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Abstract

One style of Multi-Engine Machine
Translation architecture involves choos-
ing the best of a set of outputs from
different systems. Choosing the best
translation from an arbitrary set, even
in the presence of human references, is
a difficult problem; it may prove better
to look at mechanisms for making such
choices in more restricted contexts.

In this paper we take a classification-
based approach to choosing between
candidates from syntactically informed
translations. The idea is that using
multiple parsers as part of a classifier
could help detect syntactic problems in
this context that lead to bad transla-
tions; these problems could be detected
on either the source side—perhaps sen-
tences with difficult or incorrect parses
could lead to bad translations—or on
the target side—perhaps the output
quality could be measured in a more
syntactically informed way, looking for
syntactic abnormalities.

We show that there is no evidence that
the source side information is useful.
However, a target-side classifier, when
used to identify particularly bad trans-
lation candidates, can lead to signifi-
cant improvements in Bleu score. Im-
provements are even greater when com-
bined with existing language and align-
ment model approaches.

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported
license (http://creativecommons.org/licenses/by-nc-
sa/3.0/). Some rights reserved.

1 Introduction

It is fairly safe to say that whenever there
are multiple approaches to solving a problem
in Artificial Intelligence, the idea of trying to
find a better solution by combining those ap-
proaches has been proposed: blackboard archi-
tectures, ensemble methods for machine learn-
ing, and so on.

In Machine Translation (MT), there is a
long tradition of combining multiple machine
translations, as through a Multi-Engine MT
(MEMT) architecture; the origins of this are
generally credited to Frederking and Nirenburg
(1994). One way of dividing up such systems
is into those that take the whole output from
multiple systems and judge between them to
select the best candidate, and those that com-
bine elements of the outputs to construct a
best candidate.

Deciding between whole sentence level out-
puts looks like a classical classification prob-
lem. Of course, deciding between MT out-
puts in the general case is a problem that cur-
rently has no good solution, and is unlikely
to in the near future: Bleu (and similar met-
rics) require one or more reference texts to dis-
tinguish between candidate outputs with the
level of accuracy that they achieve, and even
then they are open to substantial criticism
(Callison-Burch et al., 2006). However, there
are reasons to think that there is some promise
in considering this as a classification problem.
Corston-Oliver et al. (2001) build a classifier to
distinguish between human and machine trans-
lations with an 80% accuracy. Several other
later systems have some success in distinguish-
ing between MT outputs using language mod-
els, alignment models, and voting schemes. In
addition, while the problem of deciding be-
tween arbitrary MT outputs is difficult, it may
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be feasible in specific cases. The classifier con-
structed by Corston-Oliver et al. (2001) takes
advantage of characteristic mistakes found in
the output of the particular MT system used.

In general, we are interested in MT where
syntax is involved. The first part of the main
idea of this paper is that there are two ways
in which problematic translations might be de-
tected. One is on the source side: perhaps sen-
tences with difficult or incorrect parses could
lead to bad use of syntax and hence bad trans-
lations, and this could be detected by a clas-
sifier. The other is that on the target side,
perhaps the output quality could be measured
in a more syntactically informed way, looking
for syntactic abnormalities.

As to the particular system, in this paper
we look at a specific type of MT, the output of
systems that use syntactic reordering as pre-
processing (Collins et al., 2005; Wang et al.,
2007; Zwarts and Dras, 2007). In these sys-
tems, the source language is reordered to mir-
ror the syntax of the target language in certain
respects, leading to an improvement in the ag-
gregate quality of the output over the base-
line, although it is not always the case that
each individual sentence in the reordered ver-
sion is better. This could then be framed as an
MEMT, where the reordered candidate is con-
sidered the default one, backing off to the base-
line where the reordered one is worse, based on
the decision of a classifier. Given the ‘unnatu-
ral’ order of the preprocessed source side, there
is reason to expect that bad or unsuccessful re-
ordered translations might be detectable.

