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Abstract
In this paper, we first demonstrate the in-
terest of the Loopy Belief Propagation al-
gorithm to train and use a simple align-
ment model where the expected marginal
values needed for an efficient EM-training
are not easily computable. We then im-
prove this model with a distortion model
based on structure conservation.

1 Introduction and Related Work

Automatic word alignment of parallel corpora is
an important step for data-oriented Machine trans-
lation (whether Statistical or Example-Based) as
well as for automatic lexicon acquisition. Many
algorithms have been proposed in the last twenty
years to tackle this problem. One of the most suc-
cessfull alignment procedure so far seems to be
the so-called “IBM model 4” described in (Brown
et al., 1993). It involves a very complex distor-
tion model (here and in subsequent usages “dis-
tortion” will be a generic term for the reordering
of the words occurring in the translation process)
with many parameters that make it very complex
to train.

By contrast, the first alignment model we are
going to propose is fairly simple. But this sim-
plicity will allow us to try and experiment differ-
ent ideas for making a better use of the sentence
structures in the alignment process. This model
(and even more so its subsequents variations), al-
though simple, do not have a computationally ef-
ficient procedure for an exact EM-based training.
However, we will give some theoretical and empir-
ical evidences that Loopy Belief Propagation can
give us a good approximation procedure.

Although we do not have the space to review the
many alignment systems that have already been
proposed, we will shortly refer to works that share
some similarities with our approach. In particu-
lar, the first alignment model we will present has

already been described in (Melamed, 2000). We
differ however in the training and decoding pro-
cedure we propose. The problem of making use
of syntactic trees for alignment (and translation),
which is the object of our second alignment model
has already received some attention, notably by
(Yamada and Knight, 2001) and (Gildea, 2003) .

2 Factor Graphs and Belief Propagation

In this paper, we will make several use of Fac-
tor Graphs. A Factor Graph is a graphical
model, much like a Bayesian Network. The three
most common types of graphical models (Factor
Graphs, Bayesian Network and Markov Network)
share the same purpose: intuitively, they allow to
represent the dependencies among random vari-
ables; mathematically, they represent a factoriza-
tion of the joint probability of these variables.

Formally, a factor graph is a bipartite graph with
2 kinds of nodes. On one side, the Variable Nodes
(abbreviated as V-Node from here on), and on the
other side, the Factor Nodes (abbreviated as F-
Node). If a Factor Graph represents a given joint
distribution, there will be one V-Node for every
random variable in this joint distribution. Each F-
Node is associated with a function of the V-Nodes
to which it is connected (more precisely, a func-
tion of the values of the random variables associ-
ated with the V-Nodes, but for brevity, we will fre-
quently mix the notions of V-Node, Random Vari-
ables and their values). The joint distribution is
then the product of these functions (and of a nor-
malizing constant). Therefore, each F-Node actu-
ally represent a factor in the factorization of the
joint distribution.

As a short example, let us consider a prob-
lem classically used to introduce Bayesian Net-
work. We want to model the joint probability of
the Weather(W) being sunny or rainy, the Sprin-
kle(S) being on or off, and the Lawn(L) being
wet or dry. Figure 1 show the dependencies of
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Figure 1: A classical example

the variables represented with a Factor Graph and
with a Bayesian Network. Mathematically, the
Bayesian Network imply that the joint probabil-
ity has the following factorization: P (W,L, S) =
P (W ) · P (S|W ) · P (L|W,S). The Factor Graph
imply there exist two functions ϕ1 and ϕ2 as well
as a normalization constant C such that we have
the factorization: P (W,L, S) = C · ϕ2(W,S) ·
ϕ1(L,W,S). If we set C = 1, ϕ2(W,S) =
P (W ) · P (S|W ) and ϕ1(L,W,S) = P (L|W,S),
the Factor Graph express exactly the same factor-
ization as the Bayesian Network.

A reason to use Graphical Models is that we can
use with them an algorithm called Belief Propa-
gation (abbreviated as BP from here on) (Pearl,
1988). The BP algorithm comes in two flavors:
sum-product BP and max-product BP. Each one
respectively solve two problems that arise often
(and are often intractable) in the use of a proba-
bilistic model: “what are the marginal probabili-
ties of each individual variable?” and “what is the
set of values with the highest probability?”. More
precisely, the BP algorithm will give the correct
answer to these questions if the graph represent-
ing the distribution is a forest. If it is not the case,
the BP algorithm is not even guaranteed to con-
verge. It has been shown, however, that the BP al-
gorithm do converge in many practical cases, and
that the results it produces are often surprisingly
good approximations (see, for example, (Murphy
et al., 1999) or (Weiss and Freeman, 2001) ).

