pronuncia-
tion. For example, (Sproat, Tao and Zhai 2006)
note that Chinese /l/ is often associated with Eng-
lish /r/, and the feature l:r is among the most fre-
quent unigram mappings in both the MLEV and
MALINE alignments. At a frequency of 103,361,
it is the most frequent unigram feature in the
MLEV mappings, and it is the third most fre-
quent unigram feature in the MALINE align-
ments (56,780).

Systematic correspondences among plosives
are also captured in the MALINE unigram map-
pings. The unaspirated voiceless Chinese plo-
sives /p,t,k/ contrast with aspirated plosives

/pʰ,tʰ,kʰ/, whereas the English voiceless plosives
(which are aspirated in predictable environments)
contrast with voiced plosives /b,d,g/. As a result,
English /b,d,g/ phonemes are usually translite-
rated using Chinese characters that are pro-
nounced /p,t,k/, while English /p,t,k/ phonemes
usually correspond to Chinese /pʰ,tʰ,kʰ/. The ex-
amples of Stewart and Elizabeth in Section 1
illustrate the correspondence of English /t/ and
Chinese / tʰ/ and of English /b/ with Chinese /p/
respectively. All six of the unigram features that
result from these correspondences occur among
the 20 most frequent in the MALINE alignments,
ranging in frequency from 23,602 to 53,535.

Neg-
ative
Thre-
shold

Exam-
ples

Monolingual (M) Cross-Lingual (X) Combined (C)

 P R P R P R
0 538,621 94.69

[90.6]
95.73

[91.0]
96.5

[90.0]
97.15

[93.4]
97.13

[90.8]
97.65

[91.0]
0.1 307,066 95.28

[87.1]
96.23

[83.4]
98.06

[89.2]
98.25

[89.9]
98.4

[87.6]
98.64

[84.1]
0.2 282,214 95.82

[86.2]
96.63

[84.4]
97.91

[88.4]
98.41

[90.3]
98.26

[86.7]
98.82

[84.7]
0.3 183,188 95.79

[80.6]
96.92

[85.3]
98.18

[86.3]
98.8

[90.7]
98.24

[80.6]
99.27

[84.8]
0.4 72,176 96.31

[77.1]
98.69

[82.3]
97.89

[91.8]
99.61

[86.2]
98.91

[77.1]
99.64

[80.9]
0.5 17,914 94.62

[64.6]
98.63

[84.3]
99.44

[89.4]
100.0

[91.9]
99.46

[63.8]
99.89

[84.7]
0.6 2,954 94.94

[66.1]
100

[77.0]
98.0

[85.2]
98.66

[92.8]
99.37

[61.3]
100.0

[73.1]
0.7 362 95.24

[52.8]
100

[100.0]
94.74

[78.9]
100.0

[78.9]
100.0

[47.2]
94.74

[100.0]
Table 2: Precision and Recall with Different Feature Sets

(Baseline scores in square brackets)

4.3 Comparison with other Learners

To compare with other machine learning tools,
we used the WEKA toolkit (from
www.weka.net.nz). Table 3 shows the compar-
isons on the MLEV data for a fixed size at one
threshold. Except for SVM Light, the results
are based on 10-fold cross validation. The
other classifiers appear to perform relatively
worse at that setting for the MLEV data, but
the differences in accuracy are not statistically
significant even at the 5% level. A large con-
tributor to the lack of significance is the small
test set size of 66 pairs (10% of 660 examples)
used in the SVM Light test.

4.4 Other Language Pairs

Some earlier experiments for Arabic-Roman
comparisons were carried out using a Condi-
tional Random Field learner (CRF), using the
Carafe toolkit (from source-
forge.net/projects/carafe). The method com-
putes its own Levenshtein edit-distance scores,
and learns edit-distance costs from that. The
scores obtained, on average, had only a .6 cor-
relation with the basic comparison Levenshtein
scores. However, these experiments did not
return accuracy results, as ground-truth data
was not specified for this task.

