
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 1081–1088
Manchester, August 2008

Extracting Synchronous Grammar Rules
From Word-Level Alignments in Linear Time

Hao Zhang and Daniel Gildea
Computer Science Department

University of Rochester
Rochester, NY 14627, USA

David Chiang
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292, USA

Abstract

We generalize Uno and Yagiura’s algo-
rithm for finding all common intervals of
two permutations to the setting of two
sequences with many-to-many alignment
links across the two sides. We show how
to maximally decompose a word-aligned
sentence pair in linear time, which can be
used to generate all possible phrase pairs
or a Synchronous Context-Free Grammar
(SCFG) with the simplest rules possible.
We also use the algorithm to precisely
analyze the maximum SCFG rule length
needed to cover hand-aligned data from
various language pairs.

1 Introduction

Many recent syntax-based statistical machine
translation systems fall into the general formalism
of Synchronous Context-Free Grammars (SCFG),
where the grammar rules are found by first align-
ing parallel text at the word level. From word-
level alignments, such systems extract the gram-
mar rules consistent either with the alignments
and parse trees for one of languages (Galley et
al., 2004), or with the the word-level alignments
alone without reference to external syntactic anal-
ysis (Chiang, 2005), which is the scenario we ad-
dress here.

In this paper, we derive an optimal, linear-time
algorithm for the problem of decomposing an ar-
bitrary word-level alignment into SCFG rules such
that each rule has at least one aligned word and is
minimal in the sense that it cannot be further de-
composed into smaller rules. Extracting minimal
rules is of interest both because rules with fewer
words are more likely to generalize to new data,

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

and because rules with lower rank (the number of
nonterminals on the right-hand side) can be parsed
more efficiently.

This algorithm extends previous work on factor-
ing permutations to the general case of factoring
many-to-many alignments. Given two permuta-
tions of n, a common interval is a set of numbers
that are consecutive in both. The breakthrough
algorithm of Uno and Yagiura (2000) computes
all K common intervals of two length n permu-
tations in O(n + K) time. This is achieved by
designing data structures to index possible bound-
aries of common intervals as the computation pro-
ceeds, so that not all possible pairs of beginning
and end points need to be considered. Landau et
al. (2005) and Bui-Xuan et al. (2005) show that all
common intervals can be encoded in O(n) space,
and adapt Uno and Yagiura’s algorithm to produce
this compact representation in O(n) time. Zhang
and Gildea (2007) use similar techniques to factor-
ize Synchronous Context Free Grammars in linear
time.

These previous algorithms assume that the input
is a permutation, but in machine translation it is
common to work with word-level alignments that
are many-to-many; in general any set of pairs of
words, one from each language, is a valid align-
ment for a given bilingual sentence pair. In this
paper, we consider a generalized concept of com-
mon intervals given such an alignment: a common
interval is a pair of phrases such that no word pair
in the alignment links a word inside the phrase
to a word outside the phrase. Extraction of such
phrases is a common feature of state-of-the-art
phrase-based and syntax-based machine transla-
tion systems (Och and Ney, 2004a; Chiang, 2005).
We generalize Uno and Yagiura’s algorithm to this
setting, and demonstrate a linear time algorithm
for a pair of aligned sequences. The output is a tree
representation of possible phrases, which directly
provides a set of minimal synchronous grammar

1081

rules for an SCFG-based machine translation sys-
tem. For phrase-based machine translation, one
can also read all phrase pairs consistent with the
original alignment off of the tree in time linear in
the number of such phrases.

2 Alignments and Phrase Pairs

Let [x, y] denote the sequence of integers between
x and y inclusive, and [x, y) the integers between
x and y − 1 inclusive. An aligned sequence pair
or simply an alignment is a tuple (E, F, A), where
E = e1 · · · en and F = f1 · · · fm are strings, and
A is a set of links (x, y), where 1 ≤ x ≤ n and
1 ≤ y ≤ m, connecting E and F . For most of this
paper, since we are not concerned with the identity
of the symbols in E and F , we will assume for
simplicity that ei = i and fj = j, so that E =
[1, n] and F = [1, m].

