
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 513–520,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Improved Discriminative Bilingual Word Alignment

Robert C. Moore Wen-tau Yih Andreas Bode
Microsoft Research

Redmond, WA 98052, USA
{bobmoore,scottyhi,abode}@microsoft.com

Abstract

For many years, statistical machine trans-
lation relied on generative models to pro-
vide bilingual word alignments. In 2005,
several independent efforts showed that
discriminative models could be used to
enhance or replace the standard genera-
tive approach. Building on this work,
we demonstrate substantial improvement
in word-alignment accuracy, partly though
improved training methods, but predomi-
nantly through selection of more and bet-
ter features. Our best model produces the
lowest alignment error rate yet reported on
Canadian Hansards bilingual data.

1 Introduction

Until recently, almost all work in statistical ma-
chine translation was based on word alignments
obtained from combinations of generative prob-
abalistic models developed at IBM by Brown et
al. (1993), sometimes augmented by an HMM-
based model or Och and Ney’s “Model 6” (Och
and Ney, 2003). In 2005, however, several in-
dependent efforts (Liu et al., 2005; Fraser and
Marcu, 2005; Ayan et al., 2005; Taskar et al.,
2005; Moore, 2005; Ittycheriah and Roukos,
2005) demonstrated that discriminatively trained
models can equal or surpass the alignment accu-
racy of the standard models, if the usual unla-
beled bilingual training corpus is supplemented
with human-annotated word alignments for only
a small subset of the training data.

The work cited above makes use of various
training procedures and a wide variety of features.
Indeed, whereas it can be difficult to design a fac-
torization of a generative model that incorporates

all the desired information, it is relatively easy to
add arbitrary features to a discriminative model.
We take advantage of this, building on our ex-
isting framework (Moore, 2005), to substantially
reduce the alignment error rate (AER) we previ-
ously reported, given the same training and test
data. Through a careful choice of features, and
modest improvements in training procedures, we
obtain the lowest error rate yet reported for word
alignment of Canadian Hansards data.

2 Overall Approach

As in our previous work (Moore, 2005), we train
two models we call stage 1 and stage 2, both in
the form of a weighted linear combination of fea-
ture values extracted from a pair of sentences and
a proposed word alignment of them. The possible
alignment having the highest overall score is se-
lected for each sentence pair. Thus, for a sentence
pair (e, f) we seek the alignment̂a such that

â = argmaxa

n∑

i=1

λifi(a, e, f)

where thefi are features and theλi are weights.
The models are trained on a large number of bilin-
gual sentence pairs, a small number of which
have hand-created word alignments provided to
the training procedure. A set of hand alignments
of a different subset of the overall training corpus
is used to evaluate the models.

In the stage 1 model, all the features are based
on surface statistics of the training data, plus the
hypothesized alignment. The entire training cor-
pus is then automatically aligned using this model.
The stage 2 model uses features based not only
on the parallel sentences themselves but also on
statistics of the alignments produced by the stage

513



1 model. The stage 1 model is discussed in Sec-
tion 3, and the stage 2 model, in Section 4. After
experimenting with many features and combina-
tions of features, we made the final selection based
on minimizing training set AER.

For alignment search, we use a method nearly
identical to our previous beam search procedure,
which we do not discuss in detail. We made two
minor modifications to handle the possiblity that
more than one alignment may have the same score,
which we previously did not take into account.
First, we modified the beam search so that the
beam size dynamically expands if needed to ac-
comodate all the possible alignments that have the
same score. Second we implemented a structural
tie breaker, so that the same alignment will always
be chosen as the one-best from a set of alignments
having the same score. Neither of these changes
significantly affected the alignment results.

The principal training method is an adaptation
of averaged perceptron learning as described by
Collins (2002). The differences between our cur-
rent and earlier training methods mainly address
the observation that perceptron training is very
sensitive to the order in which data is presented to
the learner. We also investigated the large-margin
training technique described by Tsochantaridis et
al. (2004). The training procedures are described
in Sections 5 and 6.

