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Abstract

We propose a novel bilingual topical ad-
mixture (BiTAM) formalism for word
alignment in statistical machine transla-
tion. Under this formalism, the paral-
lel sentence-pairs within a document-pair
are assumed to constitute a mixture of
hidden topics; each word-pair follows a
topic-specific bilingual translation model.
Three BiTAM models are proposed to cap-
ture topic sharing at different levels of lin-
guistic granularity (i.e., at the sentence or
word levels). These models enable word-
alignment process to leverage topical con-
tents of document-pairs. Efficient vari-
ational approximation algorithms are de-
signed for inference and parameter esti-
mation. With the inferred latent topics,
BiTAM models facilitate coherent pairing
of bilingual linguistic entities that share
common topical aspects. Our preliminary
experiments show that the proposed mod-
els improve word alignment accuracy, and
lead to better translation quality.

1 Introduction

Parallel data has been treated as sets of unre-
lated sentence-pairs in state-of-the-art statistical
machine translation (SMT) models. Most current
approaches emphasize within-sentence dependen-
cies such as the distortion in (Brown et al., 1993),
the dependency of alignment in HMM (Vogel et
al., 1996), and syntax mappings in (Yamada and
Knight, 2001). Beyond the sentence-level, corpus-
level word-correlation and contextual-level topical
information may help to disambiguate translation
candidates and word-alignment choices. For ex-
ample, the most frequent source words (e.g., func-
tional words) are likely to be translated into words
which are also frequent on the target side; words of
the same topic generally bear correlations and sim-
ilar translations. Extended contextual information
is especially useful when translation models are
vague due to their reliance solely on word-pair co-
occurrence statistics. For example, the wordshot

in “ It was a nice shot.” should be translated dif-
ferently depending on the context of the sentence:
a goal in the context of sports, or aphotowithin
the context of sightseeing. Nida (1964) stated
that sentence-pairs are tied by the logic-flow in a
document-pair; in other words, the document-pair
should be word-aligned as one entity instead of be-
ing uncorrelated instances. In this paper, we pro-
pose a probabilistic admixture model to capture
latent topics underlying the context of document-
pairs. With such topical information, the trans-
lation models are expected to be sharper and the
word-alignment process less ambiguous.

Previous works on topical translation models
concern mainly explicit logical representations of
semantics for machine translation. This include
knowledge-based (Nyberg and Mitamura, 1992)
and interlingua-based (Dorr and Habash, 2002)
approaches. These approaches can be expen-
sive, and they do not emphasize stochastic trans-
lation aspects. Recent investigations along this
line includes using word-disambiguation schemes
(Carpua and Wu, 2005) and non-overlapping bilin-
gual word-clusters (Wang et al., 1996; Och, 1999;
Zhao et al., 2005) with particular translation mod-
els, which showed various degrees of success. We
propose a new statistical formalism: Bilingual
Topic AdMixture model, or BiTAM, to facilitate
topic-based word alignment in SMT.

Variants of admixture models have appeared in
population genetics (Pritchard et al., 2000) and
text modeling (Blei et al., 2003). Statistically, an
object is said to be derived from anadmixtureif it
consists of a bag of elements, each sampled inde-
pendently or coupled in some way, from a mixture
model. In a typical SMT setting, each document-
pair corresponds to an object; depending on a
chosen modeling granularity, all sentence-pairs or
word-pairs in the document-pair correspond to the
elements constituting the object. Correspondingly,
a latent topic is sampled for each pair from a prior
topic distribution to induce topic-specific transla-
tions; and the resulting sentence-pairs and word-
pairs are marginally dependent. Generatively, this
admixture formalismenables word translations to
be instantiated by topic-specific bilingual models
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and/or monolingual models, depending on their
contexts. In this paper we investigate three in-
stances of the BiTAM model, They are data-driven
and do not need hand-crafted knowledge engineer-
ing.

The remainder of the paper is as follows: in sec-
tion 2, we introduce notations and baselines; in
section 3, we propose the topic admixture models;
in section 4, we present the learning and inference
algorithms; and in section 5 we show experiments
of our models. We conclude with a brief discus-
sion in section 6.

2 Notations and Baseline

In statistical machine translation, one typically
uses parallel data to identify entities such as
“word-pair”, “sentence-pair”, and “document-
pair”. Formally, we define the following terms1:

• A word-pair(fj , ei) is the basic unit for word
alignment, wherefj is a French word andei

is an English word;j and i are theposition
indicesin the corresponding French sentence
f and English sentencee.

