
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 380–388,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Rule Filtering by Pattern for Efficient Hierarchical Transl ation

Gonzalo Iglesias⋆ Adri à de Gispert‡
⋆ University of Vigo. Dept. of Signal Processing and Communications. Vigo, Spain

{giglesia,erbanga}@gts.tsc.uvigo.es
‡ University of Cambridge. Dept. of Engineering. CB2 1PZ Cambridge, U.K.

{ad465,wjb31}@eng.cam.ac.uk

Eduardo R. Banga⋆ William Byrne ‡

Abstract

We describe refinements to hierarchical
translation search procedures intended to
reduce both search errors and memory us-
age through modifications to hypothesis
expansion in cube pruning and reductions
in the size of the rule sets used in transla-
tion. Rules are put into syntactic classes
based on the number of non-terminals and
the pattern, and various filtering strate-
gies are then applied to assess the impact
on translation speed and quality. Results
are reported on the 2008 NIST Arabic-to-
English evaluation task.

1 Introduction

Hierarchical phrase-based translation (Chiang,
2005) has emerged as one of the dominant cur-
rent approaches to statistical machine translation.
Hiero translation systems incorporate many of
the strengths of phrase-based translation systems,
such as feature-based translation and strong tar-
get language models, while also allowing flexi-
ble translation and movement based on hierarchi-
cal rules extracted from aligned parallel text. The
approach has been widely adopted and reported to
be competitive with other large-scale data driven
approaches, e.g. (Zollmann et al., 2008).

Large-scale hierarchical SMT involves auto-
matic rule extraction from aligned parallel text,
model parameter estimation, and the use of cube
pruning k-best list generation in hierarchical trans-
lation. The number of hierarchical rules extracted
far exceeds the number of phrase translations typ-
ically found in aligned text. While this may lead
to improved translation quality, there is also the
risk of lengthened translation times and increased
memory usage, along with possible search errors
due to the pruning procedures needed in search.

We describe several techniques to reduce mem-
ory usage and search errors in hierarchical trans-

lation. Memory usage can be reduced in cube
pruning (Chiang, 2007) through smart memoiza-
tion, and spreading neighborhood exploration can
be used to reduce search errors. However, search
errors can still remain even when implementing
simple phrase-based translation. We describe a
‘shallow’ search through hierarchical rules which
greatly speeds translation without any effect on
quality. We then describe techniques to analyze
and reduce the set of hierarchical rules. We do
this based on the structural properties of rules and
develop strategies to identify and remove redun-
dant or harmful rules. We identify groupings of
rules based on non-terminals and their patterns and
assess the impact on translation quality and com-
putational requirements for each given rule group.
We find that with appropriate filtering strategies
rule sets can be greatly reduced in size without im-
pact on translation performance.

1.1 Related Work

The search and rule pruning techniques described
in the following sections add to a growing lit-
erature of refinements to the hierarchical phrase-
based SMT systems originally described by Chi-
ang (2005; 2007). Subsequent work has addressed
improvements and extensions to the search proce-
dure itself, the extraction of the hierarchical rules
needed for translation, and has also reported con-
trastive experiments with other SMT architectures.

Hiero Search RefinementsHuang and Chiang
(2007) offer several refinements to cube pruning
to improve translation speed. Venugopal et al.
(2007) introduce a Hiero variant with relaxed con-
straints for hypothesis recombination during pars-
ing; speed and results are comparable to those of
cube pruning, as described by Chiang (2007). Li
and Khudanpur (2008) report significant improve-
ments in translation speed by taking unseen n-
grams into account within cube pruning to mini-
mize language model requests. Dyer et al. (2008)

380



extend the translation of source sentences to trans-
lation of input lattices following Chappelier et al.
(1999).

Extensions to HieroBlunsom et al. (2008)
discuss procedures to combine discriminative la-
tent models with hierarchical SMT. The Syntax-
Augmented Machine Translation system (Zoll-
mann and Venugopal, 2006) incorporates target
language syntactic constituents in addition to the
synchronous grammars used in translation. Shen
at al. (2008) make use of target dependency trees
and a target dependency language model during
decoding. Marton and Resnik (2008) exploit shal-
low correspondences of hierarchical rules with
source syntactic constituents extracted from par-
allel text, an approach also investigated by Chiang
(2005). Zhang and Gildea (2006) propose bina-
rization for synchronous grammars as a means to
control search complexity arising from more com-
plex, syntactic, hierarchical rules sets.