3 Stage 1 Model

In our previous stage 1 model, we used five fea-
tures. The most informative feature was the sum
of bilingual word-association scores for all linked
word pairs, computed as a log likelihood ratio. We
used two features to measure the degree of non-
monotonicity of alignments, based on traversing
the alignment in the order of the source sentence
tokens, and noting the instances where the corre-
sponding target sentence tokens were not in left-
to-right order. One feature counted the number of
times there was a backwards jump in the order of
the target sentence tokens, and the other summed
the magnitudes of these jumps. In order to model
the trade-off between one-to-one and many-to-one
alignments, we included a feature that counted the
number of alignment links such that one of the
linked words participated in another link. Our fifth
feature was the count of the number of words in
the sentence pair left unaligned.

In addition to these five features, we employed

two hard constraints. One constraint was that the
only alignment patterns allowed were 1–1, 1–2, 1–
3, 2–1, and 3–1. Thus, many-to-many link pat-
terns were disallowed, and a single word could be
linked to at most three other words. The second
constraint was that a possible link was considered
only if it involved the strongest degree of associ-
ation within the sentence pair for at least one of
the words to be linked. If both words had stronger
associations with other words in the sentence pair,
then the link was disallowed.

Our new stage 1 model includes all the features
we used previously, plus the constraint on align-
ment patterns. The constraint involving strongest
association is not used. In addition, our new stage
1 model employs the following features:

association score rank features We define the
rank of an association with respect to a word in a
sentence pair to be the number of association types
(word-type to word-type) for that word that have
higher association scores, such that words of both
types occur in the sentence pair. The contraint on
strength of association we previously used can be
stated as a requirement that no link be considered
unless the corresponding association is of rank 0
for at least one of the words. We replace this hard
constraint with two features based on association
rank. One feature totals the sum of the associa-
tion ranks with respect to both words involved in
each link. The second feature sums the minimum
of association ranks with respect to both words in-
volved in each link. For alignments that obey the
previous hard constraint, the value of this second
feature would always be 0.

jump distance difference feature In our origi-
nal models, the only features relating to word or-
der were those measuring nonmonotonicity. The
likelihoods of various forward jump distances
were not modeled. If alignments are dense
enough, measuring nonmonotonicity gets at this
indirectly; if every word is aligned, it is impossible
to have large forward jumps without correspond-
ingly large backwards jumps, because something
has to link to the words that are jumped over. If
word alignments are sparse, however, due to free
translation, it is possible to have alignments with
very different forward jumps, but the same back-
wards jumps. To differentiate such alignments,
we introduce a feature that sums the differences
between the distance between consecutive aligned

514



source words and the distance between the closest
target words they are aligned to.

many-to-one jump distance features It seems
intuitive that the likelihood of a large forward
jump on either the source or target side of an align-
ment is much less if the jump is between words
that are both linked to the same word of the other
language. This motivates the distinction between
thed1 andd>1 parameters in IBM Models 4 and 5.
We model this by including two features. One fea-
ture sums, for each wordw, the number of words
not linked tow that fall between the first and last
words linked tow. The other features counts only
such words that are linked to some word other than
w. The intuition here is that it is not so bad to have
a function word not linked to anything, between
two words linked to the same word.

exact match feature We have a feature that
sums the number of words linked to identical
words. This is motivated by the fact that proper
names or specialized terms are often the same in
both languages, and we want to take advantage of
this to link such words even when they are too rare
to have a high association score.

lexical features Taskar et al. (2005) gain con-
siderable benefit by including features counting
the links between particular high frequency words.
They use 25 such features, covering all pairs of
the five most frequent non-punctuation words in
each language. We adopt this type of feature but
do so more agressively. We include features for
all bilingual word pairs that have at least two co-
occurrences in the labeled training data. In addi-
tion, we include features counting the number of
unlinked occurrences of each word having at least
two occurrences in the labeled training data.

In training our new stage 1 model, we were con-
cerned that using so many lexical features might
result in overfitting to the training data. To try to
prevent this, we train the stage 1 model by first op-
timizing the weights for all other features, then op-
timizing the weights for the lexical features, with
the other weights held fixed to their optimium val-
ues without lexical features.

4 Stage 2 Model

In our original stage 2 model, we replaced the log-
likelihood-based word association statistic with
the logarithm of the estimated conditional prob-
ability of a cluster of words being linked by the

stage 1 model, given that they co-occur in a
pair of aligned sentences, computed over the full
(500,000 sentence pairs) training data. We esti-
mated these probabilities using a discounted max-
imum likelihood estimate, in which a small fixed
amount was subtracted from each link count:

LPd(w1, . . . , wk) =
links1(w1, . . . , wk)− d

cooc(w1, . . . , wk)

LPd(w1, . . . , wk) represents the estimated condi-
tional link probability for the cluster of words
w1, . . . , wk; links1(w1, . . . , wk) is the number of
times they are linked by the stage 1 model,d is
the discount; andcooc(w1, . . . , wk) is the number
of times they co-occur. We found thatd = 0.4
seemed to minimize training set AER.