• A sentence-pair(f , e) contains thesource
sentencef of a sentence lengthof J ; a target
sentencee of lengthI. The two sentencesf
ande are translations of each other.

• A document-pair(F,E) refers to two doc-
uments which are translations of each other.
Assuming sentences are one-to-one corre-
spondent, a document-pair has a sequence of
N parallel sentence-pairs{(fn, en)}, where
(fn, en) is then′th parallel sentence-pair.

• A parallel corpusC is a collection ofM par-
allel document-pairs:{(Fd,Ed)}.

2.1 Baseline: IBM Model-1

The translation process can be viewed as opera-
tions of word substitutions, permutations, and in-
sertions/deletions (Brown et al., 1993) in noisy-
channel modeling scheme at parallel sentence-pair
level. The translation lexiconp(f |e) is the key
component in this generative process. An efficient
way to learnp(f |e) is IBM-1:

p(f |e) =

J∏
j=1

I∑
i=1

p(fj |ei) · p(ei|e). (1)

1We follow the notations in (Brown et al., 1993) for
English-French, i.e.,e ↔ f , although our models are tested,
in this paper, for English-Chinese. We use theend-user ter-
minologyfor sourceandtarget languages.

IBM-1 has global optimum; it is efficient and eas-
ily scalable to large training data; it is one of the
most informative components for re-ranking trans-
lations (Och et al., 2004). We start from IBM-1 as
our baseline model, while higher-order alignment
models can be embedded similarly within the pro-
posed framework.

3 Bilingual Topic AdMixture Model

Now we describe the BiTAM formalism that
captures the latent topical structure and gener-
alizes word alignments and translations beyond
sentence-level via topic sharing across sentence-
pairs:

E∗=arg max
{E}

p(F|E)p(E), (2)

where p(F|E) is a document-level translation
model, generating the documentF as one entity.
In a BiTAM model, a document-pair(F,E) is
treated as an admixture of topics, which is induced
by random draws of a topic, from a pool of topics,
for each sentence-pair. A unique normalized and
real-valued vectorθ, referred to as atopic-weight
vector, which captures contributions of different
topics, are instantiated for each document-pair, so
that the sentence-pairs with their alignments are
generated from topics mixed according to these
common proportions. Marginally, a sentence-
pair is word-aligned according to a unique bilin-
gual model governed by the hidden topical assign-
ments. Therefore, the sentence-level translations
are coupled, rather than being independent as as-
sumed in the IBM models and their extensions.

Because of this coupling of sentence-pairs (via
topic sharing across sentence-pairs according to
a common topic-weight vector), BiTAM is likely
to improve the coherency of translations by treat-
ing the document as a whole entity, instead of un-
correlated segments that have to be independently
aligned and then assembled. There are at least
two levels at which the hidden topics can be sam-
pled for a document-pair, namely: thesentence-
pair and theword-pair levels. We propose three
variants of the BiTAM model to capture the latent
topics of bilingual documents at different levels.

3.1 BiTAM-1: The Frameworks
In the first BiTAM model, we assume that topics
are sampled at the sentence-level. Each document-
pair is represented as a random mixture of la-
tent topics. Each topic, topic-k, is presented by a
topic-specific word-translation table:Bk, which is
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Figure 1:BiTAM models for Bilingual document- and sentence-pairs. A node in the graph represents a random variable, and
a hexagon denotes a parameter. Un-shaded nodes are hidden variables. All the plates represent replicates. The outmost plate
(M -plate) representsM bilingual document-pairs, while the innerN -plate represents theN repeated choice of topics for each
sentence-pairs in the document; the innerJ-plate representsJ word-pairs within each sentence-pair. (a) BiTAM-1 samples
one topic (denoted byz) per sentence-pair; (b) BiTAM-2 utilizes the sentence-level topics for both the translation model (i.e.,
p(f |e, z)) and the monolingual word distribution (i.e.,p(e|z)); (c) BiTAM-3 samples one topic per word-pair.

a translation lexicon:Bi,j,k=p(f=fj |e=ei, z=k),
where z is an indicator variable to denote the
choice of a topic. Given a specifictopic-weight
vectorθd for a document-pair, each sentence-pair
draws its conditionally independent topics from a
mixture of topics. This generative process, for a
document-pair(Fd,Ed), is summarized as below:

1. Samplesentence-numberN from a Poisson(γ).
2. Sampletopic-weight vectorθd from a Dirichlet(α).
3. For each sentence-pair(fn, en) in thed′th doc-pair ,

(a) Samplesentence-lengthJn from Poisson(δ);
(b) Sample a topiczdn from a Multinomial(θd);
(c) Sampleej from a monolingual modelp(ej);
(d) Sample each word alignment linkaj from a uni-

form modelp(aj) (or an HMM);
(e) Sample eachfj according to a topic-specific

translation lexiconp(fj |e, aj , zn,B).