(Yedidia et al., 2003) gives a very good presen-
tation of the sum-product BP algorithm, as well as
some theoretical justifications for its success. We
will just give an outline of the algorithm. The BP
algorithm is a message-passing algorithm. Mes-
sages are sent during several iterations until con-
vergence. At each iteration, each V-Node sends
to its neighboring F-Nodes a message represent-
ing an estimation of its own marginal values. The

message sent by the V-Node Vi to the F-Node Fj

estimating the marginal probability of Vi to take
the value x is :

mV i→Fj(x) =
∏

Fk∈N(V i)\Fj

mFk→V i(x)

(N(Vi) represent the set of the neighbours of Vi)
Also, every F-Node send a message to its neigh-

boring V-Nodes that represent its estimates of the
marginal values of the V-Node:

mFj→V i(x) =
∑

v1,...,vn

ϕj(v1, .., x, .., vn)·

·
∏

V k∈N(Fj)\V i

mV k→Fj(vk)

At any point, the belief of a V-Node V i is given
by

bi(x) =
∏

Fk∈N(V i)

mFk→V i(x)

, bi being normalized so that
∑

x bi(x) = 1. The
belief bi(x) is expected to converge to the marginal
probability (or an approximation of it) of Vi taking
the value x .

An interesting point to note is that each message
can be “scaled” (that is, multiplied by a constant)
by any factor at any point without changing the re-
sult of the algorithm. This is very useful both for
preventing overflow and underflow during compu-
tation, and also sometimes for simplifying the al-
gorithm (we will use this in section 3.2). Also,
damping schemes such as the ones proposed in
(Murphy et al., 1999) or (Heskes, 2003) are use-
ful for decreasing the cases of non-convergence.

As for the max-product BP, it is best explained
as “sum-product BP where each sum is replaced
by a maximization”.

3 The monolink model

We are now going to present a simple alignment
model that will serve both to illustrate the effi-
ciency of the BP algorithm and as basis for fur-
ther improvement. As previously mentioned, this
model is mostly identical to one already proposed
in (Melamed, 2000). The training and decoding
procedures we propose are however different.

3.1 Description
Following the usual convention, we will designate
the two sides of a sentence pair as French and En-
glish. A sentence pair will be noted (e, f). ei rep-
resents the word at position i in e.
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In this first simple model, we will pay little at-
tention to the structure of the sentence pair we
want to align. Actually, each sentence will be re-
duced to a bag of words.

Intuitively, the two sides of a sentence pair ex-
press the same set of meanings. What we want to
do in the alignment process is find the parts of the
sentences that originate from the same meaning.
We will suppose here that each meaning generate
at most one word on each side, and we will name
concept the pair of words generated by a mean-
ing. It is possible for a meaning to be expressed
in only one side of the sentence pair. In that case,
we will have a “one-sided” concept consisting of
only one word. In this view, a sentence pair ap-
pears “superficially” as a pair of bag of words, but
the bag of words are themselves the visible part of
an underlying bag of concepts.

We propose a simple generative model to de-
scribe the generation of a sentence pair (or rather,
its underlying bag of concepts):

• First, an integer n, representing the number
of concepts of the sentence is drawn from a
distribution Psize

• Then, n concepts are drawn independently
from a distribution Pconcept

The probability of a bag of concepts C is then:

P (C) = Psize(|C|)
∏

(w1,w2)∈C

Pconcept((w1, w2))

We can alternatively represent a bag of concepts
as a pair of sentence (e, f), plus an alignment a.
a is a set of links, a link being represented as a
pair of positions in each side of the sentence pair
(the special position -1 indicating the empty side
of a one-sided concept). This alternative represen-
tation has the advantage of better separating what
is observed (the sentence pair) and what is hidden
(the alignment). It is not a strictly equivalent rep-
resentation (it also contains information about the
word positions) but this will not be relevant here.
The joint distribution of e,f and a is then:

P (e, f, a) = Psize(|a|)
∏

(i,j)∈a

Pconcept(ei, fj)

(1)
This model only take into consideration one-

to-one alignments. Therefore, from now on, we
will call this model “monolink”. Considering

only one-to-one alignments can be seen as a lim-
itation compared to others models that can of-
ten produce at least one-to-many alignments, but
on the good side, this allow the monolink model
to be nicely symmetric. Additionally, as already
argued in (Melamed, 2000), there are ways to
determine the boundaries of some multi-words
phrases (Melamed, 2002), allowing to treat sev-
eral words as a single token. Alternatively, a pro-
cedure similar to the one described in (Cromieres,
2006), where substrings instead of single words
are aligned (thus considering every segmentation
possible) could be used.