An important difference between our stage 1
and stage 2 models is that the stage 1 model con-
siders each word-to-word link separately, but al-
lows multiple links per word, as long as they lead
to an alignment consisting only of one-to-one and
one-to-many links (in either direction). The stage
2 model, however, uses conditional probabilities
for both one-to-one and one-to-many clusters, but
requires all clusters to be disjoint. Our original
stage 2 model incorporated the same addtional fea-
tures as our original stage 1 model, except that the
feature that counts the number of links involved in
non-one-to-one link clusters was omitted.

Our new stage 2 model differs in a number of
ways from the original version. First we replace
the estimated conditional probability of a cluster
of words being linked with the estimated condi-
tional odds of a cluster of words being linked:

LO(w1, . . . , wk) =

links1(w1, . . . , wk) + 1

(cooc(w1, . . . , wk)− links1(w1, . . . , wk)) + 1

LO(w1, . . . , wk) represents the estimated con-
ditional link odds for the cluster of words
w1, . . . , wk. Note that we use “add-one” smooth-
ing in place of a discount.

Additional features in our new stage 2 model in-
clude the unaligned word feature used previously,
plus the following features:

symmetrized nonmonotonicity feature We
symmetrize the previous nonmonontonicity fea-
ture that sums the magnitude of backwards jumps,
by averaging the sum of of backwards jumps in
the target sentence order relative to the source

515



sentence order, with the sum of the backwards
jumps in the source sentence order relative to the
target sentence order. We omit the feature that
counts the number of backwards jumps.

multi-link feature This feature counts the num-
ber of link clusters that are not one-to-one. This
enables us to model whether the link scores for
these clusters are more or less reliable than the link
scores for one-to-one clusters.

empirically parameterized jump distance fea-
ture We take advantage of the stage 1 alignment
to incorporate a feature measuring the jump dis-
tances between alignment links that are more so-
phisticated than simply measuring the difference
in source and target distances, as in our stage 1
model. We measure the (signed) source and target
distances between all pairs of links in the stage 1
alignment of the full training data. From this, we
estimate the odds of each possible target distance
given the corresponding source distance:

JO(dt|ds) =

C(target dist = dt ∧ source dist = ds) + 1

C(target dist 6= dt ∧ source dist = ds) + 1

We similarly estimate the odds of each possi-
ble source distance given the corresponding target
distance. The feature values consist of the sum
of the scaled log odds of the jumps between con-
secutive links in a hypothesized alignment, com-
puted in both source sentence and target sentence
order. This feature is applied only when both the
source and target jump distances are non-zero, so
that it applies only to jumps between clusters, not
to jumps on the “many” side of a many-to-one
cluster. We found it necessary to linearly scale
these feature values in order to get good results (in
terms of training set AER) when using perceptron
training.1 We found empirically that we could get
good results in terms of training set AER by divid-
ing each log odds estimate by the largest absolute
value of any such estimate computed.

5 Perceptron Training

We optimize feature weights using a modification
of averaged perceptron learning as described by
Collins (2002). Given an initial set of feature
weight values, the algorithm iterates through the

1Note that this is purely for effective training, since after
training, one could adjust the feature weights according tothe
scale factor, and use the original feature values.

labeled training data multiple times, comparing,
for each sentence pair, the best alignmentahyp ac-
cording to the current model with the reference
alignmentaref . At each sentence pair, the weight
for each feature is is incremented by a multiple of
the difference between the value of the feature for
the best alignment according to the model and the
value of the feature for the reference alignment:

λi ← λi + η(fi(aref , e, f)− fi(ahyp, e, f))

The updated feature weights are used to compute
ahyp for the next sentence pair. The multiplierη

is called the learning rate. In the averaged percep-
tron, the feature weights for the final model are
the average of the weight values over all the data
rather than simply the values after the final sen-
tence pair of the final iteration.