Hierarchical rule extractionZhang et al. (2008)
describe a linear algorithm, a modified version of
shift-reduce, to extract phrase pairs organized into
a tree from which hierarchical rules can be directly
extracted. Lopez (2007) extracts rules on-the-fly
from the training bitext during decoding, search-
ing efficiently for rule patterns using suffix arrays.

Analysis and Contrastive ExperimentsZollman
et al. (2008) compare phrase-based, hierarchical
and syntax-augmented decoders for translation of
Arabic, Chinese, and Urdu into English, and they
find that attempts to expedite translation by simple
schemes which discard rules also degrade transla-
tion performance. Lopez (2008) explores whether
lexical reordering or the phrase discontiguity in-
herent in hierarchical rules explains improvements
over phrase-based systems. Hierarchical transla-
tion has also been used to great effect in combina-
tion with other translation architectures (e.g. (Sim
et al., 2007; Rosti et al., 2007)).

1.2 Outline

The paper proceeds as follows. Section 2 de-
scribes memoization and spreading neighborhood
exploration in cube pruning intended to reduce
memory usage and search errors, respectively. A
detailed comparison with a simple phrase-based
system is presented. Section 3 describes pattern-
based rule filtering and various procedures to se-
lect rule sets for use in translation with an aim
to improving translation quality while minimizing

rule set size. Finally, Section 4 concludes.

2 Two Refinements in Cube Pruning

Chiang (2007) introduced cube pruning to apply
language models in pruning during the generation
of k-best translation hypotheses via the application
of hierarchical rules in the CYK algorithm. In the
implementation of Hiero described here, there is
the parser itself, for which we use a variant of the
CYK algorithm closely related to CYK+ (Chap-
pelier and Rajman, 1998); it employs hypothesis
recombination, without pruning, while maintain-
ing back pointers. Before k-best list generation
with cube pruning, we apply asmart memoiza-
tion procedure intended to reduce memory con-
sumption during k-best list expansion. Within the
cube pruning algorithm we usespreading neigh-
borhood explorationto improve robustness in the
face of search errors.

2.1 Smart Memoization

Each cell in the chart built by the CYK algorithm
contains all possible derivations of a span of the
source sentence being translated. After the parsing
stage is completed, it is possible to make a very ef-
ficient sweep through the backpointers of the CYK
grid to count how many times each cell will be ac-
cessed by the k-best generation algorithm. When
k-best list generation is running, the number of
times each cell is visited is logged so that, as each
cell is visited for the last time, the k-best list as-
sociated with each cell is deleted. This continues
until the one k-best list remaining at the top of the
chart spans the entire sentence. Memory reduc-
tions are substantial for longer sentences: for the
longest sentence in the tuning set described later
(105 words in length), smart memoization reduces
memory usage during the cube pruning stage from
2.1GB to 0.7GB. For average length sentences of
approx. 30 words, memory reductions of 30% are
typical.

2.2 Spreading Neighborhood Exploration

In generation of a k-best list of translations for
a source sentence span, every derivation is trans-
formed into a cube containing the possible trans-
lations arising from that derivation, along with
their translation and language model scores (Chi-
ang, 2007). These derivations may contain non-
terminals which must be expanded based on hy-
potheses generated by lower cells, which them-

381



HIERO MJ1 HIERO HIERO SHALLOW
X → 〈V2V1,V1V2〉 X → 〈γ,α〉 X → 〈γs,αs〉

X → 〈V ,V 〉 γ, α ∈ ({X} ∪T)+ X → 〈V ,V 〉
V → 〈s,t〉 V → 〈s,t〉
s, t ∈ T

+ s, t ∈ T
+; γs, αs ∈ ({V } ∪ T)+

Table 1: Hierarchical grammars (not including glue rules).T is the set of terminals.

selves may contain non-terminals. For efficiency
each cube maintains a queue of hypotheses, called
here thefrontier queue, ranked by translation and
language model score; it is from these frontier
queues that hypotheses are removed to create the
k-best list for each cell. When a hypothesis is ex-
tracted from a frontier queue, that queue is updated
by searching through the neighborhood of the ex-
tracted item to find novel hypotheses to add; if no
novel hypotheses are found, that queue necessar-
ily shrinks. This shrinkage can lead to search er-
rors. We therefore require that, when a hypothe-
sis is removed, new candidates must be added by
exploring a neighborhood which spreads from the
last extracted hypothesis. Each axis of the cube
is searched (here, to a depth of 20) until a novel
hypothesis is found. In this way, up to three new
candidates are added for each entry extracted from
a frontier queue.