With the monolink model, we want to do two
things: first, we want to find out good values for
the distributions Psize and Pconcept. Then we want
to be able to find the most likely alignment a given
the sentence pair (e, f).

We will consider Psize to be a uniform distribu-
tion over the integers up to a sufficiently big value
(since it is not possible to have a uniform distri-
bution over an infinite discrete set). We will not
need to determine the exact value of Psize . The
assumption that it is uniform is actually enough to
“remove” it of the computations that follow.

In order to determine the Pconcept distribution,
we can use an EM procedure. It is easy to
show that, at every iteration, the EM procedure
will require to set Pconcept(we, wf ) proportional
to the sum of the expected counts of the concept
(we, wf ) over the training corpus. This, in turn,
mean we have to compute the conditional expec-
tation:

E((i, j) ∈ a|e, f) =
∑

a|(i,j)∈a

P (a|e, f)

for every sentence pair (e, f). This computation
require a sum over all the possible alignments,
whose numbers grow exponentially with the size
of the sentences. As noted in (Melamed, 2000),
it does not seem possible to compute this expecta-
tion efficiently with dynamic programming tricks
like the one used in the IBM models 1 and 2 (as a
passing remark, these “tricks” can actually be seen
as instances of the BP algorithm).

We propose to solve this problem by applying
the BP algorithm to a Factor Graph representing
the conditional distribution P (a|e, f). Given a
sentence pair (e, f), we build this graph as fol-
lows.

We create a V-node V e
i for every position i in

the English sentence. This V-Node can take for
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Figure 2: A Factor Graph for the monolink model
in the case of a 2-words English sentence and a 3-
words french sentence (F rec

ij nodes are noted Fri-j)

value any position in the french sentence, or the
special position −1 (meaning this position is not
aligned, corresponding to a one-sided concept).
We create symmetrically a V-node V f

j for every
position in the french sentence.

We have to enforce a “reciprocal love” condi-
tion: if a V-Node at position i choose a position j
on the opposite side, the opposite V-Node at po-
sition j must choose the position i. This is done
by adding a F-Node F rec

i,j between every opposite

node V e
i and V f

j , associated with the function:

ϕrec
i,j (k, l) =


1 if (i = l and j = k)

or (i 6= l and j 6= k)
0 else

We then connect a “translation probability” F-
Node F tp.e

i to every V-Node V e
i associated with

the function:

ϕtp.e
i (j) =

{√
Pconcept(ei, fj) if j 6= −1

Pconcept(ei, ∅) if j = −1

We add symmetrically on the French side F-Nodes
F tp.f

j to the V-Nodes V f
j .

It should be fairly easy to see that such a Factor
Graph represents P (a|e, f). See figure 2 for an
example.

Using the sum-product BP, the beliefs of ev-
ery V-Node V e

i to take the value j and of every
node V f

j to take the value i should converge to the
marginal expectation E((i, j) ∈ a|e, f) (or rather,
a hopefully good approximation of it).

We can also use max-product BP on the same
graph to decode the most likely alignment. In the
monolink case, decoding is actually an instance of
the “assignment problem”, for which efficient al-
gorithms are known. However this will not be the

case for the more complex model of the next sec-
tion. Actually, (Bayati et al., 2005) has recently
proved that max-product BP always give the opti-
mal solution to the assignment problem.

3.2 Efficient BP iterations

Applying naively the BP algorithm would lead us
to a complexity of O(|e|2 · |f |2) per BP iteration.
While this is not intractable, it could turn out to be
a bit slow. Fortunately, we found it is possible to
reduce this complexity to O(|e| · |f |) by making
two useful observations.