We assume that, in our model, there areK pos-
sible topics that a document-pair can bear. For
each document-pair, aK-dimensional Dirichlet
random variableθd, referred to as the topic-weight
vector of the document, can take values in the
(K−1)-simplex following a probability density:

p(θ|α) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)
θα1−1
1 · · · θαK−1

K , (3)

where the hyperparameterα is a K-dimension
vector with each componentαk>0, and Γ(x)
is the Gamma function. The alignment is
represented by aJ-dimension vectora =
{a1, a2, · · · , aJ}; for each French wordfj at the
position j, an position variableaj maps it to an
English wordeaj at the positionaj in English sen-
tence. The word level translation lexicon probabil-
ities are topic-specific, and they are parameterized
by the matrixB = {Bk}.

For simplicity, in our current models we omit
the modelings of thesentence-numberN and the
sentence-lengthJn, and focus only on the bilin-
gual translation model. Figure 1 (a) shows the

graphical model representation for the BiTAM
generative scheme discussed so far. Note that, the
sentence-pairs are now connected by the nodeθd.
Therefore, marginally, the sentence-pairs arenot
independent of each other as in traditional SMT
models, instead they areconditionally indepen-
dent given the topic-weight vectorθd. Specifi-
cally, BiTAM-1 assumes that each sentence-pair
has one single topic. Thus, the word-pairs within
this sentence-pair areconditionally independentof
each other given the hidden topic indexz of the
sentence-pair.

The last two sub-steps (3.d and 3.e) in the
BiTam sampling scheme define a translation
model, in which an alignment linkaj is proposed
and an observation offj is generated according
to the proposed distributions. We simplifyalign-
ment modelof a, as in IBM-1, by assuming that
aj is sampled uniformly at random. Given the pa-
rametersα, B, and the English partE, the joint
conditional distribution of the topic-weight vector
θ, the topic indicatorsz, the alignment vectorsA,
and the documentF can be written as:

p(F,A, θ, z|E, α,B)=

p(θ |α)

N∏
n=1

p(zn|θ)p(fn,an|en, α, Bzn),
(4)

where N is the number of the sentence-pair.
Marginalizing out θ and z, we can obtain the
marginal conditional probability of generatingF
from E for each document-pair:

p(F,A|E, α, Bzn) =
∫

p(θ|α)
( N∏

n=1

∑
zn

p(zn|θ)p(fn,an|en, Bzn)
)
dθ,

(5)

where p(fn,an|en, Bzn) is a topic-specific
sentence-level translation model. For simplicity,
we assume that the French wordsfj ’s are condi-
tionally independent of each other; the alignment
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variablesaj ’s are independent of other variables
and are uniformly distributeda priori. Therefore,
the distribution for each sentence-pair is:

p(fn,an|en, Bzn) = p(fn|en,an, Bzn)p(an|en, Bzn)

=
1

IJn
n

Jn∏
j=1

p(fnj |eanj , Bzn). (6)

Thus, the conditional likelihood for the entire
parallel corpus is given by taking the product
of the marginal probabilities of each individual
document-pair in Eqn. 5.

3.2 BiTAM-2: Monolingual Admixture

In general, the monolingual model for English
can also be a rich topic-mixture. This is real-
ized by using the same topic-weight vectorθd and
the same topic indicatorzdn sampled according
to θd, as described in§3.1, to introduce not only
topic-dependent translation lexicon, but also topic-
dependent monolingual model of the source lan-
guage, English in this case, for generating each
sentence-pair (Figure 1 (b)). Nowe is generated
from a topic-based language modelβ, instead of a
uniform distribution in BiTAM-1. We refer to this
model as BiTAM-2.

Unlike BiTAM-1, where the information ob-
served inei is indirectly passed toz via the node
of fj and the hidden variableaj , in BiTAM-2, the
topics of corresponding English and French sen-
tences are also strictly aligned so that the informa-
tion observed inei can be directly passed toz, in
the hope of finding more accurate topics. The top-
ics are inferred more directly from the observed
bilingual data, and as a result, improve alignment.

3.3 BiTAM-3: Word-level Admixture

It is straightforward to extend the sentence-level
BiTAM-1 to a word-level admixture model, by
sampling topic indicatorzn,j for each word-pair
(fj , eaj ) in the n′th sentence-pair, rather than
once for all (words) in the sentence (Figure 1 (c)).
This gives rise to our BiTAM-3. The conditional
likelihood functions can be obtained by extending
the formulas in§3.1 to move the variablezn,j in-
side the same loop over each of thefn,j .