Chiang (2007) describes an initialization pro-
cedure in which these frontier queues are seeded
with a single candidate per axis; we initialize each
frontier queue to a depth ofbNnt+1, where Nnt is
the number of non-terminals in the derivation and
b is a search parameter set throughout to 10. By
starting with deep frontier queues and by forcing
them to grow during search we attempt to avoid
search errors by ensuring that the universe of items
within the frontier queues does not decrease as the
k-best lists are filled.

2.3 A Study of Hiero Search Errors in
Phrase-Based Translation

Experiments reported in this paper are based
on the NIST MT08 Arabic-to-English transla-
tion task. Alignments are generated over all al-
lowed parallel data, (∼150M words per language).
Features extracted from the alignments and used
in translation are in common use: target lan-
guage model, source-to-target and target-to-source
phrase translation models, word and rule penalties,
number of usages of the glue rule, source-to-target
and target-to-source lexical models, and three rule

Figure 1: Spreading neighborhood exploration
within a cube, just before and after extraction
of the item C. Grey squares represent the fron-
tier queue; black squares are candidates already
extracted. Chiang (2007) would only consider
adding items X to the frontier queue, so the queue
would shrink. Spreading neighborhood explo-
ration adds candidates S to the frontier queue.

count features inspired by Bender et al. (2007).
MET (Och, 2003) iterative parameter estimation
under IBM BLEU is performed on the develop-
ment set. The English language used model is a
4-gram estimated over the parallel text and a 965
million word subset of monolingual data from the
English Gigaword Third Edition. In addition to the
MT08 set itself, we use a development setmt02-
05-tuneformed from the odd numbered sentences
of the NIST MT02 through MT05 evaluation sets;
the even numbered sentences form the validation
setmt02-05-test. Themt02-05-tuneset has 2,075
sentences.

We first compare the cube pruning decoder to
the TTM (Kumar et al., 2006), a phrase-based
SMT system implemented with Weighted Finite-
State Tansducers (Allauzen et al., 2007). The sys-
tem implements either a monotone phrase order
translation, or an MJ1 (maximum phrase jump of
1) reordering model (Kumar and Byrne, 2005).
Relative to the complex movement and translation
allowed by Hiero and other models, MJ1 is clearly
inferior (Dreyer et al., 2007); MJ1 was developed
with efficiency in mind so as to run with a mini-
mum of search errors in translation and to be eas-
ily and exactly realized via WFSTs. Even for the

382



large models used in an evaluation task, the TTM
system is reported to run largely without pruning
(Blackwood et al., 2008).

The Hiero decoder can easily be made to
implement MJ1 reordering by allowing only a
restricted set of reordering rules in addition to
the usual glue rule, as shown in left-hand column
of Table 1, whereT is the set of terminals.
Constraining Hiero in this way makes it possible
to compare its performance to the exact WFST
TTM implementation and to identify any search
errors made by Hiero.

Table 2 shows the lowercased IBM BLEU
scores obtained by the systems formt02-05-tune
with monotone and reordered search, and with
MET-optimised parameters for MJ1 reordering.
For Hiero, an N-best list depth of 10,000 is used
throughout. In the monotone case, all phrase-
based systems perform similarly although Hiero
does make search errors. For simple MJ1 re-
ordering, the basic Hiero search procedure makes
many search errors and these lead to degradations
in BLEU. Spreading neighborhood expansion re-
duces the search errors and improves BLEU score
significantly but search errors remain a problem.
Search errors are even more apparent after MET.
This is not surprising, given thatmt02-05-tuneis
the set over which MET is run: MET drives up the
likelihood of good hypotheses at the expense of
poor hypotheses, but search errors often increase
due to the expanded dynamic range of the hypoth-
esis scores.