The second part of the main idea of the pa-
per is that a classifier could use a combina-
tion of multiple parsers, as in Mutton et al.
(2007), to indicate problems. In that work,
designed to assess fluency of output of gen-
eration systems, metrics were developed from
various parsers—log probability of most likely
parse, number of tree fragments, and so on—
that correlated with human judgements, and
that could be combined in a classifier to pro-
duce a better evaluation metric. We take such
an approach as a starting point for developing
classifiers to indicate problematic source and
target sides within a reordering MT system.

In Section 2 we review some related work. In
Section 3 we investigate the potential gain in

correctly choosing the better translation can-
didate in our context. In Section 4 we build
a classifier using an approximation to fairly
standard language and alignment model fea-
tures, mostly for use as a comparator, while
Sections 5 and 6 present our models based on
source and target language sides respectively.
Section 7 concludes.

2 Related work

In this section we briefly review some relevant
work on deciding between translation candi-
dates in ‘sentence-level’ MEMT.

Most common is the use of language models,
or voting which may be based on some kind of
alignment, or a combination. Callison-Burch
and Flournoy (2001) use a trigram language
model (LM) on MT outputs to decide the best
candidate, looking at nine systems across four
language directions and domains, and treating
them as black boxes; evaluation is by human
judges and on a fairly small data set. Akiba
et al. (2002) score MT outputs by a combina-
tion of a standard LM and an alignment model
(here IBM 4), and then use statistical tests
to determine rankings of MT system outputs.
Eisele (2005) uses a heuristic voting scheme
based on n-gram overlap of the different out-
puts, and adds an LM to make decisions; the
LM reportedly achieves further improvement.
Rosti et al. (2007) look at sentence-level com-
binations (as well as word- and phrase-level),
using reranking of n-best lists and confidence
scores derived from generalised linear models
with probabilistic features from n-best lists.
Huang and Papineni (2007) propose a hier-
archical model for word, phrase and sentence
level combination; they use LMs and inter-
estingly find that incorporating rudimentary
linguistic information like Part-of-Speech is
helpful. Riezler and Maxwell (2006) combine
transfer-based and statistical MT; they back
off to the SMT translation when the grammar
is inadequate, analysing the grammar to deter-
mine this.

Other work, like ours, uses a classifier. The
goal of Corston-Oliver et al. (2001) is slightly
different, in that it aims to distinguish human
translations from MT output. The classifier
uses syntactic features derived from a manual
error analysis, taking advantage of character-
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istics specific to their MT system and parser.
Nomoto (2003) uses a LM and an IBM-based
alignment model, and then constructs sepa-
rate SVMs for regression based on these, each
with a single feature (i.e. the LM value or the
alignment model value); the SVM is thus not
strictly used as a classifier, but as a regression
tool. Nomoto (2004) extends this by decid-
ing on the best LM through a voting scheme.
Other related work not in an MEMT context
that uses parsers to distinguish better from
worse translations are on syntax-based lan-
guage models (Charniak et al., 2003) and on
syntactically informed reranking (Och et al.,
2003). Both use only single parsers and work
only with candidate translations generated in-
side an SMT system (either all candidates or
n-best).

3 Potential Gain

The type of system we focus on in this pa-
per operates in two stages. First, syntac-
tically based reordering takes place to make
the source sentence more similar in struc-
ture to the syntax of the target language.
This is then passed to a Phrase-based SMT
(PSMT) component (Pharaoh (Koehn, 2004)
in the cited work). For German to English
(Collins et al., 2005) and Dutch to English
(Zwarts and Dras, 2007) this reordering in-
volves moving some long-distance dependen-
cies closer together, such as clause-final par-
ticiples and verb-second auxiliaries. This im-
proves translation quality by compensating for
the weakness in PSMT of long-distance word
reordering: Collins et al. (2005) report a 1.6
Bleu percentage point improvement, Zwarts
and Dras (2007) a 1.0 Bleu percentage point
improvement.