3.4 Incorporation of Word “Null”

Similar to IBM models, “Null” word is used for
the source words which have no translation coun-
terparts in the target language. For example, Chi-
nese words “de” (�) , “ba” (r) and “bei”
(�) generally do not have translations in English.

“Null” is attached to every target sentence to align
the source words which miss their translations.
Specifically, the latent Dirichlet allocation (LDA)
in (Blei et al., 2003) can be viewed as a special
case of the BiTAM-3, in which the target sentence
contains only one word: “Null”, and the alignment
link a is no longer a hidden variable.

4 Learning and Inference

Due to the hybrid nature of the BiTAM models,
exact posterior inference of the hidden variables
A, z andθ is intractable. A variational inference
is used to approximate the true posteriors of these
hidden variables. The inference scheme is pre-
sented for BiTAM-1; the algorithms for BiTAM-2
and BiTAM-3 are straight forward extensions and
are omitted.
4.1 Variational Approximation

To approximate:p(θ, z,A|E,F, α,B), the joint
posterior, we use the fully factorized distribution
over the same set of hidden variables:

q(θ,z,A) ∝ q(θ|γ, α)·
N∏

n=1

q(zn|φn)

Jn∏
j=1

q(anj , fnj |ϕnj , en,B),
(7)

where the Dirichlet parameterγ, the multino-
mial parameters(φ1, · · · , φn), and the parameters
(ϕn1, · · · , ϕnJn) are known as variational param-
eters, and can be optimized with respect to the
Kullback-Leibler divergence fromq(·) to the orig-
inal p(·) via an iterative fixed-point algorithm. It
can be shown that the fixed-point equations for the
variational parameters in BiTAM-1 are as follows:

γk = αk +

Nd∑
n=1

φdnk (8)

φdnk ∝ exp
(
Ψ(γk)−Ψ(

K∑

k′=1

γk′)
)
·

exp
( Jdn∑

j=1

Idn∑
i=1

ϕdnji log Bfj ,ei,k

)
(9)

ϕdnji ∝ exp
( K∑

k=1

φdnk log Bfj ,ei,k

)
, (10)

whereΨ(·) is a digamma function. Note that in
the above formulasφdnk is the variational param-
eter underlying the topic indicatorzdn of then-th
sentence-pair in documentd, and it can be used to
predict the topic distribution of that sentence-pair.

Following a variational EM scheme (Beal and
Ghahramani, 2002), we estimate the model pa-
rametersα andB in an unsupervised fashion. Es-
sentially, Eqs. (8-10) above constitute the E-step,
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where the posterior estimations of the latent vari-
ables are obtained. In the M-step, we updateα
andB so that they improve a lower bound of the
log-likelihood defined bellow:

L(γ, φ, ϕ; α,B)=Eq[log p(θ|α)]+Eq[log p(z|θ)]
+Eq[log p(a)]+Eq[log p(f |z,a,B)]−Eq[log q(θ)]

−Eq[log q(z)]−Eq[log q(a)]. (11)

The close-form iterative updating formulaB is:

Bf,e,k ∝
M∑

d

Nd∑
n=1

Jdn∑
j=1

Idn∑
i=1

δ(f, fj)δ(e, ei)φdnkϕdnji (12)

Forα, close-form update is not available, and we
resort to gradient accent as in (Sjölander et al.,
1996) with re-starts to ensure each updatedαk>0.

4.2 Data Sparseness and Smoothing

The translation lexiconsBf,e,k have a potential
size of V 2K, assuming the vocabulary sizes for
both languages areV . The data sparsity (i.e.,
lack of large volume of document-pairs) poses a
more serious problem in estimatingBf,e,k than
the monolingual case, for instance, in (Blei et
al., 2003). To reduce the data sparsity problem,
we introduce two remedies in our models. First:
Laplace smoothing. In this approach, the matrix
setB, whose columns correspond to parameters
of conditional multinomial distributions, is treated
as a collection of random vectors all under a sym-
metric Dirichlet prior; the posterior expectation of
these multinomial parameter vectors can be esti-
mated using Bayesian theory. Second:interpola-
tion smoothing. Empirically, we can employ a lin-
ear interpolation with IBM-1 to avoid overfitting:

B∗
f,e,k = λBf,e,k+(1−λ)p(f |e). (13)

As in Eqn. 1,p(f |e) is learned via IBM-1;λ is
estimated via EM on held out data.