Our aim in these experiments was to demon-
strate that spreading neighborhood exploration can
aid in avoiding search errors. We emphasize that
we are not proposing that Hiero should be used to
implement reordering models such as MJ1 which
were created for completely different search pro-
cedures (e.g. WFST composition). However these
experiments do suggest that search errors may be
an issue, particularly as the search space grows
to include the complex long-range movement al-
lowed by the hierarchical rules. We next study
various filtering procedures to reduce hierarchi-
cal rule sets to find a balance between translation
speed, memory usage, and performance.

3 Rule Filtering by Pattern

Hierarchical rulesX → 〈γ,α〉 are composed of
sequences of terminals and non-terminals, which

Monotone MJ1 MJ1+MET
BLEU SE BLEU SE BLEU SE

a 44.7 - 47.2 - 49.1 -
b 44.5 342 46.7 555 48.4 822
c 44.7 77 47.1 191 48.9 360

Table 2: Phrase-based TTM and Hiero perfor-
mance onmt02-05-tunefor TTM (a), Hiero (b),
Hiero with spreading neighborhood exploration
(c). SE is the number of Hiero hypotheses with
search errors.

we call elements. In the source, a maximum of
two non-adjacent non-terminals is allowed (Chi-
ang, 2007). Leaving aside rules without non-
terminals (i.e. phrase pairs as used in phrase-
based translation), rules can be classed by their
number of non-terminals, Nnt, and their number
of elements, Ne. There are 5 possible classes:
Nnt.Ne= 1.2, 1.3, 2.3, 2.4, 2.5.

During rule extraction we search each class sep-
arately to control memory usage. Furthermore, we
extract from alignments only those rules which are
relevant to our given test set; for computation of
backward translation probabilities we log general
counts of target-side rules but discard unneeded
rules. Even with this restriction, our initial ruleset
for mt02-05-tuneexceeds 175M rules, of which
only 0.62M are simple phrase pairs.

The question is whether all these rules are
needed for translation. If the rule set can be re-
duced without reducing translation quality, both
memory efficiency and translation speed can be
increased. Previously published approaches to re-
ducing the rule set include: enforcing a mini-
mum span of two words per non-terminal (Lopez,
2008), which would reduce our set to 115M rules;
or a minimum count (mincount) threshold (Zoll-
mann et al., 2008), which would reduce our set
to 78M (mincount=2) or 57M (mincount=3) rules.
Shen et al. (2008) describe the result of filter-
ing rules by insisting that target-side rules are
well-formed dependency trees. This reduces their
rule set from 140M to 26M rules. This filtering
leads to a degradation in translation performance
(see Table 2 of Shen et al. (2008)), which they
counter by adding a dependency LM in translation.
As another reference point, Chiang (2007) reports
Chinese-to-English translation experiments based
on 5.5M rules.

Zollmann et al. (2008) report that filtering rules

383



en masse leads to degradation in translation per-
formance. Rather than apply a coarse filtering,
such as a mincount for all rules, we follow a more
syntactic approach and further classify our rules
according to theirpatternand apply different fil-
ters to each pattern depending on its value in trans-
lation. The premise is that some patterns are more
important than others.

3.1 Rule Patterns

Class Rule Pattern
Nnt.Ne 〈source, target〉 Types

〈wX1 , wX1〉 1185028
1.2 〈wX1 , wX1w〉 153130

〈wX1 , X1w〉 97889
1.3 〈wX1w , wX1w〉 32903522

〈wX1w , wX1〉 989540
2.3 〈X1wX2 , X1wX2〉 1554656

〈X2wX1 , X1wX2〉 39163
〈wX1wX2 , wX1wX2〉 26901823
〈X1wX2w , X1wX2w〉 26053969

2.4 〈wX1wX2 , wX1wX2w〉 2534510
〈wX2wX1 , wX1wX2〉 349176
〈X2wX1w , X1wX2w〉 259459

〈wX1wX2w , wX1wX2w〉 61704299
〈wX1wX2w , wX1X2w〉 3149516

2.5 〈wX1wX2w , X1wX2w〉 2330797
〈wX2wX1w , wX1wX2w〉 275810
〈wX2wX1w , wX1X2w〉 205801

Table 3: Hierarchical rule patterns classed by
number of non-terminals, Nnt, number of ele-
ments Ne, source and target patterns, and types in
the rule set extracted formt02-05-tune.