Let us note me
ij the resulting message from V e

i

to V f
j (that is the message sent by F rec

i,j to V f
j af-

ter it received its own message from V e
i ). me

ij(x)
has the same value for every x different from i:
me

ij(x 6= i) =
∑

k 6=j
be
i (k)

mf
ji(k)

. We can divide all the

messages me
ij by me

ij(x 6= i), so that me
ij(x) = 1

except if x = i; and the same can be done for the
messages coming from the French side mf

ij . It fol-
lows that me

ij(x 6= i) =
∑

k 6=j be
i (k) = 1 − be

i (j)
if the be

i are kept normalized. Therefore, at ev-
ery step, we only need to compute me

ij(j), not
me

ij(x 6= j).
Hence the following algorithm (me

ij(j) will be
here abbreviated to me

ij since it is the only value
of the message we need to compute). We describe
the process for computing the English-side mes-
sages and beliefs (me

ij and be
i ) , but the process

must also be done symmetrically for the French-
side messages and beliefs (mf

ij and bf
i ) at every

iteration.
0- Initialize all messages and beliefs with:

m
e(0)
ij = 1 and b

e(0)
i (j) = ϕtp.e

i (j)
Until convergence (or for a set number of itera-

tion):
1- Compute the messages me

ij : m
e(t+1)
ij =

b
e(t)
i (j)/((1 − b

e(t)
i (j)) · mf(t)

ji )

2- Compute the beliefs be
i (j):bi(j)e(t+1) =

ϕtp.e
i (j) · mf(t+1)

ji

3- And then normalize the bi(j)e(t+1) so that∑
j bi(j)e(t+1) = 1.
A similar algorithm can be found for the max-

product BP.

3.3 Experimental Results

We evaluated the monolink algorithm with two
languages pairs: French-English and Japanese-
English.
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For the English-French Pair, we used 200,000
sentence pairs extracted from the Hansard cor-
pus (Germann, 2001). Evaluation was done with
the scripts and gold standard provided during
the workshop HLT-NAACL 20031 (Mihalcea and
Pedersen, 2003). Null links are not considered for
the evaluation.

For the English-Japanese evaluation, we used
100,000 sentence pairs extracted from a corpus of
English/Japanese news. We used 1000 sentence
pairs extracted from pre-aligned data(Utiyama and
Isahara, 2003) as a gold standard. We segmented
all the Japanese data with the automatic segmenter
Juman (Kurohashi and Nagao, 1994). There is
a caveat to this evaluation, though. The reason
is that the segmentation and alignment scheme
used in our gold standard is not very fine-grained:
mostly, big chunks of the Japanese sentence cover-
ing several words are aligned to big chunks of the
English sentence. For the evaluation, we had to
consider that when two chunks are aligned, there
is a link between every pair of words belonging to
each chunk. A consequence is that our gold stan-
dard will contain a lot more links than it should,
some of them not relevants. This means that the
recall will be largely underestimated and the pre-
cision will be overestimated.

For the BP/EM training, we used 10 BP iter-
ations for each sentences, and 5 global EM iter-
ations. By using a damping scheme for the BP
algorithm, we never observed a problem of non-
convergence (such problems do commonly ap-
pears without damping). With our python/C im-
plementation, training time approximated 1 hour.
But with a better implementation, it should be pos-
sible to reduce this time to something comparable
to the model 1 training time with Giza++.

For the decoding, although the max-product BP
should be the algorithm of choice, we found we
could obtain slightly better results (by between 1
and 2 AER points) by using the sum-product BP,
choosing links with high beliefs, and cutting-off
links with very small beliefs (the cut-off was cho-
sen roughly by manually looking at a few aligned
sentences not used in the evaluation, so as not to
create too much bias).

Due to space constraints, all of the results of this
section and the next one are summarized in two
tables (tables 1 and 2) at the end of this paper.

In order to compare the efficiency of the BP

1http://www.cs.unt.edu/ rada/wpt/

training procedure to a more simple one, we reim-
plemented the Competitive Link Algorithm (ab-
breviated as CLA from here on) that is used in
(Melamed, 2000) to train an identical model. This
algorithm starts with some relatively good esti-
mates found by computing correlation score (we
used the G-test score) between words based on
their number of co-occurrences. A greedy Viterbi
training is then applied to improve this initial
guess. In contrast, our BP/EM training do not need
to compute correlation scores and start the training
with uniform parameters.