4.3 Retrieving Word Alignments

Two word-alignment retrieval schemes are de-
signed for BiTAMs: theuni-direction alignment
(UDA) and thebi-directionalignment (BDA). Both
use the posterior mean of the alignment indica-
tors adnji, captured by what we call theposte-
rior alignment matrixϕ ≡ {ϕdnji}. UDA uses
a French wordfdnj (at thej′th position ofn′th
sentence in thed′th document) to queryϕ to get
the best aligned English word (by taking the max-
imum point in a row ofϕ):

adnj = arg max
i∈[1,Idn]

ϕdnji. (14)

BDA selects iteratively, for eachf , the best
aligned e, such that the word-pair(f, e) is the
maximum of both row and column, or its neigh-
bors have more aligned pairs than the other
combpeting candidates.

A close check of{ϕdnji} in Eqn. 10 re-
veals that it is essentially an exponential model:
weighted log probabilities from individual topic-
specific translation lexicons; or it can be viewed
as weighted geometric mean of the individual lex-
icon’s strength.

5 Experiments

We evaluate BiTAM models on theword align-
ment accuracyand thetranslation quality. For
word alignment accuracy,F-measureis reported,
i.e., the harmonic mean of precision and recall
against a gold-standard reference set; for transla-
tion quality, Bleu (Papineni et al., 2002) and its
variation of NIST scores are reported.

Table 1: Training and Test Data Statistics

Train #Doc. #Sent. #Tokens
English Chinese

Treebank 316 4172 133K 105K
FBIS.BJ 6,111 105K 4.18M 3.54M
Sinorama 2,373 103K 3.81M 3.60M
XinHua 19,140 115K 3.85M 3.93M

Test 95 627 25,500 19,726

We have two training data settings with dif-
ferent sizes (see Table 1). The small one
consists of 316 document-pairs from Tree-
bank (LDC2002E17). For the large training
data setting, we collected additional document-
pairs from FBIS (LDC2003E14, Beijing part),
Sinorama (LDC2002E58), and Xinhua News
(LDC2002E18, document boundaries are kept in
our sentence-aligner (Zhao and Vogel, 2002)).
There are 27,940 document-pairs, containing
327K sentence-pairs or 12 million (12M) English
tokens and 11M Chinese tokens. To evaluate word
alignment, we hand-labeled 627 sentence-pairs
from 95 document-pairs sampled from TIDES’01
dryrun data. It contains 14,769 alignment-links.
To evaluate translation quality, TIDES’02 Eval.
test is used as development set, and TIDES’03
Eval. test is used as the unseen test data.

5.1 Model Settings

First, we explore the effects of Null word and
smoothing strategies. Empirically, we find that
adding “Null” word is always beneficial to all
models regardless of number of topics selected.
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Topics-Lexicons Topic-1 Topic-2 Topic-3 Cooc. IBM-1 HMM IBM-4

p(ChaoXian (�m)|Korean) 0.0612 0.2138 0.2254 38 0.2198 0.2157 0.2104
p(HanGuo (̧ I)|Korean) 0.8379 0.6116 0.0243 46 0.5619 0.4723 0.4993

Table 2:Topic-specific translation lexicons are learned by a 3-topic BiTAM-1. Thethird lexicon (Topic-3) prefers to translate
the wordKoreaninto ChaoXian(�m:North Korean). The co-occurrence (Cooc), IBM-1&4 and HMM only prefer to translate
into HanGuo(¸I:South Korean). The two candidate translations may both fade out in the learned translation lexicons.

Unigram-rank 1 2 3 4 5 6 7 8 9 10

Topic A. foreign china u.s. development trade enterprises technology countries year economic
Topic B. chongqing companies takeovers company city billion more economic reached yuan
Topic C. sports disabled team people cause water national games handicapped members

Table 3: Three most distinctive topics are displayed. The English words for each topic are ranked according top(e|z)
estimated from the topic-specific English sentences weighted by{φdnk}. 33 functional words were removed to highlight the
main content of each topic. Topic A is about Us-China economic relationships; Topic B relates to Chinese companies’ merging;
Topic C shows the sports of handicapped people.

The interpolation smoothing in§4.2 is effec-
tive, and it gives slightly better performance than
Laplace smoothing over different number of topics
for BiTAM-1. However, the interpolation lever-
ages the competing baseline lexicon, and this can
blur the evaluations of BiTAM’s contributions.
Laplace smoothing is chosen to emphasize more
on BiTAM’s strength. Without any smoothing, F-
measure drops very quickly over two topics. In all
our following experiments, we use both Null word
and Laplace smoothing for the BiTAM models.
We train, for comparison, IBM-1&4 and HMM
models with 8 iterations of IBM-1, 7 for HMM
and 3 for IBM-4 (18h743) with Null word and a
maximum fertility of 3 for Chinese-English.