Given a rule set, we definesource patternsand
target patternsby replacing every sequence of
non-terminals by a single symbol ‘w’ (indicating
word, i.e. terminal string,w ∈ T

+). Each hierar-
chical rule has a unique source and target pattern
which together define therule pattern.

By ignoring the identity and the number of ad-
jacent terminals, the rule pattern represents a nat-
ural generalization of any rule, capturing its struc-
ture and the type of reordering it encodes. In to-
tal, there are 66 possible rule patterns. Table 3
presents a few examples extracted formt02-05-
tune, showing that some patterns are much more
diverse than others. For example, patterns with
two non-terminals (Nnt=2) are richer than pat-
terns with Nnt=1, as they cover many more dis-

tinct rules. Additionally, patterns with two non-
terminals which also have a monotonic relation-
ship between source and target non-terminals are
much more diverse than their reordered counter-
parts.

Some examples of extracted rules and their cor-
responding pattern follow, where Arabic is shown
in Buckwalter encoding.

Pattern 〈wX1 , wX1w〉 :
〈w+ qAl X1 , the X1said〉

Pattern 〈wX1w , wX1〉 :
〈fy X1kAnwn Al>wl , on december X1〉

Pattern 〈wX1wX2 , wX1wX2w〉 :
〈Hl X1lAzmp X2 , a X1solution to the X2crisis〉

3.2 Building an Initial Rule Set

We describe a greedy approach to building a rule
set in which rules belonging to a pattern are added
to the rule set guided by the improvements they
yield on mt02-05-tunerelative to the monotone
Hiero system described in the previous section.
We find that certain patterns seem not to con-
tribute to any improvement. This is particularly
significant as these patterns often encompass large
numbers of rules, as with patterns with match-
ing source and target patterns. For instance, we
found no improvement when adding the pattern
〈X1w,X1w〉, of which there were 1.2M instances
(Table 3). Since concatenation is already possible
under the general glue rule, rules with this pattern
are redundant. By contrast, the much less frequent
reordered counterpart, i.e. the〈wX1,X1w〉 pat-
tern (0.01M instances), provides substantial gains.
The situation is analogous for rules with two non-
terminals (Nnt=2).

Based on exploratory analyses (not reported
here, for space) an initial rule set was built by
excluding patterns reported in Table 4. In to-
tal, 171.5M rules are excluded, for a remaining
set of 4.2M rules, 3.5M of which are hierarchi-
cal. We acknowledge that adding rules in this way,
by greedy search, is less than ideal and inevitably
raises questions with respect to generality and re-
peatability. However in our experience this is a
robust approach, mainly because the initial trans-
lation system runs very fast; it is possible to run
many exploratory experiments in a short time.

384



Excluded Rules Types
a 〈X1w,X1w〉 , 〈wX1,wX1〉 2332604
b 〈X1wX2,∗〉 2121594

〈X1wX2w,X1wX2w〉 ,
c

〈wX1wX2,wX1wX2〉
52955792

d 〈wX1wX2w,∗〉 69437146
e Nnt.Ne= 1.3 w mincount=5 32394578
f Nnt.Ne= 2.3 w mincount=5 166969
g Nnt.Ne= 2.4 w mincount=10 11465410
h Nnt.Ne= 2.5 w mincount=5 688804

Table 4: Rules excluded from the initial rule set.

3.3 Shallow versus Fully Hierarchical
Translation

In measuring the effectiveness of rules in transla-
tion, we also investigate whether a ‘fully hierarchi-
cal’ search is needed or whether a shallow search
is also effective. In constrast to full Hiero, in the
shallow search, only phrases are allowed to be sub-
stituted into non-terminals. The rules used in each
case can be expressed as shown in the 2nd and 3rd
columns of Table 1. Shallow search can be con-
sidered (loosely) to be a form of rule filtering.

As can be seen in Table 5 there is no impact on
BLEU, while translation speed increases by a fac-
tor of 7. Of course, these results are specific to this
Arabic-to-English translation task, and need not
be expected to carry over to other language pairs,
such as Chinese-to-English translation. However,
the impact of this search simplification is easy to
measure, and the gains can be significant enough,
that it may be worth investigation even for lan-
guages with complex long distance movement.

mt02-05- -tune -test

System Time BLEU BLEU
HIERO 14.0 52.1 51.5
HIERO - shallow 2.0 52.1 51.4

Table 5: Translation performance and time (in sec-
onds per word) for full vs. shallow Hiero.