In the context of statistical machine translation
(Brown et al., 1993), we may interpret E as an En-
glish sentence, F its translation in French, and A
a representation of how the words correspond to
each other in the two sentences. A pair of sub-
strings [s, t] ⊂ E and [u, v] ⊂ F is a phrase pair
(Och and Ney, 2004b) if and only if the subset of
links emitted from [s, t] in E is equal to the sub-
set of links emitted from [u, v] in F , and both are
nonempty.

Figure 1a shows an example of a many-to-
many alignment, where E = [1, 6], F =
[1, 7], and A = {(1, 6), (2, 5), (2, 7), (3, 4),
(4, 1), (4, 3), (5, 2), (6, 1), (6, 3)}. The eight
phrase pairs in this alignment are:

([1, 1], [6, 6]), ([1, 2], [5, 7]),

([3, 3], [4, 4]), ([1, 3], [4, 7]),

([5, 5], [2, 2]), ([4, 6], [1, 3]),

([3, 6], [1, 4]), ([1, 6], [1, 7]).

In Figure 1b, we show the alignment matrix rep-
resentation of the given alignment. By default, the
columns correspond to the tokens in E, the rows
correspond to the tokens in F , and the black cells
in the matrix are the alignment links in A. Using
the matrix representation, the phrase pairs can be
viewed as submatrices as shown with the black-
lined boundary boxes. Visually, a submatrix rep-
resents a phrase pair when it contains at least one
alignment link and there are no alignment links di-
rectly above, below, or to the right or left of it.

e1 e2 e3 e4 e5 e6

f1 f2 f3 f4 f5 f6 f7
1

1
2

2

3

3

4

4

5

5

6

6
7

(a) (b)

Figure 1: An example of (a) a many-to-many
alignment and (b) the same alignment as a matrix,
with its phrase pairs marked.

2.1 Number of Phrase Pairs
In this section, we refine our definition of phrase
pairs with the concept of tightness and give an
asymptotic upper bound on the total number of
such phrase pairs as the two sequences’ lengths
grow. In the original definition, the permissive
many-to-many constraint allows for unaligned to-
kens in both sequences E and F . If there is an un-
aligned token adjacent to a phrase pair, then there
is also a phrase pair that includes the unaligned
token. We say that a phrase pair ([s, t], [u, v]) is
tight if none of es, et, fu and fv is unaligned. By
focusing on tight phrase pairs, we eliminate the
non-tight ones that share the same set of alignment
links with their tight counterpart.

Given [s, t] in E, let l be the first member of
F that any position in [s, t] links to, and let u be
the last. According to the definition of tight phrase
pair, [l, u] is the only candidate phrase in F to pair
up with [s, t] in E. So, the total number of tight
phrase pairs is upper-bounded by the total number
of intervals in each sequence, which is O(n2).

If we do not enforce the tightness constraint, the
total number of phrase pairs can grow much faster.
For example, if a sentence contains only a single
alignment link between the midpoint of F and the
midpoint of E, then there will be O(n2m2) possi-
ble phrase pairs, but only a single tight phrase pair.
From now on, term phrase pair always refers to a
tight phrase pair.

2.2 Hierarchical Decomposition of Phrase
Pairs

In this section, we show how to encode all the tight
phrase pairs of an alignment in a tree of size O(n).
Lemma 2.1. When two phrase pairs overlap, the
intersection, the differences, and the union of the
two are also phrase pairs.

The following picture graphically represents the
two possible overlapping structures of two phrase

1082

([1, 6], [1, 7])

([1, 3], [4, 7])

([1, 2], [5, 7])

([1, 1], [6, 6])

([3, 3], [4, 4])

([4, 6], [1, 3])

([5, 5], [2, 2])

Figure 2: The normalized decomposition tree of
the alignment in Figure 1.

pairs: ([s, t], [u, v]) and ([s′, t′], [u′, v′]).

s s’ t t’

u
u’

v
v’

s s’ t t’

u’
u

v’
v

Let AB and BC be two overlapping English
phrases, with B being their overlap. There are six
possible phrases, A, B, C, AB, BC, and ABC,
but if we omit BC, the remainder are nested and
can be represented compactly by ((AB)C), from
which BC can easily be recovered. If we system-
atically apply this to the whole sentence, we obtain
a hierarchical representation of all the phrase pairs,
which we call the normalized decomposition tree.
The normalized decomposition tree for the exam-
ple is shown in Figure 2.