We only evaluated the CLA on the
French/English pair. The first iteration of
CLA did improve alignment quality, but subse-
quent ones decreased it. The reported score for
CLA is therefore the one obtained during the best
iteration. The BP/EM training demonstrate a clear
superiority over the CLA here, since it produce
almost 7 points of AER improvement over CLA.

In order to have a comparison with a well-
known and state-of-the-art system, we also used
the GIZA++ program (Och and Ney, 1999) to
align the same data. We tried alignments in both
direction and provide the results for the direction
that gave the best results. The settings used were
the ones used by the training scripts of the Moses
system2, which we assumed to be fairly optimal.
We tried alignment with the default Moses settings
(5 iterations of model 1, 5 of Hmm, 3 of model 3,
3 of model 4) and also tried with increased number
of iterations for each model (up to 10 per model).

We are aware that the score we obtained for
model 4 in English-French is slightly worse than
what is usually reported for a similar size of train-
ing data. At the time of this paper, we did not
have the time to investigate if it is a problem of
non-optimal settings in GIZA++, or if the train-
ing data we used was “difficult to learn from” (it
is common to extract sentences of moderate length
for the training data but we didn’t, and some sen-
tences of our training corpus do have more than
200 words; also, we did not use any kind of pre-
processing). In any case, Giza++ is compared here
with an algorithm trained on the same data and
with no possibilities for fine-tuning; therefore the
comparison should be fair.

The comparison show that performance-wise,
the monolink algorithm is between the model 2
and the model 3 for English/French. Considering

2http://www.statmt.org/moses/
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our model has the same number of parameters as
the model 1 (namely, the word translation prob-
abilities, or concept probabilities in our model),
these are pretty good results. Overall, the mono-
link model tend to give better precision and worse
recall than the Giza++ models, which was to be
expected given the different type of alignments
produced (1-to-1 and 1-to-many).

For English/Japanese, monolink is at just about
the level of model 1, but model 1,2 and 3 have very
close performances for this language pair (inter-
estingly, this is different from the English/French
pair). Incidentally, these performances are very
poor. Recall was expected to be low, due to the
previously mentioned problem with the gold stan-
dard. But precision was expected to be better. It
could be the algorithms are confused by the very
fine-grained segmentation produced by Juman.

4 Adding distortion through structure

4.1 Description

While the simple monolink model gives interest-
ing results, it is somehow limited in that it do not
use any model of distortion. We will now try to
add a distortion model; however, rather than di-
rectly modeling the movement of the positions of
the words, as is the case in the IBM models, we
will try to design a distortion model based on the
structures of the sentences. In particular, we are
interested in using the trees produced by syntactic
parsers.

The intuition we want to use is that, much like
there is a kind of “lexical conservation” in the
translation process, meaning that a word on one
side has usually an equivalent on the other side,
there should also be a kind of “structure conserva-
tion”, with most structures on one side having an
equivalent on the other.

Before going further, we should precise the idea
of “structure” we are going to use. As we said, our
prime (but not only) interest will be to make use of
the syntactic trees of the sentences to be aligned.
However these kind of trees come in very different
shapes depending on the language and the type of
parser used (dependency, constituents,. . . ). This is
why we decided the only information we would
keep from a syntactic tree is the set of its sub-
nodes. More specifically, for every sub-node, we
will only consider the set of positions it cover in
the underlying sentence. We will call such a set
of positions a P-set. This simplification will allow

Figure 3: A small syntactic tree and the 3 P-Sets it
generates

us to process dependency trees, constituents trees
and other structures in a uniformized way. Fig-
ure 3 gives an example of a constituents tree and
the P-sets it generates.

According to our intuition about the “conserva-
tion of structure”, some (not all) of the P-sets on
one side should have an equivalent on the other
side. We can model this in a way similar to how
we represented equivalence between words with
concepts. We postulate that, in addition to a bag of
concepts, sentence pairs are underlaid by a set of
P-concepts. P-concepts being actually pairs of P-
sets (a P-set for each side of the sentence pair). We
also allow the existence of one-sided P-concepts.

In the previous model, sentence pairs where
just bag of words underlaid by a or bag of con-
cepts, and there was no modeling of the position
of the words. P-concepts bring a notion of word
position to the model. Intuitively, there should
be coherency between P-concepts and concepts.
This coherence will come from a compatibility
constraint: if a sentence contains a two-sided P-
concept (PSe, PSf ), and if a word we covered
by PSe come from a two-sided concept (we, wf ),
then wf must be covered by PSf .