Choosing the number of topics is a model se-
lection problem. We performed a ten-fold cross-
validation, and a setting of three-topic is cho-
sen for both the small and the large training data
sets. The overall computation complexity of the
BiTAM is linear to the number of hidden topics.

5.2 Variational Inference
Under a non-symmetric Dirichlet prior, hyperpa-
rameterα is initialized randomly;B (K transla-
tion lexicons) are initialized uniformly as did in
IBM-1. Better initialization ofB can help to avoid
local optimal as shown in§ 5.5.

With the learnedB andα fixed, the variational
parameters to be computed in Eqn. (8-10) are ini-
tialized randomly; the fixed-point iterative updates
stop when the change of the likelihood is smaller
than10−5. The convergent variational parameters,
corresponding to the highest likelihood from 20
random restarts, are used for retrieving the word
alignment for unseen document-pairs. To estimate
B, β (for BiTAM-2) and α, at most eight varia-
tional EM iterations are run on the training data.
Figure 2 shows absolute2∼3% better F-measure
over iterations of variational EM using two and
three topics of BiTAM-1 comparing with IBM-1.
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Figure 2: performances over eight Variational EM itera-
tions of BiTAM-1 using both the “Null” word and the laplace
smoothing; IBM-1 is shown over eight EM iterations for
comparison.

5.3 Topic-Specific Translation Lexicons

The topic-specific lexiconsBk are smaller in size
than IBM-1, and, typically, they contain topic
trends. For example, in our training data, North
Koreanis usually related topoliticsand translated
into “ChaoXian” (�m); South Korean occurs
more often witheconomicsand is translated as
“HanGuo”(̧ I). BiTAMs discriminate the two
by considering the topics of the context. Table 2
shows the lexicon entries for “Korean” learned
by a 3-topic BiTAM-1. The values are relatively
sharper, and each clearly favors one of the candi-
dates. The co-occurrence count, however, only fa-
vors “HanGuo”, and this can easily dominate the
decisions of IBM and HMM models due to their
ignorance of the topical context. Monolingual
topics learned by BiTAMs are, roughly speak-
ing, fuzzy especially when the number of topics is
small. With proper filtering, we find that BiTAMs
do capture some topics as illustrated in Table 3.

5.4 Evaluating Word Alignments
We evaluate word alignment accuracies in vari-
ous settings. Notably, BiTAM allows to test align-
ments in two directions: English-to-Chinese (EC)
and Chinese-to-English (CE). Additionalheuris-
tics are applied to further improve the accura-
cies. Inter takes the intersection of the two direc-
tions and generates high-precision alignments; the
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SETTING IBM-1 HMM IBM-4 BITAM-1 BITAM-2 BITAM-3
UDA BDA UDA BDA UDA BDA

CE (%) 36.27 43.00 45.00 40.13 48.26 40.26 48.63 40.47 49.02
EC (%) 32.94 44.26 45.96 36.52 46.61 37.35 46.30 37.54 46.62
REFINED (%) 41.71 44.40 48.42 45.06 49.02 47.20 47.61 47.46 48.18
UNION (%) 32.18 42.94 43.75 35.87 48.66 36.07 48.99 36.26 49.35
INTER (%) 39.86 44.87 48.65 43.65 43.85 44.91 45.18 45.13 45.48
NIST 6.458 6.822 6.926 6.937 6.954 6.904 6.976 6.967 6.962
BLEU 15.70 17.70 18.25 17.93 18.14 18.13 18.05 18.11 18.25

Table 4:Word Alignment Accuracy (F-measure) and Machine Translation Quality for BiTAM Models, comparing with IBM
Models, and HMMs with a training scheme of18h743 on the Treebank data listed in Table 1. For each column, the highlighted
alignment (the best one under that model setting) is picked up to further evaluate the translation quality.

Union of two directions gives high-recall;Refined
grows the intersection with the neighboring word-
pairs seen in the union, and yields high-precision
and high-recall alignments.