Differences between our approach and Collins’s
include averaging feature weights over each pass
through the data, rather than over all passes; ran-
domizing the order of the data for each learn-
ing pass; and performing an evaluation pass af-
ter each learning pass, with feature weights fixed
to their average values for the preceding learning
pass, during which training set AER is measured.
This procedure is iterated until a local minimum
on training set AER is found.

We initialize the weight of the anticipated most-
informative feature (word-association scores in
stage 1; conditional link probabilities or odds in
stage 2) to 1.0, with other feature weights intial-
ized to 0. The weight for the most informative fea-
ture is not updated. Allowing all weights to vary
allows many equivalent sets of weights that differ
only by a constant scale factor. Fixing one weight
eliminates a spurious apparent degree of freedom.

Previously, we set the learning rateη differently
in training his stage 1 and stage 2 models. For the
stage 2 model, we used a single learning rate of
0.01. For the stage 1 model, we used a sequence
of learning rates: 1000, 100, 10, and 1.0. At each
transition between learning rates, we re-initialized
the feature weights to the optimum values found
with the previous learning rate.

In our current work, we make a number of mod-
ifications to this procedure. We reset the feature
weights to the best averaged values we have yet
seen at the begining of each learning pass through
the data. Anecdotally, this seems to result in faster
convergence to a local AER minimum. We also
use multiple learning rates for both the stage 1 and

516



stage 2 models, setting the learning rates automat-
ically. The initial learning rate is the maximum ab-
solute value (for one word pair/cluster) of the word
association, link probability, or link odds feature,
divided by the number of labeled training sentence
pairs. Since many of the feature values are simple
counts, this allows a minimal difference of 1 in
the feature value, if repeated in every training ex-
ample, to permit a count feature to have as large
a weighted value as the most informative feature,
after a single pass through the data.

After the learning search terminates for a given
learning rate, we reduce the learning rate by a fac-
tor of 10, and iterate until we judge that we are at
a local minimum for this learning rate. We con-
tinue with progressively smaller learning rates un-
til an entire pass through the data produces fea-
ture weights that differ so little from their values
at the beginning of the pass that the training set
AER does not change.

Two final modifications are inspired by the real-
ization that the results of perceptron training are
very sensitive to the order in which the data is
presented. Since we randomize the order of the
data on every pass, if we make a pass through the
training data, and the training set AER increases, it
may be that we simply encountered an unfortunate
ordering of the data. Therefore, when training set
AER increases, we retry two additional times with
the same initial weights, but different random or-
derings of the data, before giving up and trying a
smaller learning rate. Finally, we repeat the entire
training process multiple times, and average the
feature weights resulting from each of these runs.
We currently use 10 runs of each model. This final
averaging is inspired by the idea of “Bayes-point
machines” (Herbrich and Graepel, 2001).

6 SVM Training

After extensive experiments with perceptron train-
ing, we wanted to see if we could improve the re-
sults obtained with our best stage 2 model by using
a more sophisticated training method. Perceptron
training has been shown to obtain good results for
some problems, but occasionally very poor results
are reported, notably by Taskar et al. (2005) for the
word-alignment problem. We adopted the support
vector machine (SVM) method for structured out-
put spaces of Tsochantaridis et al. (2005), using
Joachims’SV M struct package.

Like standard SVM learning, this method tries

to find the hyperplane that separates the training
examples with the largest margin. Despite a very
large number of possible output labels (e.g., all
possible alignments of a given pair of sentences),
the optimal hyperplane can be efficiently approx-
imated given the desired error rate, using a cut-
ting plane algorithm. In each iteration of the al-
gorithm, it adds the “best” incorrect predictions
given the current model as constraints, and opti-
mizes the weight vector subject only to them.

The main advantage of this algorithm is that
it does not pose special restrictions on the out-
put structure, as long as “decoding” can be done
efficiently. This is crucial to us because sev-
eral features we found very effective in this task
are difficult to incorporate into structured learning
methods that require decomposable features. This
method also allows a variety of loss functions, but
we use only simple 0-1 loss, which in our case
means whether or not the alignment of a sentence
pair is completely correct, since this worked as
well as anything else we tried.

Our SVM method has a number of free param-
eters, which we tried tuning in two different ways.
One way is minimizing training set AER, which
is how we chose the stopping points in perceptron
training. The other is five-fold cross validation.
In this method, we train five times on 80% of the
training data and test on the other 20%, with five
disjoint subsets used for testing. The parameter
values yielding the best averaged AER on the five
test subsets of the training set are used to train the
final model on the entire training set.