7

Several preliminary machine learning expe-
riments were also carried out on Urdu-Roman
comparisons. The data used were Urdu data
extracted from a parallel corpus recently pro-
duced by the LDC (LCTL_Urdu.20060408).
The results are shown in Table 4. Here a .55
MALINE score and a .85 MLEV score were
used for selecting positive examples by basic
comparison, and negative examples were se-
lected at random. Here the MALINE method
(row 1) using the weka SMO SVM made use
of a threshold based on a MALINE score. In
these earlier experiments, machine learning
does not really improve the system perfor-
mance (F-measure decreases with learning on
one test and only increases by 0.1% on the
other test). However, since these earlier expe-
riments did not benefit from the use of differ-
ent negative thresholds, there was no control
over problem difficulty.

5 Related Work

While there is a substantial literature employ-
ing learning techniques for record linkage
based on the theory developed by Fellegi and
Sunter (1969), researchers have only recently
developed applications that focus on name
strings and that employ methods which do not
require features to be independent (Cohen and
Richman 2002). Ristad and Yianilos (1997)
have developed a generative model for learn-
ing string-edit distance that learns the cost of
different edit operations during string align-
ment. Bilenko and Mooney (2003) extend Ris-
tad’s approach to include gap penalties (where
the gaps are contiguous sequences of mis-
matched characters) and compare this genera-

tive approach with a vector similarity approach
that doesn’t carry out alignment. McCallum et
al. (2005) use Conditional Random Fields
(CRFs) to learn edit costs, arguing in favor of
discriminative training approaches and against
generative approaches, based in part on the
fact that the latter approaches “cannot benefit
from negative evidence from pairs of strings
that (while partially overlapping) should be
considered dissimilar”. Such CRFs model the
conditional probability of a label sequence (an
alignment of two strings) given a sequence of
observations (the strings).

A related thread of research is work on au-
tomatic transliteration, where training sets are
typically used to compute probabilities for
mappings in weighted finite state transducers
(Al-Onaizan and Knight 2002; Gao et al. 2004)
or source-channel models (Knight and Graehl
1997; Li et al. 2004). (Sproat et al. 2006) have
compared names from comparable and con-
temporaneous English and Chinese texts, scor-
ing matches by training a learning algorithm to
compare the phonemic representations of the
names in the pair, in addition to taking into
account the frequency distribution of the pair
over time. (Tao et al. 2006) obtain similar re-
sults using frequency and a similarity score
based on a phonetic cost matrix

The above approaches have all developed
special-purpose machine-learning architectures
to address the matching of string sequences.
They take pairs of strings that haven’t been
aligned, and learn costs or mappings from
them, and once trained, search for the best
match given the learned representation

Positive
Threshold

Examples Method P R F Accuracy

.65 660 SVM Light 90.62 87.88 89.22 89.39

.65 660 WEKA SMO 80.6 83.3 81.92 81.66

.65 660 AdaBoost M1 84.9 78.5 81.57 82.27

Table 3: Comparison of Different Classifiers

Method Positive
Threshold

Examples P R F

WEKA SMO .55 (MALINE) 206 (MALINE) 84.8 [81.5] 86.4 [93.3] 85.6 [87.0]
WEKA SMO .85 (MLEV) 584 (MLEV) 89.9 [93.2] 94.7 [91.2] 92.3 [92.2]

Table 4: Urdu-Roman Name Matching Results with Random Negatives
(Baseline scores in square brackets)

8

Our approach, by contrast, takes pairs of
strings along with an alignment, and using fea-
tures derived from the alignments, trains a learn-
er to derive the best match given the features.
This offers the advantage of modularity, in that
any type of alignment model can be combined
with SVMs or other classifiers (we have pre-
ferred SVMs since they offer discriminative
training). Our approach allows leveraging of any
existing alignments, which can lead to starting
the learning from a higher baseline and less train-
ing data to get to the same level of performance.
Since the learner itself doesn’t compute the
alignments, the disadvantage of our approach is
the need to engineer features that communicate
important aspects of the alignment to the learner.