Bui-Xuan et al. (2005) show that the family of
common intervals is weakly partitive, i.e. closed
under intersection, difference and union. This al-
lows the family to be represented as a hierarchi-
cal decomposition. The normalized decomposi-
tion focuses on the right strong intervals, those
that do not overlap with any others on the right.
Lemma 2.1 shows that the family of phrase pairs
is also a weakly partitive family and can be hierar-
chically decomposed after normalization. A minor
difference is we prefer left strong intervals since
our algorithms scan F from left to right. Another
difference is that we binarize a linearly-arranged
sequence of non-overlapping phrase pairs instead
of grouping them together.

In the following sections, we show how to pro-
duce the normalized hierarchical analysis of a
given alignment.

3 Shift-Reduce Algorithm

In this section, we present an O(n2+m+|A|) algo-
rithm that is similar in spirit to a shift-reduce algo-
rithm for parsing context-free languages. This al-
gorithm is not optimal, but its left-to-right bottom-

up control will form the basis for the improved al-
gorithm in the next section.

First, we can efficiently test whether a span
[x, y] is a phrase as follows. Define a pair of func-
tions l(x, y) and u(x, y) that record the minimum
and maximum, respectively, of the positions on the
French side that are linked to the positions [x, y]:

l(x, y) = min{j | (i, j) ∈ A, i ∈ [x, y]}
u(x, y) = max{j | (i, j) ∈ A, i ∈ [x, y]}

Note that l(·, y) is monotone increasing and u(·, y)
is monotone decreasing. Define a step of l(·, y)
(or u(·, y)) to be a maximal interval over which
l(·, y) (resp., u(·, y)) is constant. We can compute
u(x, y) in constant time from its value on smaller
spans:

u(x, y) = max{u(x, z), u(z + 1, y)}

and similarly for l(x, y).
We define the following functions to count the

number of links emitted from prefixes of F and E:

Fc(j) = |{(i′, j′) ∈ A | j′ ≤ j}|
Ec(i) = |{(i′, j′) ∈ A | i′ ≤ i}|

Then the difference Fc(u) − Fc(l − 1) counts the
total number of links to positions in [l, u], and
Ec(y)−Ec(x−1) counts the total number of links
to positions in [x, y]. Ec and Fc can be precom-
puted in O(n + m + |A|) time.

Finally, let

f(x, y) = Fc(u(x, y))− Fc(l(x, y)− 1)
− (Ec(y)− Ec(x− 1))

Note that f is non-negative, but not monotonic in
general. Figure 4 provides a visualization of u, l,
and f for the example alignment from Section 2.
This gives us our phrase-pair test:
Lemma 3.1. [x, y] and [l(x, y), u(x, y)] are a
phrase pair if and only if f(x, y) = 0.

This test is used in the following shift-reduce-
style algorithm:

X ← {1}
for y ∈ [2, n] from left to right do

append y to X
for x ∈ X from right to left do

compute u(x, y) from u(x + 1, y)
compute l(x, y) from l(x + 1, y)
if f(x, y) = 0 then

[x, y] is a phrase

1083

remove [x + 1, y] from X
end if

end for
end for
In the worst case, at each iteration we traverse

the entire stack X without a successful reduction,
indicating that the worst case time complexity is
O(n2).

4 A Linear Algorithm

In this section, we modify the shift-reduce algo-
rithm into a linear-time algorithm that avoids un-
necessary reduction attempts. It is a generalization
of Uno and Yagiura’s algorithm.

4.1 Motivation

The reason that our previous algorithm is quadratic
is that for each y, we try every possible combina-
tion with the values in X . Uno and Yagiura (2000)
point out that in the case of permutations, it is not
necessary to examine all spans, because it is pos-
sible to delete elements from X so that f(·, y) is
monotone decreasing on X . This means that all
the x ∈ X such that f(x, y) = 0 can always be
conveniently found at the end of X . That this can
be done safely is guaranteed by the following:
Lemma 4.1. If x1 < x2 < y and f(x1, y) <
f(x2, y), then for all y′ ≥ y, f(x2, y

′) > 0 (i.e.,
[x2, y

′] is not a phrase).
Let us say that x2 violates monotonicity if x1

is the predecessor of x2 in X and f(x1, y) <
f(x2, y). Then by Lemma 4.1, we can safely re-
move x2 from X .