7 Evaluation

We used the same training and test data as in our
previous work, a subset of the Canadian Hansards
bilingual corpus supplied for the bilingual word
alignment workshop held at HLT-NAACL 2003
(Mihalcea and Pedersen, 2003). This subset com-
prised 500,000 English-French sentences pairs, in-
cluding 224 manually word-aligned sentence pairs
for labeled training data, and 223 labeled sen-
tences pairs as test data. Automatic sentence
alignment of the training data was provided by Ul-
rich Germann, and the hand alignments of the la-
beled data were created by Franz Och and Her-
mann Ney (Och and Ney, 2003).

For baselines, Table 1 shows the test set re-
sults we previously reported, along with results for
IBM Model 4, trained with Och’s Giza++ software

517



Alignment Recall Precision AER
Prev LLR 0.829 0.848 0.160
CLP1 0.889 0.934 0.086
CLP2 0.898 0.947 0.075
Giza E→ F 0.870 0.890 0.118
Giza F→ E 0.876 0.907 0.106
Giza union 0.929 0.845 0.124
Giza intersection 0.817 0.981 0.097
Giza refined 0.908 0.929 0.079

Table 1: Baseline Results.

package, using the default configuration file (Och
and Ney, 2003).2 “Prev LLR” is our earlier stage
1 model, and CLP1 and CLP2 are two versions
of our earlier stage 2 model. For CLP1, condi-
tional link probabilities were estimated from the
alignments produced by our “Prev LLR” model,
and for CLP2, they were obtained from a yet
earlier, heuristic alignment model. Results for
IBM Model 4 are reported for models trained in
both directions, English-to-French and French-to-
English, and for the union, intersection, and what
Och and Ney (2003) call the “refined” combina-
tion of the those two alignments.

Results for our new stage 1 model are presented
in Table 2. The first line is for the model described
in Section 3, optimizing non-lexical features be-
fore lexical features. The second line gives results
for optimizing all features simultaneously. The
next line omits lexical features entirely. The last
line is for our original stage 1 model, but trained
using our improved perceptron training method.

As we can see, our best stage 1 model reduces
the error rate of previous stage 1 model by almost
half. Comparing the first two lines shows that two-
phase training of non-lexical and lexical features
produces a 0.7% reduction in test set error. Al-
though the purpose of the two-phase training was
to mitigate overfitting to the training data, we also
found training set AER was reduced (7.3% vs.
8.8%). Taken all together, the results show a 7.9%
total reduction in error rate: 4.0% from new non-
lexical features, 3.3% from lexical features with
two-phase training, and 0.6% from other improve-
ments in perceptron training.

Table 3 presents results for perceptron training
of our new stage 2 model. The first line is for the
model as described in Section 4. Since the use of
log odds is somewhat unusual, in the second line

2Thanks to Chris Quirk for providing Giza++ alignments.

Alignment Recall Precision AER
Two-phase train 0.907 0.928 0.081
One-phase train 0.911 0.912 0.088
No lex feats 0.889 0.885 0.114
Prev LLR (new train) 0.834 0.855 0.154

Table 2: Stage 1 Model Results.

Alignment Recall Precision AER
Log odds 0.935 0.964 0.049
Log probs 0.934 0.962 0.051
CLP1 (new A & T) 0.925 0.952 0.060
CLP1 (new A) 0.917 0.955 0.063

Table 3: Stage 2 Model Results.

we show results for a similiar model, but using log
probabilities instead of log odds for both the link
model and the jump model. This result is 0.2%
worse than the log-odds-based model, but the dif-
ference is small enough to warrant testing its sig-
nificance. Comparing the errors on each test sen-
tence pair with a 2-tailed pairedt test, the results
were suggestive, but not significant (p = 0.28)

The third line of Table 3 shows results for our
earlier CLP1 model with probabilities estimated
from our new stage 1 model alignments (“new
A”), using our recent modifications to perceptron
training (“new T”). These results are significantly
worse than either of the two preceding models
(p < 0.0008). The fourth line is for the same
model and stage 1 alignments, but with our earlier
perceptron training method. While the results are
0.3% worse than with our new training method,
the difference is not significant (p = 0.62).