In addition, our approach, as with McCallum
et al. (2005), allows one to take advantage of
both positive and negative training examples,
rather than positive ones alone. Our data genera-
tion strategy has the advantage of generating
negative examples so as to vary the difficulty of
the problem, allowing for more fine-grained per-
formance measures. Metrics based on such a
control are likely to be useful in understanding
how well a name-matching system will work in
particular applications, especially those involving
confusable names.

6 Conclusion

The work presented here has established a
framework for application of machine learning
techniques to multilingual name matching. The
results show that machine learning dramatically
outperforms basic comparison methods, with F-
measures as high as 97.0 on the most difficult
problems. This approach is being embedded in a
larger system that matches full names using a
vetted database of full-name matches for evalua-
tion.

So far, we have confined ourselves to minimal
feature engineering. Future work will investigate
a more abstract set of phonemic features. We
also hope to leverage ongoing work on harvest-
ing name pairs from web resources, in addition
applying them to less commonly taught languag-
es, as and when appropriate resources for them
become available.

References
Al-Onaizan, Y. and K. Knight, K. 2002. Machine

Transliteration of Names in Arabic Text. Proceed-
ings of the ACL Workshop on Computational Ap-
proaches to Semitic Languages.

Bilenko, M. and Mooney, R.J. 2003. Adaptive dupli-
cate detection using learnable string similarity
measures. In Proc. of SIGKDD-2003.

CMU. 2008. The CMU Pronouncing
nary. ftp://ftp.cs.cmu.edu/project/speech/dict/

Cohen, W. W., and Richman, J. 2002. Learning to
match and cluster large high-dimensional data sets
for data integration. In Proceedings of The Eighth
ACM SIGKDD International Conference on Know-
ledge Discovery and Data Mining (KDD-2002).

Fellegi, I. and Sunter, A. 1969. A theory for record
linkage. Journal of the American Statistical Socie-
ty, 64:1183-1210, 1969.

Freeman, A., Condon, S. and Ackermann, C. 2006.
Cross Linguistic Name Matching in English and
Arabic. Proceedings of HLT.

Gao, W., Wong, K., and Lam, W. 2004. Phoneme-
based transliteration of foreign names for OOV
problem. In Proceedings of First International
Joint Conference on Natural Language Processing.

Kondrak, G. 2000. A New Algorithm for the Align-
ment of Phonetic Sequences. Proceedings of the
First Meeting of the North American Chapter of
the Association for Computational Linguistics
(ANLP-NAACL 2000), 288-295.

Knight, K. and Graehl, J., 1997. Machine Translitera-
tion, In Proceedings of the Conference of the Asso-
ciation for Computation Linguistics (ACL).

Li, H., Zhang, M., & Su, J. 2004. A joint source-
channel model for machine transliteration. In Pro-
ceedings of Conference of the Association for
Computation Linguistics (ACL).

McCallum, A., Bellare, K. and Pereira, F. 2005. A
Conditional Random Field for Discriminatively-
trained Finite-state String Edit Distance. Confe-
rence on Uncertainty in AI (UAI).

Ristad, E. S. and Yianilos, P. N. 1998. Learning
string edit distance. IEEE Transactions on Pattern
Recognition and Machine Intelligence.

Salafra. 2006. http://www.safalra.com /science
/linguistics/pinyin-pronunciation/

Sproat, R., Tao, T. and Zhai, C. 2006. Named Entity
Transliteration with Comparable Corpora. In Pro-
ceedings of the Conference of the Association for
Computational Linguistics. New York.

Tao, T., Yoon, S. Fister, A., Sproat, R. and Zhai, C.
2006. Unsupervised Named Entity Transliteration
Using Temporal and Phonetic Correlation. In Pro-
ceedings of the ACL Empirical Methods in Natural
Language Processing Workshop.

Wikipedia. 2006. http://en.wikipedia.org/wiki/Pinyin

9