Furthermore, Uno and Yagiura (2000) show that
we can enforce monotonicity at all times in such a
way that the whole algorithm runs in linear time.
This is made possible with a shortcut based on the
following:
Lemma 4.2. If x1 < x2 < y and u(x1, y − 1) >
u(x2, y − 1) but u(x1, y) = u(x2, y), then for all
y′ ≥ y, f(x2, y

′) > 0 (i.e., [x2, y
′] is not a phrase).

The same holds mutatis mutandis for l.
Let us say that y updates a step [x′, y′] of u (or

l) if u(x′, y) > u(x′, y − 1) (resp., l(x′, y) <
l(x′, y−1)). By Lemma 4.2, if [x1, y1] and [x2, y2]
are different steps of u(·, y − 1) (resp., l(·, y − 1))
and y updates both of them, then we can remove
from X all x′ such that x2 ≤ x′ < y.

u(·, y − 1)

l(·, y − 1)

u(·, y)

l(·, y)

x∗1 y∗2
y

x∗2 y∗1

Figure 3: Illustration of step (3) of the algorithm.
The letters indicate substeps of (3).

4.2 Generalized algorithm
These results generalize to the many-to-many
alignment case, although we must introduce a few
nuances. The new algorithm proceeds as follows:

Initialize X = {1}. For y ∈ [2, n] from left to
right:

1. Append y to X .

2. Update u and l:

(a) Traverse the steps of u(·, y − 1) from
right to left and compute u(·, y) until we
have found the leftmost step [x∗, y∗] of
u(·, y − 1) that gets updated by y.

(b) Do the same for l.

We have computed two values for x∗; let x∗
1

be the smaller and x∗
2 be the larger. Similarly,

let y∗
1 be the smaller y∗.

3. Enforce monotonicity of f(·, y) (see Fig-
ure 3):

(a) The positions left of the smaller x∗ al-
ways satisfy monotonicity, so do noth-
ing.

(b) For x ∈ [x∗
1, x

∗
2) ∩ X while x violates

monotonicity, remove x from X .
(c) For x ∈ [x∗

2, y
∗
1] ∩ X while x violates

monotonicity, remove x from X .
(d) The steps right of y∗

1 may or may not
violate monotonicity, but we use the
stronger Lemma 4.2 to delete all of them
(excluding y).1

1In the special case where [x∗, y∗] is updated by y to the

1084

y = 1 :

1
1

2

2

3

3

4

4

5

5

6

6
7
u, l

x
1

0
2

1

3

2

4

3

5

4

6

5
6

f

x

y = 2 :

1
1

2

2

3

3

4

4

5

5

6

6
7
u, l

x
1

0
2

1

3

2

4

3

5

4

6

5
6

f

x

y = 3 :

1
1

2

2

3

3

4

4

5

5

6

6
7
u, l

x
1

0
2

1

3

2

4

3

5

4

6

5
6

f

x

y = 4 :

1
1

2

2

3

3

4

4

5

5

6

6
7
u, l

x
1

0
2

1

3

2

4

3

5

4

6

5
6

f

x

y = 5 :

1
1

2

2

3

3

4

4

5

5

6

6
7
u, l

x
1

0
2

1

3

2

4

3

5

4

6

5
6

f

x

y = 6 :

1
1

2

2

3

3

4

4

5

5

6

6
7
u, l

x
1

0
2

1

3

2

4

3

5

4

6

5
6

f

x

Figure 4: The evolution of u(x, y) , l(x, y), and f(x, y) as y goes from 1 to 6 for the example alignment.
Each pair of diagrams shows the state of affairs between steps (3) and (4) of the algorithm. Light grey
boxes are the steps of u, and darker grey boxes are the steps of l. We use solid boxes to plot the values
of remaining x’s on the list but also show the other values in empty boxes for completeness.

(e) Finally, if y violates monotonicity, re-
move it from X .