Table 4 shows the results of SVM training of
the model that was best under perceptron training,
tuning free parameters either by minimizing error
on the entire training set or by 5-fold cross val-
idation on the training set. The cross-validation
method produced slightly lower test-set AER, but
both results rounded to 4.7%. While these results
are somewhat better than with perceptron training,
the differences are not significant (p ≥ 0.47).

8 Comparisons to Other Work

At the time we carried out the experiments de-
scribed above, our sub-5% AER results were the
best we were aware of for word alignment of
Canadian Hansards bilingual data, although direct
comparisons are problematic due to differences in

518



Alignment Recall Precision AER
Min train err 0.941 0.962 0.047
5× CV 0.942 0.962 0.047

Table 4: SVM Training Results.

total training data, labeled training data, and test
data. The best previously reported result was by
Och and Ney (2003), who obtained 5.2% AER
for a combination including all the IBM mod-
els except Model 2, plus the HMM model and
their Model 6, together with a bilingual dictionary,
for the refined alignment combination, trained on
three times as much data as we used.

Cherry and Lin’s (2003) method obtained an
AER of 5.7% as reported by Mihalcea and Peder-
sen (2003), the previous lowest reported error rate
for a method that makes no use of the IBM mod-
els. Cherry and Lin’s method is similar to ours
in using explicit estimates of the probability of a
link given the co-occurence of the linked words;
but it is generative rather than discriminative, it re-
quires a parser for the English side of the corpus,
and it does not model many-to-one links. Taskar
et al. (2005) reported 5.4% AER for a discrimina-
tive model that includes predictions from the inter-
section of IBM Model 4 alignments as a feature.
Their best result without using information from
the IBM models was 10.7% AER.

After completing the experiments described in
Section 7, we became aware further developments
in the line of research reported by Taskar et al.
(Lacoste-Julien et al., 2006). By modifying their
previous approach to allow many-to-one align-
ments and first-order interactions between align-
ments, Lacoste-Julien et al. have improved their
best AER without using information from the
more complex IBM models to 6.2%. Their best
result, however, is obtained from a model that in-
cludes both a feature recording intersected IBM
Model 4 predictions, plus a feature whose val-
ues are the alignment probabilities obtained from a
pair of HMM alignment models trained in both di-
rections in such a way that they agree on the align-
ment probabilities (Liang et al., 2006). With this
model, they obtained a much lower 3.8% AER.

Lacoste-Julien very graciously provided both
the IBM Model 4 predictions and the probabili-
ties estimated by the bidirectional HMM models
that they had used to compute these additional fea-
ture values. We then added features based on this

information to see how much we could improve
our best model. We also eliminated one other dif-
ference between our results and those of Lacoste-
Julien et al., by training on all 1.1 million English-
French sentence pairs from the 2003 word align-
ment workshop, rather than the 500,000 sentence
pairs we had been using.

Since all our other feature values derived from
probabilities are expressed as log odds, we also
converted the HMM probabilities estimated by
Liang et al. to log odds. To make this well de-
fined in all cases, we thresholded high probabili-
ties (including 1.0) at 0.999999, and low probabil-
ities (including 0.0) at 0.1 (which we found pro-
duced lower training set error than using a very
small non-zero probability, although we have not
searched systematically for the optimal value).

In our latest experiments, we first established
that simply increasing the unlabled training data
to 1.1 million sentence pairs made very little dif-
ference, reducing the test-set AER of our stage 2
model under perceptron training only from 4.9%
to 4.8%. Combining our stage 2 model features
with the HMM log odds feature using SVM train-
ing with 5-fold cross validation yielded a substan-
tial reduction in test-set AER to 3.9% (96.9% pre-
cision, 95.1% recall). We found it somewhat dif-
ficult to improve these results further by including
IBM Model 4 intersection feature. We finally ob-
tained our best results, however, for both training-
set and test-set AER, by holding the stage 2 model
feature weights at the values obtained by SVM
training with the HMM log odds feature, and op-
timizing the HMM log odds feature weight and
IBM Model 4 intersection feature weight with per-
ceptron training.3 This produced a test-set AER of
3.7% (96.9% precision, 95.5% recall).