However, individual sentences translated
from the original non-reordered source sen-
tences are sometimes better than their re-
ordered equivalent; examples are given in both
Collins et al. (2005) and Zwarts and Dras
(2007). (We refer to these in the rest of the
paper as non-reordered translations and re-
ordered translations respectively.) For there to
be a point to constructing an MEMT-style sys-
tem where the reordered translation is the de-
fault translation and the non-reordered trans-
lation the fallback, it is necessary for the non-

reordered version to be better a reasonable
proportion of the time, allowing scope for a
Bleu improvement across the system.

To determine if this is the case, we construct
an approximate oracle to choose the better
of each pair of reordered and non-reordered
translation sentences. While Bleu is a rea-
sonable choice for evaluating the quality of the
overall composite set of translation sentences,
it is not suitable for sentence-level decisions.
However, in line with Nomoto (2003)’s moti-
vation for developing m-precision as an alter-
native to Bleu, we make the following obser-
vation.

The Bleu score (ignoring brevity) is an har-
monic mean between the different n-gram com-
ponents:

exp(
∑N

n=1 log pn)

Here pn is the precision for the different n-gram
overlap counts of a candidate sentence with a
gold standard sentence. If we want to glob-
ally optimise this score for an optimal Bleu
document score, we need to pick for each sen-
tence the n-gram counts that contribute most
to the overall score. For example, if we have
to pick between sentence A and sentence B,
where A has 2 unigram counts and 1 bigram
count, and B has 2 unigram counts only, A is
clearly preferred; however, for sentences C and
D, where C has 4 unigram counts and D has 2
unigram counts and 1 bigram count, we do not
know which eventually will lead to the global
maximum Bleu.

However we observe that because it is an
harmonic mean, small values are weighted ex-
ponentially heavier, due to the log operator.
Our heuristic to achieve the highest score is to
have the most extreme possible small values.
Since we know that an n-gram is always less
frequent than an (n− 1)-gram we concentrate
on the higher n-grams first. The decision pro-
cess between sentences is therefore to choose
the candidate with higher n-gram counts for
the maximum value of n, then n − 1-gram
counts, and so on down to unigrams.

Here we will work with the Dutch–English
data used by Zwarts and Dras (2007). We use
the portions of the Europarl corpus (Koehn,
2003) that were used for training in that work;
and Bleu with 1 reference with n-grams up
to length 4. We then use our heuristic to se-
lect between the reordered and non-reordered
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Not-Bleu comparable
Identical 179,327
Undecidable 119,725
Total 299,052

Bleu comparable
Non-Reordered better 128,585
Reordered better 163,172
Total 291,757

Overall Total 590,809

Table 1: Comparing translation quality

Learner Baseline Accuracy
English → Dutch
SVM - Polynomial 56.0% 56.6%
SVM - Polynomial 50.0% 51.2%
Maximum Entropy 50.0% 51.0%

Dutch → English
SVM - Polynomial 50.0% 51.4%

Table 2: Results for internal language decider

translation candidates of Zwarts and Dras
(2007) for the language direction Dutch to En-
glish. Selecting the reordered translation as
default and backing off leads to a 1.1 Bleu
percentage point improvement over the 1.0 al-
ready mentioned. Results for English to Dutch
are similar.

In Table 1 we see the breakdown of the en-
tire corpus we work with. Some sentences are
identical, and some are different but with no
indication by our heuristic as to which of the
two is better. In the cases where we do have
an indication we see a sizeable 44% of the non-
reordered translations are better.

4 Internal Indicators

Before looking at our syntax-related ap-
proaches, it would be useful to have a com-
parison based on the approaches of previous
work. As noted in Section 2, these generally
use language models and alignment models, as
usual to estimate fluency and fidelity of candi-
date translations.