4. For x ∈ X from right to left until f(x, y) >
0, output [x, y] and remove x’s successor in
X .2

An example of the algorithm’s execution is
shown in Figure 4. The evolution of u(x, y),
l(x, y), and f(x, y) is displayed for increasing y
(from 1 to 6). We point out the interesting steps.
When y = 2, position 2 is eliminated due to step
(3e) of our algorithm to ensure monotonicity of
f at the right end, and [1, 2] is reduced. When

same value as the step to its left, we can use Lemma 4.2 to
delete [x∗, y∗] and y as well, bypassing steps (3b),(3c), and
(3e).

2If there are any such x, they must lie to the left of x∗1.
Therefore a further optimization would be to perform step (4)
before step (3), starting with the predecessor of x∗1. If a re-
duction is made, we can jump to step (3e).

y = 3, two reductions are made: one on [3, 3] and
the other on [1, 3]. Because of leftmost normaliza-
tion, position 3 is deleted. When y = 6, we have
x∗

1 = x∗
2 = y∗

1 = 5, so that position 5 is deleted by
step (3c) and position 6 is deleted by step (3e).

4.3 Correctness

We have already argued in Section 4.1 that the
deletion of elements from X does not alter the out-
put of the algorithm. It remains to show that step
(3) guarantees monotonicity:
Claim 4.3. For all y, at the end of step (3), f(·, y)
is monotone decreasing.

Proof. By induction on y. For y = 1, the claim
is trivially true. For y > 1, we want to show
that for x1, x2 adjacent in X such that x1 < x2,
f(x1, y) ≥ f(x2, y). We consider the five regions
of X covered by step (3) (cf. Figure 3), and then

1085

the boundaries between them.

Region (a): x1, x2 ∈ [1, x∗
1]. Since u(xi, y) =

u(xi, y − 1) and l(xi, y) = l(xi, y − 1), we have:

f(xi, y)−f(xi, y−1) = 0− (Ec(y)−Ec(y−1))

i.e., in this region, f shifts down uniformly from
iteration y − 1 to iteration y. Hence, if f(·, y −
1) was monotonic, then f(·, y) is also monotonic
within this region.
Region (b): x1, x2 ∈ [x∗

1, x
∗
2). Since u(x1, y −

1) = u(x2, y − 1) and u(x1, y) = u(x2, y) and
similarly for l, we have:

f(x1, y)− f(x1, y− 1) = f(x2, y)− f(x2, y− 1)

i.e., in this region, f shifts up or down uniformly.3

Hence, if f(·, y − 1) was monotonic, then f(·, y)
is also monotonic within this region.
Region (c): x1, x2 ∈ [x∗

2, y
∗
1]. Same as Case 2.

Region (d) and (e): Vacuous (these regions have at
most one element).

The remaining values of x1, x2 are those that
straddle the boundaries between regions. But
step (3) of the algorithm deals with each of
these boundaries explicitly, deleting elements until
f(x1) ≥ f(x2). Thus f(·, y) is monotonic every-
where.

4.4 Implementation and running time
X should be implemented in a way that allows
linear-time traversal and constant-time deletion;
also, u and l must be implemented in a way that
allows linear-time traversal of their steps. Doubly-
linked lists are appropriate for all three functions.
Claim 4.4. The above algorithm runs in O(n +
m + |A|) time.

We can see that the algorithm runs in linear time
if we observe that whenever we traverse a part of
X , we delete it, except for a constant amount of
work per iteration (that is, per value of y): the steps
traversed in (2) are all deleted in (3d) except four
(two for u and two for l); the positions traversed in
(3b), (3c), and (4) are all deleted except one.

4.5 SCFG Rule extraction
The algorithm of the previous section outputs the
normalized decomposition tree depicted in Fig-
ure 2. From this tree, it is straightforward to obtain

3It can be shown further that in this region, f shifts up or
is unchanged. Therefore any reductions in step (4) must be in
region (a).

A→ B(1) C(2), C(2) B(1)

B → D(1) E(2), E(2) D(1)

D → G(1) e2, f5 G(1) f6

G→ e1, f6

E → e3, f4

C → e4 F (1) e6, f1 F (1) f3

F → e5, f2

Figure 5: Each node from the normalized decom-
position tree of Figure 2 is converted into an SCFG
rule.

a set of maximally-decomposed SCFG rules. As
an example, the tree of Figure 2 produces the rules
shown in Figure 5.