9 Conclusions

For Canadian Hansards data, the test-set AER of
4.7% for our stage 2 model is one of the lowest
yet reported for an aligner that makes no use of
the expensive IBM models, and our test-set AER
of 3.7% for the stage 2 model in combination with
the HMM log odds and Model 4 intersection fea-
tures is the lowest yet reported for any aligner.4

Perhaps if any general conclusion is to be drawn
from our results, it is that in creating a discrim-

3At this writing we have not yet had time to try this with
SVM training.

4However, the difference between our result and the 3.8%
of Lacoste-Julien et al. is almost certainly not significant.

519



inative word alignment model, the model struc-
ture and features matter the most, with the dis-
criminative training method of secondary impor-
tance. While we obtained a small improvements
by varying the training method, few of the differ-
ences were statistically significant. Having better
features was much more important.

References

Necip Fazil Ayan, Bonnie J. Dorr, and
Christof Monz. 2005. NeurAlign: Combining
Word Alignments Using Neural Networks. In
Proceedings of the Human Language Technol-
ogy Conference and Conference on Empirical
Methods in Natural Language Processing,
pp. 65–72, Vancouver, British Columbia.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation:
Parameter Estimation.Computational Linguis-
tics, 19(2):263–311.

Colin Cherry and Dekang Lin. 2003. A Proba-
bility Model to Improve Word Alignment. In
Proceedings of the 41st Annual Meeting of the
ACL, pp. 88–95, Sapporo, Japan.

Michael Collins. 2002. Discriminative Training
Methods for Hidden Markov Models: Theory
and Experiments with Perceptron Algorithms.
In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing,
pp. 1–8, Philadelphia, Pennsylvania.

Alexander Fraser and Daniel Marcu. 2005. ISI’s
Participation in the Romanian-English Align-
ment Task. InProceedings of the ACL Work-
shop on Building and Using Parallel Texts,
pp. 91–94, Ann Arbor, Michigan.

Ralf Herbrich and Thore Graepel. 2001. Large
Scale Bayes Point Machines Advances. In
Neural Information Processing Systems 13,
pp. 528–534.

Abraham Ittycheriah and Salim Roukos. 2005. A
Maximum Entropy Word Aligner for Arabic-
English Machine Translation. InProceedings
of the Human Language Technology Conference
and Conference on Empirical Methods in Nat-
ural Language Processing, pp. 89–96, Vancou-
ver, British Columbia.

Simon Lacoste-Julien, Ben Taskar, Dan Klein, and
Michael Jordan. 2006. Word Alignment via
Quadratic Assignment. InProceedings of the
Human Language Technology Conference of the
North American Chapter of the Association for
Computational Linguistics, pp. 112–119, New
York City.

Percy Liang, Ben Taskar, and Dan Klein. 2006.
Alignment by Agreement. InProceedings of the
Human Language Technology Conference of the
North American Chapter of the Association for
Computational Linguistics, pp. 104–111, New
York City.

Yang Liu, Qun Liu, and Shouxun Lin. 2005. Log-
linear Models for Word Alignment. InProceed-
ings of the 43rd Annual Meeting of the ACL,
pp. 459–466, Ann Arbor, Michigan.

Rada Mihalcea and Ted Pedersen. 2003. An Eval-
uation Exercise for Word Alignment. InPro-
ceedings of the HLT-NAACL 2003 Workshop,
Building and Using Parallel Texts: Data Driven
Machine Translation and Beyond, pp. 1–6, Ed-
monton, Alberta.

Robert C. Moore. 2005. A Discriminative Frame-
work for Bilingual Word Alignment. InPro-
ceedings of the Human Language Technology
Conference and Conference on Empirical Meth-
ods in Natural Language Processing, pp. 81–
88, Vancouver, British Columbia.

Franz Joseph Och and Hermann Ney. 2003. A
Systematic Comparison of Various Statistical
Alignment Models.Computational Linguistics,
29(1):19–51.

Ben Taskar, Simon Lacoste-Julien, and Dan Klein.
2005. A Discriminative Matching Approach
to Word Alignment. In Proceedings of the
Human Language Technology Conference and
Conference on Empirical Methods in Natural
Language Processing, pp. 73–80, Vancouver,
British Columbia.

Ioannis Tsochantaridis, Thomas Hofmann,
Thorsten Joachims, and Yasemin Altun. 2005.
Large Margin Methods for Structured and
Interdependent Output Variables. Journal
of Machine Learning Research (JMLR),
pp. 1453–1484.

520