3.4 Individual Rule Filters

We now filter rules individually (not by class) ac-
cording to their number of translations. For each
fixed γ /∈ T

+ (i.e. with at least 1 non-terminal),
we define the following filters over rulesX →
〈γ,α〉:

• Number of translations (NT). We keep the
NT most frequentα, i.e. eachγ is allowed to
have at mostNT rules.

• Number of reordered translations (NRT).
We keep theNRT most frequentα with
monotonic non-terminals and theNRT most
frequentα with reordered non-terminals.

• Count percentage (CP). We keep the most
frequentα until their aggregated number of
counts reaches a certain percentageCP of the
total counts ofX → 〈γ,∗〉. Someγ’s are al-
lowed to have moreα’s than others, depend-
ing on their count distribution.

Results applying these filters with various
thresholds are given in Table 6, including num-
ber of rules and decoding time. As shown, all
filters achieve at least a 50% speed-up in decod-
ing time by discarding 15% to 25% of the base-
line rules. Remarkably, performance is unaffected
when applying the simpleNT and NRT filters
with a threshold of 20 translations. Finally, the
CM filter behaves slightly worse for thresholds of
90% for the same decoding time. For this reason,
we selectNRT=20 as our general filter.

mt02-05- -tune -test

Filter Time Rules BLEU BLEU
baseline 2.0 4.20 52.1 51.4
NT=10 0.8 3.25 52.0 51.3
NT=15 0.8 3.43 52.0 51.3
NT=20 0.8 3.56 52.1 51.4
NRT=10 0.9 3.29 52.0 51.3
NRT=15 1.0 3.48 52.0 51.4
NRT=20 1.0 3.59 52.1 51.4
CP=50 0.7 2.56 51.4 50.9
CP=90 1.0 3.60 52.0 51.3

Table 6: Impact of general rule filters on transla-
tion (IBM BLEU), time (in seconds per word) and
number of rules (in millions).

3.5 Pattern-based Rule Filters

In this section we first reconsider whether reintro-
ducing the monotonic rules (originally excluded as
described in rows ’b’, ’c’, ’d’ in Table 4) affects
performance. Results are given in the upper rows
of Table 7. For all classes, we find that reintroduc-
ing these rules increases the total number of rules

385



mt02-05- -tune -test

Nnt.Ne Filter Time Rules BLEU BLEU

baselineNRT=20 1.0 3.59 52.1 51.4
2.3 +monotone 1.1 4.08 51.5 51.1
2.4 +monotone 2.0 11.52 51.6 51.0
2.5 +monotone 1.8 6.66 51.7 51.2
1.3 mincount=3 1.0 5.61 52.1 51.3
2.3 mincount=1 1.2 3.70 52.1 51.4
2.4 mincount=5 1.8 4.62 52.0 51.3
2.4 mincount=15 1.0 3.37 52.0 51.4
2.5 mincount=1 1.1 4.27 52.2 51.5
1.2 mincount=5 1.0 3.51 51.8 51.3
1.2 mincount=10 1.0 3.50 51.7 51.2

Table 7: Effect of pattern-based rule filters. Time in seconds per word. Rules in millions.

substantially, despite the NRT=20 filter, but leads
to degradation in translation performance.

We next reconsider the mincount threshold val-
ues for Nnt.Ne classes 1.3, 2.3, 2.4 and 2.5 origi-
nally described in Table 4 (rows ’e’ to ’h’). Results
under various mincount cutoffs for each class are
given in Table 7 (middle five rows). For classes
2.3 and 2.5, the mincount cutoff can be reduced
to 1 (i.e. all rules are kept) with slight translation
improvements. In contrast, reducing the cutoff for
classes 1.3 and 2.4 to 3 and 5, respectively, adds
many more rules with no increase in performance.
We also find that increasing the cutoff to 15 for
class 2.4 yields the same results with a smaller rule
set. Finally, we consider further filtering applied to
class 1.2 with mincount 5 and 10 (final two rows
in Table 7). The number of rules is largely un-
changed, but translation performance drops con-
sistently as more rules are removed.