Because our two candidate solutions are
both ultimately produced by Pharaoh (Koehn,
2004), our quick-and-dirty solution can use
Pharaoh’s own final translation probabili-
ties, which capture language and alignment
model information. We build a classifier

Learner Baseline Accuracy
English → Dutch
SVM - Polynomial 50.0% 50.1%
SVM - Radial 50.0% 49.7%
Maximum Entropy 50.0% 50.2%

Table 3: Results for Source language decider

that attempts to distinguish the better of a
pair of reordered and non-reordered transla-
tions. Denoting the non-reordered transla-
tion Tn, and the reordered Tr, we take as fea-
tures log(P (Tn)), log(P (Tr)), and log(P (Tn))-
log(P (Tr)). In addition, because the sentences
do not always have equal length and we do
not want to penalise longer sentences, we also
have three features describing the perplex-
ity: elog(P (Tn))/length(Tn), elog(P (Tr))/length(Tr),
and the difference between these two. Here
length is the function returning the length of
a sentence in tokens. Our training data we
get by partitioning the sentences according to
whether reordering is beneficial as measured by
our heuristic from Section 3. As machine learn-
ers we used SVM-light1 (Joachims, 1998) and
the MaxEnt decider from the Stanford Classi-
fier2 (Manning and Klein, 2003).

Table 2 shows the results the classifier pro-
duces on this data set. While the accuracy
rates for the classifiers are all statistically sig-
nificantly different (at a 95% confidence level)
from the baseline (using a standard test of pro-
portions), the results are not promising.

5 Source Language Indicators

5.1 All Data

The finding that almost half of the reordered
translations degrade the actual translation
quality raises the question of why. Our ini-
tial hypothesis is that because we use more
linguistic tools, this is likely to introduce new
errors. We hypothesise that one of the prob-
lems of reordering is either the parser getting
it wrong, or the rules getting it wrong because
of parse complexity. Our idea for estimating
the wrongness of a parse, or the complexity of
a parse that might lead to incorrect reordering
rule application, is to use ‘side-effect’ informa-

1http://svmlight.joachims.org
2http://nlp.stanford.edu/software/classifier.shtml
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Top Correct Accuracy
10 5 50%
50 23 46%
100 48 48%
200 100 50%
500 240 48%
1000 490 49%

Table 4: Accuracy range for Source Side Ex-
treme Predictions

tion from multiple parsers, in a modification of
an idea taken from Mutton et al. (2007).3 For
example, the parser of Collins (1999), in addi-
tion to the actual parse, gives a probability for
the most likely parse; if this most likely parse is
not at all likely, this may be because the parser
is having difficulty. The Link Parser (Grinberg
et al., 1995) produces dependency-style parses,
and gives an unlinked fragment count where a
complete parse cannot be made; this unlinked
fragment count may be indicative of parse dif-
ficulty. For this part, we therefore look only
at translations with English as source side and
Dutch as target, in order to be able to use mul-
tiple parsers on the source side sentences.

Again, we construct a machine learner to
predict which is the better of the reordered and
non-reordered translations. Our training data
is as in Section 4.

As a feature set we use: character and to-
ken length of the sentence, probability values
as supplied by the Collins parser, and the un-
linked fragment count as supplied by the Link
Parser. We used machine learners as in Sec-
tion 4. Both the SVM and the features are
similar to Mutton et al. (2007).

The results are calculated on 39k examples,
split 30k training, 9k testing. Table 3 shows
the results for different learning techniques
with different settings. The accuracy scores
show selection no different from random: none
of the differences are statistically significant.
With such poor results, we do not bother to
calculate the Bleu effect of using the classifier
as a decider here.

3Similar work is that of Albrecht and Hwa (2007);
however this requires human references unavailable
here.

Learner Baseline Accuracy
Dutch → English
SVM - Polynomial 50.0% 52.3%
Maximum Entropy 50.0% 52.9%

Table 5: Results for target language decider

5.2 Thresholding

Because our MEMT uses the non-reordered
translations as a back-off, even if the classifier
is not accurate over the whole set of sentences,
it could still be useful to identify the poor-
est reordered translations and back off only in
those cases. SVM-light gives prediction scores
as part of its classification; data points that are
firmly within the positive (negative) classifica-
tion spaces are higher positive (negative) val-
ues, while border-line cases have a value very
close to 0. Here we interpret these as an es-
timate of the magnitude of the difference in
quality between reordered and non-reordered
translations. We calculated the accuracy over
the n most extreme predictions for different
values of n. The results in Table 4 show that
the ‘extreme range’ does not have a higher ac-
curacy either.