Let us describe the model more formally. In
the view of this model, a sentence pair is fully de-
scribed by: e and f (the sentences themselves), a
(the word alignment giving us the underlying bag
of concept), se and sf (the sets of P-sets on each
side of the sentence) and as (the P-set alignment
that give us the underlying set of P-concepts).
e,f ,se,sf are considered to be observed (even if
we will need parsing tools to observe se and sf );
a and as are hidden. The probability of a sentence
pair is given by the joint probability of these vari-
ables :P (e, f, se, sf , a, as). By making some sim-
ple independence assumptions, we can write:

P (a, as, e, f,se, sf ) = Pml(a, e, f)·
· P (se, sf |e, f) · P (as|a, se, sf )
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Pml(a, e, f) is taken to be identical to the mono-
link model (see equation (1)). We are not inter-
ested in P (se, sf |e, f) (parsers will deal with it for
us). In our model, P (as|a, se, sf ) will be equal to:

P(as|a, se, sf ) = C ·
∏

(i,j)∈as

Ppc(se
i , s

f
j )·

· comp(a, as, s
e, sf )

where comp(a, as, s
e, sf ) is equal to 1 if the com-

patibility constraint is verified, and 0 else. C is a
normalizing constant. Ppc describe the probability
of each P-concept.

Although it would be possible to learn parame-
ters for the distribution Ppc depending on the char-
acteristics of each P-concepts, we want to keep
our model simple. Therefore, Ppc will have only
two different values. One for the one-sided P-
concepts, and one for the two-sided ones. Con-
sidering the constraint of normalization, we then
have actually one parameter: α = Ppc(1−sided)

Ppc(2−sided) .
Although it would be possible to learn the param-
eter α during the EM-training, we choose to set
it at a preset value. Intuitively, we should have
0 < α < 1, because if α is greater than 1, then
the one-sided P-concepts will be favored by the
model, which is not what we want. Some empiri-
cal experiments showed that all values of α in the
range [0.5,0.9] were giving good results, which
lead to think that α can be set mostly indepen-
dently from the training corpus.

We still need to train the concepts probabilities
(used in Pml(a, e, f)), and to be able to decode
the most probable alignments. This is why we are
again going to represent P (a, as|e, f, se, sf ) as a
Factor Graph.

This Factor Graph will contain two instances of
the monolink Factor Graph as subgraph: one for
a, the other for as (see figure 4). More precisely,
we create again a V-Node for every position on
each side of the sentence pair. We will call these
V-Nodes “Word V-Nodes”, to differentiate them
from the new “P-set V-Nodes”. We will create a
“P-set V-Node” V ps.e

i for every P-set in se, and a
“P-set V-Node” V ps.f

j for every P-set in sj . We
inter-connect all of the Word V-Nodes so that we
have a subgraph identical to the Factor Graph used
in the monolink case. We also create a “monolink
subgraph” for the P-set V-Nodes.

We now have 2 disconnected subgraphs. How-
ever, we need to add F-Nodes between them to en-
force the compatibility constraint between as and

Figure 4: A part of a Factor Graph showing the
connections between P-set V-Nodes and Word V-
Nodes on the English side.The V-Nodes are con-
nected to the French side through the 2 monolink
subgraphs

a. On the English side, for every P-set V-Node
V pse

k , and for every position i that the correspond-
ing P-set cover, we add a F-Node F comp.e

k,i between
V pse

k and V e
i , associated with the function:

ϕcomp.e
k,i (l, j) =


1 if j ∈ sf

l or
j = −1 or l = −1

0 else

We proceed symmetrically on the French side.
Messages inside each monolink subgraph can

still be computed with the efficient procedure de-
scribed in section 3.2. We do not have the space to
describe in details the messages sent between P-set
V-Nodes and Word V-Nodes, but they are easily
computed from the principles of the BP algorithm.
Let NE =

∑
ps∈se |ps| and NF =

∑
ps∈sf |ps|.

Then the complexity of one BP iteration will be
O(NG · ND + |e| · |f |).

An interesting aspect of this model is that it
is flexible towards enforcing the respect of the
structures by the alignment, since not every P-set
need to have an equivalent in the opposite sen-
tence. (Gildea, 2003) has shown that too strict an
enforcement can easily degrade alignment quality
and that good balance was difficult to find.