As shown in Table 4, the baseline IBM-1 gives
its best performance of 36.27% in the CE direc-
tion; the UDA alignments from BiTAM-1∼3 give
40.13%, 40.26%, and 40.47%, respectively, which
are significantly better than IBM-1. A close look
at the three BiTAMs does not yield significant dif-
ference. BiTAM-3 is slightly better in most set-
tings; BiTAM-1 is slightly worse than the other
two, because the topics sampled at the sentence
level are not very concentrated. The BDA align-
ments of BiTAM-1∼3 yield 48.26%, 48.63% and
49.02%, which are even better than HMM and
IBM-4 — their best performances are at 44.26%
and 45.96%, respectively. This is because BDA
partially utilizes similar heuristics on the approx-
imated posterior matrix{ϕdnji} instead of di-
rect operations on alignments of two directions
in the heuristics ofRefined. Practically, we also
apply BDA together with heuristics for IBM-1,
HMM and IBM-4, and the best achieved perfor-
mances are at 40.56%, 46.52% and 49.18%, re-
spectively. Overall, BiTAM models achieve per-
formances close to or higher than HMM, using
only a very simple IBM-1 style alignment model.

Similar improvements over IBM models and
HMM are preserved after applying the three kinds
of heuristics in the above. As expected, since BDA
already encodes some heuristics, it is only slightly
improved with theUnion heuristic; UDA, similar
to the viterbi style alignment in IBM and HMM, is
improved better by theRefinedheuristic.

We also test BiTAM-3 on large training data,
and similar improvements are observed over those
of the baseline models (see Table. 5).

5.5 Boosting BiTAM Models
The translation lexicons ofBf,e,k are initialized
uniformly in our previous experiments. Better ini-

tializations can potentially lead to better perfor-
mances because it can help to avoid the unde-
sirable local optima in variational EM iterations.
We use the lexicons from IBM Model-4 to initial-
ize Bf,e,k to boost the BiTAM models. This is
one way of applying the proposed BiTAM mod-
els into current state-of-the-art SMT systems for
further improvement. The boosted alignments are
denoted asBUDA and BBDA in Table. 5, cor-
responding to the uni-direction and bi-direction
alignments, respectively. We see an improvement
in alignment quality.

5.6 Evaluating Translations
To further evaluate our BiTAM models, word
alignments are used in a phrase-based decoder
for evaluating translation qualities. Similar to
the Pharoah package (Koehn, 2004), we extract
phrase-pairs directly from word alignment to-
gether with coherence constraints (Fox, 2002) to
remove noisy ones. We use TIDES Eval’02 CE
test set as development data to tune the decoder
parameters; the Eval’03 data (919 sentences) is the
unseen data. A trigram language model is built
using 180 million English words. Across all the
reported comparative settings, the key difference
is the bilingual ngram-identity of the phrase-pair,
which is collected directly from the underlying
word alignment.

Shown in Table 4 are results for the small-
data track; the large-data track results are in Ta-
ble 5. For the small-data track, the baseline Bleu
scores for IBM-1, HMM and IBM-4 are15.70,
17.70 and 18.25, respectively. The UDA align-
ment of BiTAM-1 gives an improvement over
the baseline IBM-1 from15.70 to 17.93, and
it is close to HMM’s performance, even though
BiTAM doesn’t exploit any sequential structures
of words. The proposed BiTAM-2 and BiTAM-
3 are slightly better than BiTAM-1. Similar im-
provements are observed for the large-data track
(see Table 5). Note that, the boosted BiTAM-3 us-
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SETTING IBM-1 HMM IBM-4 BITAM-3
UDA BDA BUDA BBDA

CE (%) 46.73 49.12 54.17 50.55 56.27 55.80 57.02
EC (%) 44.33 54.56 55.08 51.59 55.18 54.76 58.76
REFINED (%) 54.64 56.39 58.47 56.45 54.57 58.26 56.23
UNION (%) 42.47 51.59 52.67 50.23 57.81 56.19 58.66
INTER (%) 52.24 54.69 57.74 52.44 52.71 54.70 55.35
NIST 7.59 7.77 7.83 7.64 7.68 8.10 8.23
BLEU 19.19 21.99 23.18 21.20 21.43 22.97 24.07

Table 5: Evaluating Word Alignment Accuracies and Machine Translation Qualities for BiTAM Models, IBM Models,
HMMs, and boosted BiTAMs using all the training data listed in Table. 1. Other experimental conditions are similar to Table. 4.

ing IBM-4 as the seed lexicon, outperform theRe-
fined IBM-4: from 23.18 to 24.07 on Bleu score,
and from 7.83 to 8.23 on NIST. This result sug-
gests a straightforward way to leverage BiTAMs
to improve statistical machine translations.