6 Target Language Indicators

6.1 All Data

We now consider our second approach, trying
to classify syntactic abnormality of the trans-
lations. Inspecting the sentences by hand,
we found that there are some sentences with
markedly poor grammaticality, even by the
standards of MT output. Examples of of-
ten reoccurring problems include verb posi-
tioning (often still sentence-final), positioning
of modals in the sentence, etc. Most are in the
realm of problems the reordering rules actually
try to target.

Here we use the multiple-parser approach in
a way more like that of Mutton et al. (2007),
as an estimate of the fluency of the sentence
with a focus on syntactic characteristics. As in
Section 5, we construct a classifier using mul-
tiple parser outputs to distinguish the better
of a pair of reordered and non-reordered trans-
lations. Similarly, we use as features the most
likely parse probability of the Collins parser
(Collins, 1999) and unlinked fragment count
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Learner Baseline Accuracy
SVM - Complete 50.0% 52.3%
SVM - LargeDiff 50.0% 52.9%
SVM - HugeDiff 50.0% 51.2%

Table 6: Varying Bleu training data

from the Link parser (Grinberg et al., 1995).
We combine these with the sentences lengths
in both character count and token count of the
two candidate sentences.

Our translation direction in this section,
Dutch to English, is the opposite of Section 5,
for the same reason that we want to use multi-
ple parsers on the target side. The reordering
on the Dutch language is done on the results of
the Alpino (Bouma et al., 2000) parser. The
rules for reordering are found in Zwarts and
Dras (2006). Our training data is again as in
Section 4.

Table 5 shows the accuracy, calculated on
a 38k examples, split 30k training, 8k testing.
The accuracy again is close to baseline perfor-
mance, although it is clearly better than our
LM and alignment classifier of Section 4. Here
all the improvements are statistically signifi-
cant on a 95% confidence level. This is sur-
prising as Mutton et al. (2007) on a somewhat
similar task was much more successful. Their
performance is expressed as a correlation with
human judgement rather than accuracy, but
compared to our performance where the im-
provement in accuracy is only a couple of times
the standard error, their approach performed
much better. A possible explanation could be
that the data we work on has much subtler dif-
ferences than their work. We know both trans-
lations are ultimately generated from the same
input, which makes our both candidates very
close.

6.2 Varying Training Data

In particular in (Mutton et al., 2007) the train-
ing data used human sentences as positive ex-
emplars and very simple bigram-generated sen-
tences as negative ones, so that there was a big
difference in quality between them. So per-
haps there are too many borderline cases in
the training data here.

Therefore we retrained the classifier of Sec-
tion 6.1, selecting only those sentence pairs

Top Correct Accuracy
10 9 90%
20 19 95%
50 40 80%
100 79 79%
200 145 72.5%
500 300 66.6%
1000 538 53.8%

Table 7: Accuracy of Prediction in the extreme
range

where the difference was more distinct. For
the LargeDiff set the difference was at least 4
or more unigrams or 3 or more bigrams; for
the HugeDiff set the difference was at least 6
or more unigrams or 5 or more bigrams.

Table 6 shows the results; all accuracy scores
are better than the baseline with 95% confi-
dence. For LargeDiff, there is an improvement
over using the complete data set. Surprisingly,
for the HugeDiff training data the gain is not
only gone, but this decider performs statis-
tically significantly worse than using all the
data.

We therefore conclude that the nature of
mistakes made when using reordering as a
preprocessing step is of a very subtle kind.
Very big mistakes are made as part of trans-
lation process completely independent of re-
ordering, while the improvement due to re-
ordering is only where subtly a small set of
words, compared to the reference, has been
changed for the better. The training size how-
ever is only reduced to three quarters of the
complete training size. It is therefore very un-
likely this sudden drop in performance is due
to data sparsity.

6.3 Thresholding

As in Section 5.2, we look at the cases where
our SVM gives a higher prediction score that
indicates a greater difference in quality of the
non-reordered translation over the reordered
one. Here we use as training data the LargeDiff
set from Section 6.2.