We adopt the SCFG notation of Satta and Pe-
serico (2005). Each rule has a right-hand side se-
quence for both languages, separated by a comma.
Superscript indices in the right-hand side of gram-
mar rules such as:

A→ B(1) C(2), C(2) B(1)

indicate that the nonterminals with the same index
are linked across the two languages, and will even-
tually be rewritten by the same rule application.
The example above inverts the order of B and C
when translating from the source language to the
target language.

The SCFG rule extraction proceeds as follows.
Assign a nonterminal label to each node in the tree.
Then for each node (S, T) in the tree top-down,
where S and T are sequences of positions,

1. For each child (S′, T ′), S′ and T ′ must be
subsequences of S and T , respectively. Re-
place their occurrences in S and T with a pair
of coindexed nonterminals X ′, where X ′ is
the nonterminal assigned to the child.

2. For each remaining position i in S, replace i
with ei.

3. For each remaining position j in T , replace j
with fj .

4. Output the rule X → S, T , where X is the
nonterminal assigned to the parent.

As an example, consider the node ([4, 6], [1, 3])
in Figure 2. After step 1, it becomes

(4F (1) 6, 1F (1) 3)

and after steps 2 and 3, it becomes

(e4 F (1) e6, f1 F (1) f3)

1086

0 1 2 3 4 5 6
Hindi/English 52.8 53.5 99.9 99.9 100.0
Chinese/English 51.0 52.4 99.7 99.8 100.0 100.0 100.0
French/English 52.1 53.5 99.9 100.0 100.0 100.0
Romanian/English 50.8 52.6 99.9 99.9 100.0 100.0
Spanish/English 50.7 51.8 99.9 100.0 100.0 100.0

Table 1: Cumulative percentages of rule tokens by number of nonterminals in right-hand side. A blank
indicates that no rules were found with that number of nonterminals.

Finally, step 4 outputs

C → e4 F (1) e6, f1 F (1) f3

A few choices are available to the user depend-
ing on the application intended for the SCFG ex-
traction. The above algorithm starts by assigning
a nonterminal to each node in the decomposition
tree; one could assign a unique nonterminal to each
node, so that the resulting grammar produces ex-
actly the set of sentences given as input. But for
machine translation, one may wish to use a single
nonterminal, such that the extracted rules can re-
combine freely, as in Chiang (2005).

Unaligned words in either language (an empty
row or column in the alignment matrix, not present
in our example) will be attached as high as possi-
ble in our tree. However, other ways of handling
unaligned words are possible given the decompo-
sition tree. One can produce all SCFG rules con-
sistent with the alignment by, for each unaligned
word, looping through possible attachment points
in the decomposition tree. In this case, the num-
ber of SCFG rules produced may be exponential
in the size of the original input sentence; however,
even in this case, the decomposition tree enables a
rule extraction algorithm that is linear in the output
length (the number of SCFG rules).

4.6 Phrase extraction
We briefly discuss the process of extracting all
phrase pairs consistent with the original alignment
from the normalized decomposition tree. First of
all, every node in the tree gives a valid phrase
pair. Then, in the case of overlapping phrase pairs
such as the example in Section 2.1, the decom-
position tree will contain a left-branching chain
of binary nodes all performing the same permuta-
tion. While traversing the tree, whenever we iden-
tify such a chain, let η1, . . . , ηk be the sequence of
all the children of the nodes in the chain. Then,
each of the subsequences {ηi, . . . , ηj | 1 < i <
j ≤ k} yields a valid phrase pair. In our exam-
ple, the root of the tree of Figure 2 and its left

child form such a chain, with three children; the
subsequence {([3, 3], [4, 4]), ([4, 6], [1, 3])} yields
the phrase ([3, 6], [1, 4]). In the case of unaligned
words, we can also consider all combinations of
their attachments, as discussed for SCFG rule ex-
traction.

5 Experiments on Analyzing Word
Alignments

One application of our factorization algorithm
is analyzing human-annotated word alignments.
Wellington et al. (2006) argue for the necessity
of discontinuous spans (i.e., for a formalism be-
yond Synchronous CFG) in order for synchronous
parsing to cover human-annotated word alignment
data under the constraint that rules have a rank
of no more than two. In a related study, Zhang
and Gildea (2007) analyze the rank of the Syn-
chronous CFG derivation trees needed to parse the
same data. The number of discontinuous spans
and the rank determine the complexity of dynamic
programming algorithms for synchronous parsing
(alignment) or machine translation decoding.