6 Conclusion

In this paper, we proposed novel formalism for
statistical word alignment based on bilingual ad-
mixture (BiTAM) models. Three BiTAM mod-
els were proposed and evaluated on word align-
ment and translation qualities against state-of-
the-art translation models. The proposed mod-
els significantly improve the alignment accuracy
and lead to better translation qualities. Incorpo-
ration of within-sentence dependencies such as
the alignment-jumps and distortions, and a better
treatment of the source monolingual model worth
further investigations.

References
M. J. Beal and Zoubin Ghahramani. 2002. The variational

bayesian em algorithm for incomplete data: with appli-
cation to scoring graphical model structures. InBayesian
Statistics 7.

David Blei, Andrew NG, and M.I. Jordan. 2003. Latent
dirichlet allocation. InJournal of Machine Learning
Research, volume 3, pages 1107–1135.

P.F. Brown, Stephen A. Della Pietra, Vincent. J. Della Pietra,
and Robert L. Mercer. 1993. The mathematics of
statistical machine translation: Parameter estimation. In
Computational Linguistics, volume 19(2), pages 263–331.

Marine Carpua and Dekai Wu. 2005. Evaluating the word
sense disambiguation performance of statistical machine
translation. InSecond International Joint Conference on
Natural Language Processing (IJCNLP-2005).

Bonnie Dorr and Nizar Habash. 2002. Interlingua approxi-
mation: A generation-heavy approach. InIn Proceedings
of Workshop on Interlingua Reliability, Fifth Conference
of the Association for Machine Translation in the Ameri-
cas, AMTA-2002, Tiburon, CA.

Heidi J. Fox. 2002. Phrasal cohesion and statistical machine
translation. InProc. of the Conference on Empirical
Methods in Natural Language Processing, pages 304–
311, Philadelphia, PA, July 6-7.

Philipp Koehn. 2004. Pharaoh: a beam search decoder for
phrase-based smt. InProceedings of the Conference of

the Association for Machine Translation in the Americans
(AMTA).

Eugene A. Nida. 1964.Toward a Science of Translating:
With Special Reference to Principles Involved in Bible
Translating. Leiden, Netherlands: E.J. Brill.

Eric Nyberg and Truko Mitamura. 1992. The kant system:
Fast, accurate, high-quality translation in practical do-
mains. InProceedings of COLING-92.

Franz J. Och, Daniel Gildea, Sanjeev Khudanpur, Anoop
Sarkar, Kenji Yamada, Alex Fraser, Shankar Kumar, Libin
Shen, David Smith, Katherine Eng, Viren Jain, Zhen Jin,
and Dragomir Radev. 2004. A smorgasbord of features
for statistical machine translation. InHLT/NAACL:
Human Language Technology Conference, volume 1:29,
pages 161–168.

Franz J. Och. 1999. An efficient method for determining
bilingal word classes. InNinth Conf. of the Europ.
Chapter of the Association for Computational Linguistics
(EACL’99), pages 71–76.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. InProc. of the 40th Annual Conf. of
the Association for Computational Linguistics (ACL 02),
pages 311–318, Philadelphia, PA, July.

J. Pritchard, M. Stephens, and P. Donnell. 2000. Inference
of population structure using multilocus genotype data.
In Genetics, volume 155, pages 945–959.

K. Sjölander, K. Karplus, M. Brown, R. Hughey, A. Krogh,
I.S. Mian, and D. Haussler. 1996. Dirichlet mixtures: A
method for improving detection of weak but significant
protein sequence homology.Computer Applications in
the Biosciences, 12.

S. Vogel, Hermann Ney, and C. Tillmann. 1996. Hmm
based word alignment in statistical machine translation.
In Proc. The 16th Int. Conf. on Computational Lingustics,
(Coling’96), pages 836–841, Copenhagen, Denmark.

Yeyi Wang, John Lafferty, and Alex Waibel. 1996. Word
clustering with parallel spoken language corpora. Inpro-
ceedings of the 4th International Conference on Spoken
Language Processing (ICSLP’96), pages 2364–2367.

K. Yamada and Kevin. Knight. 2001. Syntax-based statisti-
cal translation model. InProceedings of the Conference
of the Association for Computational Linguistics (ACL-
2001).

Bing Zhao and Stephan Vogel. 2002. Adaptive parallel
sentences mining from web bilingual news collection. In
The 2002 IEEE International Conference on Data Mining.

Bing Zhao, Eric P. Xing, and Alex Waibel. 2005. Bilingual
word spectral clustering for statistical machine translation.
In Proceedings of the ACL Workshop on Building and
Using Parallel Texts, pages 25–32, Ann Arbor, Michigan,
June. Association for Computational Linguistics.

976