Based on these experiments, we conclude that it
is better to apply separate mincount thresholds to
the classes to obtain optimal performance with a
minimum size rule set.

3.6 Large Language Models and Evaluation

Finally, in this section we report results of our
shallow hierarchical system with the 2.5 min-
count=1 configuration from Table 7, after includ-
ing the following N-best list rescoring steps.

• Large-LM rescoring. We build sentence-
specific zero-cutoff stupid-backoff (Brants et
al., 2007) 5-gram language models, estimated
using∼4.7B words of English newswire text,
and apply them to rescore each 10000-best

list.

• Minimum Bayes Risk (MBR). We then rescore
the first 1000-best hypotheses with MBR,
taking the negative sentence level BLEU
score as the loss function to minimise (Ku-
mar and Byrne, 2004).

Table 8 shows results formt02-05-tune, mt02-
05-test, the NIST subsets from the MT06 evalu-
ation (mt06-nist-nwfor newswire data andmt06-
nist-ngfor newsgroup) andmt08, as measured by
lowercased IBM BLEU and TER (Snover et al.,
2006). Mixed case NIST BLEU for this system on
mt08 is 42.5. This is directly comparable to offi-
cial MT08 evaluation results1.

4 Conclusions

This paper focuses on efficient large-scale hierar-
chical translation while maintaining good trans-
lation quality. Smart memoization and spreading
neighborhood exploration during cube pruning are
described and shown to reduce memory consump-
tion and Hiero search errors using a simple phrase-
based system as a contrast.

We then define a general classification of hi-
erarchical rules, based on their number of non-
terminals, elements and their patterns, for refined
extraction and filtering.

For a large-scale Arabic-to-English task, we
show that shallow hierarchical decoding is as good

1Full MT08 results are available at
http://www.nist.gov/speech/tests/mt/2008/. It is worth
noting that many of the top entries make use of system
combination; the results reported here are for single system
translation.

386



mt02-05-tune mt02-05-test mt06-nist-nw mt06-nist-ng mt08
HIERO+MET 52.2 / 41.6 51.5 / 42.2 48.4 / 43.6 35.3 / 53.2 42.5 / 48.6

+rescoring 53.2 / 40.8 52.6 / 41.4 49.4 / 42.9 36.6 / 53.5 43.4 / 48.1

Table 8: Arabic-to-English translation results (lower-cased IBM BLEU / TER) with large language mod-
els and MBR decoding.

as fully hierarchical search and that decoding time
is dramatically decreased. In addition, we describe
individual rule filters based on the distribution of
translations with further time reductions at no cost
in translation scores. This is in direct contrast
to recent reported results in which other filtering
strategies lead to degraded performance (Shen et
al., 2008; Zollmann et al., 2008).

We find that certain patterns are of much greater
value in translation than others and that separate
minimum count filters should be applied accord-
ingly. Some patterns were found to be redundant
or harmful, in particular those with two monotonic
non-terminals. Moreover, we show that the value
of a pattern is not directly related to the number of
rules it encompasses, which can lead to discarding
large numbers of rules as well as to dramatic speed
improvements.

Although reported experiments are only for
Arabic-to-English translation, we believe the ap-
proach will prove to be general. Pattern relevance
will vary for other language pairs, but we expect
filtering strategies to be equally worth pursuing.

Acknowledgments

This work was supported in part by the GALE pro-
gram of the Defense Advanced Research Projects
Agency, Contract No. HR0011- 06-C-0022. G.
Iglesias supported by Spanish Government re-
search grant BES-2007-15956 (project TEC2006-
13694-C03-03).

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Proceedings of CIAA, pages 11–23.

Oliver Bender, Evgeny Matusov, Stefan Hahn, Sasa
Hasan, Shahram Khadivi, and Hermann Ney. 2007.
The RWTH Arabic-to-English spoken language
translation system. InProceedings of ASRU, pages
396–401.

Graeme Blackwood, Adrià de Gispert, Jamie Brunning,
and William Byrne. 2008. Large-scale statistical

machine translation with weighted finite state trans-
ducers. InProceedings of FSMNLP, pages 27–35.

Phil Blunsom, Trevor Cohn, and Miles Osborne. 2008.
A discriminative latent variable model for statistical
machine translation. InProceedings of ACL-HLT,
pages 200–208.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J.
Och, and Jeffrey Dean. 2007. Large language
models in machine translation. InProceedings of
EMNLP-ACL, pages 858–867.