Both studies make simplifying assumptions on
the alignment data to avoid dealing with many-to-
many word links. Here, we apply our alignment
factorization algorithm directly to the alignments
to produce a normalized decomposition tree for
each alignment and collect statistics on the branch-
ing factors of the trees.

We use the same alignment data for the
five language pairs Chinese-English, Romanian-
English, Hindi-English, Spanish-English, and
French-English as Wellington et al. (2006). Ta-
ble 1 reports the number of rules extracted by the
rank, or number of nonterminals on the right-hand
side. Almost all rules are binary, implying both
that binary synchronous grammars are adequate
for MT, and that our algorithm can find such gram-
mars. Table 2 gives similar statistics for the num-
ber of terminals in each rule. The phrases we ex-
tract are short enough that they are likely to gener-
alize to new sentences. The apparent difficulty of

1087

0 1 2 3 4 5 6 7 8 9 ≥10 max
Hindi/English 39.6 92.2 97.7 99.5 99.7 99.9 99.9 100.0 7
Chinese/English 39.8 87.2 96.2 99.0 99.7 99.9 100.0 100.0 100.0 100.0 100.0 12
French/English 44.5 89.0 93.4 95.8 97.5 98.4 99.0 99.3 99.6 99.8 100.0 18
Romanian/English 42.9 89.8 96.9 98.9 99.5 99.8 99.9 100.0 100.0 9
Spanish/English 47.5 91.8 97.7 99.4 99.9 99.9 100.0 100.0 100.0 9

Table 2: Cumulative percentages of rule tokens by number of terminals in right-hand side. A blank
indicates that no rules were found with that number of terminals.

the French-English pair is due to the large number
of “possible” alignments in this dataset.

6 Conclusion

By extending the algorithm of Uno and Yagiura
(2000) from one-to-one mappings to many-to-
many mappings, we have shown how to construct a
hierarchical representation of all the phrase pairs in
a given aligned sentence pair in linear time, which
yields a set of minimal SCFG rules. We have also
illustrated how to apply the algorithm as an analyt-
ical tool for aligned bilingual data.

Acknowledgments Thanks to Bob Moore for
suggesting the extension to phrase extraction at
SSST 2007. This work was supported in part
by NSF grants IIS-0546554 and ITR-0428020,
and DARPA grant HR0011-06-C-0022 under BBN
Technologies subcontract 9500008412.

References
Brown, Peter F., Stephen A. Della Pietra, Vincent J.

Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

Bui-Xuan, Binh Minh, Michel Habib, and Christophe
Paul. 2005. Revisiting T. Uno and M. Yagiura’s al-
gorithm. In The 16th Annual International Sympo-
sium on Algorithms and Computation (ISAAC ’05),
pages 146–155.

Chiang, David. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of ACL 2005, pages 263–270.

Galley, Michel, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proceedings of NAACL 2004.

Landau, Gad M., Laxmi Parida, and Oren Weimann.
2005. Gene proximity analysis across whole
genomes via PQ trees. Journal of Computational Bi-
ology, 12(10):1289–1306.

Och, Franz Josef and Hermann Ney. 2004a. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30(4).

Och, Franz Josef and Hermann Ney. 2004b. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30:417–449.

Satta, Giorgio and Enoch Peserico. 2005. Some
computational complexity results for synchronous
context-free grammars. In Proceedings of EMNLP
2005, pages 803–810, Vancouver, Canada, October.

Uno, Takeaki and Mutsunori Yagiura. 2000. Fast al-
gorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290–309.

Wellington, Benjamin, Sonjia Waxmonsky, and I. Dan
Melamed. 2006. Empirical lower bounds on the
complexity of translational equivalence. In Proceed-
ings of COLING-ACL 2006.

Zhang, Hao and Daniel Gildea. 2007. Factorization
of synchronous context-free grammars in linear time.
In Proceedings of the NAACL Workshop on Syntax
and Structure in Statistical Translation (SSST).

1088