Another interesting aspect is the fact that
we have a somehow “parameterless” distortion
model. There is only one real-valued parameter to
control the distortion: α. And even this parameter
is actually pre-set before any training on real data.
The distortion is therefore totally controlled by the
two sets of P-sets on each side of the sentence.

Finally, although we introduced the P-sets as
being generated from a syntactic tree, they do
not need to. In particular, we found interest-
ing to use P-sets consisting of every pair of adja-
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cent positions in a sentence. For example, with
a sentence of length 5, we generate the P-sets
{1,2},{2,3},{3,4} and {4,5}. The underlying in-
tuition is that “adjacency” is often preserved in
translation (we can see this as another case of
“conservation of structure”). Practically, using P-
sets of adjacent positions create a distortion model
where permutation of words are not penalized, but
gaps are penalized.

4.2 Experimental Results

The evaluation setting is the same as in the previ-
ous section. We created syntactic trees for every
sentences. For English,we used the Dan Bikel im-
plementation of the Collins parser (Collins, 2003).
For French, the SYGMART parser (Chauché,
1984) and for Japanese, the KNP parser (Kuro-
hashi and Nagao, 1994).

The line SDM:Parsing (SDM standing for
“Structure-based Distortion Monolink”) shows the
results obtained by using P-sets from the trees pro-
duced by these parsers. The line SDM:Adjacency
shows results obtained by using adjacent positions
P-sets ,as described at the end of the previous sec-
tion (therefore, SDM:Adjacency do not use any
parser).

Several interesting observations can be made
from the results. First, our structure-based distor-
tion model did improve the results of the mono-
link model. There are however some surprising
results. In particular, SDM:Adjacency produced
surprisingly good results. It comes close to the
results of the IBM model 4 in both language pairs,
while it actually uses exactly the same parameters
as model 1. The fact that an assumption as simple
as “allow permutations, penalize gaps” can pro-
duce results almost on par with the complicated
distortion model of model 4 might be an indica-
tion that this model is unnecessarily complex for
languages with similar structure.Another surpris-
ing result is the fact that SDM:Adjacency gives
better results for the English-French language pair
than SDM:Parsing, while we expected that infor-
mation provided by parsers would have been more
relevant for the distortion model. It might be an
indication that the structure of English and French
is so close that knowing it provide only moder-
ate information for word reordering. The con-
trast with the English-Japanese pair is, in this re-
spect, very interesting. For this language pair,
SDM:Adjacency did provide a strong improve-

Algorithm AER P R
Monolink 0.197 0.881 0.731
SDM:Parsing 0.166 0.882 0.813
SDM:Adjacency 0.135 0.887 0.851
CLA 0.26 0.819 0.665
GIZA++ /Model 1 0.281 0.667 0.805
GIZA++ /Model 2 0.205 0.754 0.863
GIZA++ /Model 3 0.162 0.806 0.890
GIZA++ /Model 4 0.121 0.849 0.927

Table 1: Results for English/French

Algorithm F P R
Monolink 0.263 0.594 0.169
SDM:Parsing 0.291 0.662 0.186
SDM:Adjacency 0.279 0.636 0.179
GIZA++ /Model 1 0.263 0.555 0.172
GIZA++ /Model 2 0.268 0.566 0.176
GIZA++ /Model 3 0.267 0.589 0.173
GIZA++ /Model 4 0.299 0.658 0.193

Table 2: Results for Japanese/English.

ment, but significantly less so than SDM:Parsing.
This tend to show that for language pairs that have
very different structures, the information provided
by syntactic tree is much more relevant.

5 Conclusion and Future Work

We will summarize what we think are the 4 more
interesti ng contributions of this paper. BP al-
gorithm has been shown to be useful and flexi-
ble for training and decoding complex alignment
models. An original mostly non-parametrical dis-
tortion model based on a simplified structure of
the sentences has been described. Adjacence con-
straints have been shown to produce very efficient
distortion model. Empirical performances differ-
ences in the task of aligning Japanese and English
to French hint that considering different paradigms
depending on language pairs could be an improve-
ment on the “one-size-fits-all” approach generally
used in Statistical alignment and translation.

Several interesting improvement could also be
made on the model we presented. Especially,
a more elaborated Ppc, that would take into ac-
count the nature of the nodes (NP, VP, head,..) to
parametrize the P-set alignment probability, and
would use the EM-algorithm to learn those param-
eters.
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