Results are in Table 7, which unlike the
thresholded results of Section 5.2 are quite
promising. There is a clear pattern here, with
very high accuracy scores in the top range,
slowly dropping to around overall performance
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System Bleu

Baseline 0.208
Reordered 0.221
SVM-pick 0.238

Table 8: Bleu results for the different selec-
tions

Features Accuracy
SVM - all 52.3%
SVM - length only 49.8%
SVM - length and Link 50.5%
SVM - length and Collins 50.1%

Table 9: Contribution of Parsers

after 1000 samples. This 1000 mark is out of
3461 negative samples in the test set range,
roughly marking the first third mark before
accuracy scores have reached average perfor-
mance.

Predictions with an extreme score on the
other side of the scale hardly show an improve-
ment. Because this subset of sentences shows
a higher accuracy, it is worthwhile to calculate
Bleu scores over the sentences in the test set
belonging to the top 500 SVM-predictions pos-
itive (reordered translation is better) and the
500 SVM predictions negative (non-reordered
is better). Table 8 shows the improvement of
Bleu scores.4

The first interesting thing which can be seen
in the table is that this subset of sentences
already has higher improvement than is seen
in the whole data set simply by choosing the
reordered only, because the SVM is already
used to pick the most discriminating sentences.
We note that on this subset of sentences our
technique of picking the right sentence actu-
ally scores an improvement equal to the use of
reordering by itself.

6.4 Parser Contribution

In Table 9 we show the effects of individual
parsers, taking as the starting point the SVM
of Table 5. Clearly, combining parsers leads to
a much better decider.

Learner Baseline Accuracy
Dutch → English
SVM Polynomial 50.0% 60.5%

Table 10: Combining internal features with
target side features

Top Reordering Non-reordered
10 9 90% 10 100%
20 18 90% 18 90%
50 33 66% 43 86%
100 61 61% 77 77%
200 114 57% 148 74%
500 289 58% 383 76%
1000 564 56% 748 75%

Table 11: Accuracy of the Combined model

6.5 Combining Models

As the results of classifying translation outputs
using features derived from multiple parsers
are promising, we next look at whether it
is useful to combine this information with
the language and alignment model information
from Section 4. Remarkably, as can be seen in
Table 10, the combination of these two fea-
tures has a much greater effect that the two
features sets individually. Comparing these
scores against 80% accuracy achieved in dis-
tinguish MT output from human output in the
work of Corston-Oliver et al. (2001), this 60%
on a dataset with much more subtle differences
is quite promising.

Furthermore Table 11 shows the accuracy
ranking of the SVM for the combining model
for the extreme SVM-predictions, similar to
Tables 4 and 7. The last column of Table 11
matches previous tables, but now we also show
an improvement in correct prediction for the
reordered cases.

7 Conclusion

In this paper we have looked at a restricted
MEMT scenario, where we choose between
a syntactic-reordering-as-preprocessing trans-
lation candidate, in the style of (Collins et
al., 2005), and a baseline PSMT candidate.
We have shown that using a classifier built
around outputs of multiple parsers, to decide

4Baseline here is the same baseline from Zwarts and
Dras (2007), which is the parser read-off of the tree.
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whether to back off to the baseline candidate,
can be successful in selecting the right candi-
date. There is no indication that classifying
information on the source side—looking to see
whether sentences with difficult or incorrect
parses could lead to bad reorderings and hence
bad translations—is useful; however, applying
such a classifier to the target side—looking to
see whether the output quality could be mea-
sured in a syntactically informed way, look-
ing for syntactic abnormalities—is successful
in detecting particularly bad translation can-
didates, and leads to an improvement in Bleu
score over the reordered translations equal to
the improvement gained by the reordering ap-
proach over the baseline. Multiple parsers
clearly improve the results over single parsers.
The target-side classifier can also be usefully
combined with language and alignment model
features, improving its accuracy substantially;
continuing with such an approach looks like a
promising direction. As a further step, the re-
sults are sufficiently positive to extend to other
sorts of syntactically informed SMT.
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