Jean-Cédric Chappelier and Martin Rajman. 1998. A
generalized CYK algorithm for parsing stochastic
CFG. InProceedings of TAPD, pages 133–137.

Jean-Cédric Chappelier, Martin Rajman, Ramón
Aragüés, and Antoine Rozenknop. 1999. Lattice
parsing for speech recognition. InProceedings of
TALN, pages 95–104.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. InPro-
ceedings of ACL, pages 263–270.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–228.

Markus Dreyer, Keith Hall, and Sanjeev Khudanpur.
2007. Comparing reordering constraints for SMT
using efficient BLEU oracle computation. InPro-
ceedings of SSST, NAACL-HLT 2007 / AMTA Work-
shop on Syntax and Structure in Statistical Transla-
tion.

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice translation.
In Proceedings of ACL-HLT, pages 1012–1020.

Liang Huang and David Chiang. 2007. Forest rescor-
ing: Faster decoding with integrated language mod-
els. InProceedings of ACL, pages 144–151.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of HLT-NAACL, pages 169–
176.

Shankar Kumar and William Byrne. 2005. Lo-
cal phrase reordering models for statistical machine
translation. InProceedings of HLT-EMNLP, pages
161–168.

Shankar Kumar, Yonggang Deng, and William Byrne.
2006. A weighted finite state transducer translation
template model for statistical machine translation.
Natural Language Engineering, 12(1):35–75.

387



Zhifei Li and Sanjeev Khudanpur. 2008. A scal-
able decoder for parsing-based machine translation
with equivalent language model state maintenance.
In Proceedings of the ACL-HLT Second Workshop
on Syntax and Structure in Statistical Translation,
pages 10–18.

Adam Lopez. 2007. Hierarchical phrase-based trans-
lation with suffix arrays. InProceedings of EMNLP-
CONLL, pages 976–985.

Adam Lopez. 2008. Tera-scale translation models
via pattern matching. InProceedings of COLING,
pages 505–512.

Yuval Marton and Philip Resnik. 2008. Soft syntac-
tic constraints for hierarchical phrased-based trans-
lation. In Proceedings of ACL-HLT, pages 1003–
1011.

Franz J. Och. 2003. Minimum error rate training in
statistical machine translation. InProceedings of
ACL, pages 160–167.

Antti-Veikko Rosti, Necip Fazil Ayan, Bing Xiang,
Spyros Matsoukas, Richard Schwartz, and Bonnie
Dorr. 2007. Combining outputs from multiple ma-
chine translation systems. InProceedings of HLT-
NAACL, pages 228–235.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A
new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Proceedings of ACL-HLT, pages 577–585.

Khe Chai Sim, William Byrne, Mark Gales, Hichem
Sahbi, and Phil Woodland. 2007. Consensus net-
work decoding for statistical machine translation
system combination. InProceedings of ICASSP,
volume 4, pages 105–108.

Matthew Snover, Bonnie J. Dorr, Richard Schwartz,
Linnea Micciulla, and John Makhoul. 2006. A
study of translation edit rate with targeted human an-
notation. InProceedings of AMTA, pages 223–231.

Ashish Venugopal, Andreas Zollmann, and Vogel
Stephan. 2007. An efficient two-pass approach to
synchronous-CFG driven statistical MT. InPro-
ceedings of HLT-NAACL, pages 500–507.

Hao Zhang and Daniel Gildea. 2006. Synchronous
binarization for machine translation. InProceedings
of HLT-NAACL, pages 256–263.

Hao Zhang, Daniel Gildea, and David Chiang. 2008.
Extracting synchronous grammar rules from word-
level alignments in linear time. InProceedings of
COLING, pages 1081–1088.

Andreas Zollmann and Ashish Venugopal. 2006. Syn-
tax augmented machine translation via chart parsing.
In Proceedings of NAACL Workshop on Statistical
Machine Translation, pages 138–141.

Andreas Zollmann, Ashish Venugopal, Franz Och,
and Jay Ponte. 2008. A systematic comparison
of phrase-based, hierarchical and syntax-augmented
statistical MT. InProceedings of COLING, pages
1145–1152.

388


