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Abstract

We present a unified view of many trans-

lation algorithms that synthesizes work on

deductive parsing, semiring parsing, and

efficient approximate search algorithms.

This gives rise to clean analyses and com-

pact descriptions that can serve as the ba-

sis for modular implementations. We illus-

trate this with several examples, showing

how to build search spaces for several dis-

parate phrase-based search strategies, inte-

grate non-local features, and devise novel

models. Although the framework is drawn

from parsing and applied to translation, it

is applicable to many dynamic program-

ming problems arising in natural language

processing and other areas.

1 Introduction

Implementing a large-scale translation system is

a major engineering effort requiring substantial

time and resources, and understanding the trade-

offs involved in model and algorithm design de-

cisions is important for success. As the space of

systems described in the literature becomes more

crowded, identifying their common elements and

isolating their differences becomes crucial to this

understanding. In this work, we present a com-

mon framework for model manipulation and anal-

ysis that accomplishes this, and use it to derive sur-

prising conclusions about phrase-based models.

Most translation algorithms do the same thing:

dynamic programming search over a space of

weighted rules (§2). Fortunately, we need

not search far for modular descriptions of dy-

namic programming algorithms. Deductive logic

(Pereira and Warren, 1983), extended with semir-

ings (Goodman, 1999), is an established formal-

ism used in parsing. It is occasionally used

to describe formally syntactic translation mod-

els, but these treatments tend to be brief (Chiang,

2007; Venugopal et al., 2007; Dyer et al., 2008;

Melamed, 2004). We apply weighted deduction

much more thoroughly, first extending it to phrase-

based models and showing that the set of search

strategies used by these models have surprisingly

different implications for model and search error

(§3, §4). We then show how it can be used to an-

alyze common translation problems such as non-

local parameterizations (§5), alignment, and novel

model design (§6). Finally, we show that it leads to

a simple analysis of cube pruning (Chiang, 2007),

an important approximate search algorithm (§7).

2 Translation Models

A translation model consists of two distinct ele-

ments: an unweighted ruleset, and a parameteriza-

tion (Lopez, 2008). A ruleset licenses the steps by

which a source string f1...fI may be rewritten as

a target string e1...eJ , thereby defining the finite

set of all possible rewritings of a source string. A

parameterization defines a weight function over

every sequence of rule applications.

In a phrase-based model, the ruleset is simply

the unweighted phrase table, where each phrase

pair fi...fi′/ej ...ej′ states that phrase fi...fi′ in the

source is rewritten as ej ...ej′ in the the target.

The model operates by iteratively applying

rewrites to the source sentence until each source

word has been consumed by exactly one rule. We

call a sequence of rule applications a derivation.

A target string e1...eJ yielded by a derivation D is

obtained by concatenating the target phrases of the

rules in the order in which they were applied. We

define Y (D) to be the target string yielded by D.
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Now consider the Viterbi approximation to a

noisy channel parameterization of this model,

P (f |D) · P (D).1 We define P (f |D) in the stan-

dard way.

P (f |D) =
∏

fi...fi′/ej ...ej′∈D

p(fi...fi′ |ej ...ej′)

(1)

Note that in the channel model, we can replace any

rule application with any other rule containing the

same source phrase without affecting the partial

score of the rest of the derivation. We call this a

local parameterization.

Now we define a standard n-gram model P (D).

P (D) =
∏

ej∈Y (D)

p(ej |ej−n+1...ej−1) (2)

This parameterization differs from the channel

model in an important way. If we replace a single

rule in the derivation, the partial score of the rest

of derivation is also affected, because the terms

ej−n+1...ej may come from more than one rule. In

other words, this parameterization encodes a de-

pendency between the steps in a derivation. We

call this a non-local parameterization.

3 Translation As Deduction

For the first part of the discussion that follows, we

consider deductive logics purely over unweighted

rulesets. As a way to introduce deductive logic, we

consider the CKY algorithm for context-free pars-

ing, a common example that we will revisit in §6.2.

It is also relevant since it can form the basis of a

decoder for inversion transduction grammar (Wu,

1996). In the discussion that follows, we useA,B,

and C to denote arbitrary nonterminal symbols, S
to denote the start nonterminal symbol, and a to

denote a terminal symbol. CKY works on gram-

mars in Chomsky normal form: all rules are either

binary as in A→ BC, or unary as in A→ a.

The number of possible binary-branching

parses of a sentence is defined by the Catalan num-

ber, an exponential combinatoric function (Church

and Patil, 1982), so dynamic programming is cru-

cial for efficiency. CKY computes all parses in

cubic time by reusing subparses. To parse a sen-

tence a1...aK , we compute a set of items in the

form [A, k, k′], whereA is a nonterminal category,

1The true noisy channel parameterization p(f |e) · p(e)
would require a marginalization over D, and is intractable
for most models.

k and k′ are both integers in the range [0, n]. This

item represents the fact that there is some parse of

span ak+1...ak′ rooted at A (span indices are on

the spaces between words). CKY works by creat-

ing items over successively longer spans. First it

creates items [A, k−1, k] for any ruleA→ a such

that a = ak. It then considers spans of increasing

length, creating items [A, k, k′] whenever it finds

two items [B, k, k′′] and [C, k′′, k′] for some gram-

mar ruleA→ BC and some midpoint k′′. Its goal

is an item [S, 0,K], indicating that there is a parse

of a1...aK rooted at S.

A CKY logic describes its actions as inference

rules, equivalent to Horn clauses. The inference

rule is a list of antecedents, items and rules that

must all be true for the inference to occur; and a

single consequent that is inferred. To denote the

creation of item [A, k, k′] based on existence of

rule A→ BC and items [B, k, k′′] and [C, k′′, k′],
we write an inference rule with antecedents on the

top line and consequent on the second line, follow-

ing Goodman (1999) and Shieber et al. (1995).

R(A→ BC) [B, k, k′′] [C, k′′, k′]
[A, k, k′]

We now give the complete Logic CKY.

item form: [A, k, k′] goal: [S, 0,K]

rules:


R(A→ ak)
[A, k − 1, k]

R(A→ BC) [B, k, k′′] [C, k′′, k′]
[A, k, k′]

(Logic CKY)

A benefit of this declarative description is that

complexity can be determined by inspection

(McAllester, 1999). We elaborate on complexity

in §7, but for now it suffices to point out that the

number of possible items and possible deductions

depends on the product of the domains of the free

variables. For example, the number of possible

CKY items for a grammar with G nonterminals

is O(GK2), because k and k′ are both in range

[0,K]. Likewise, the number of possible inference

rules that can fire is O(G3K3).

3.1 A Simple Deductive Decoder

For our first example of a translation logic we con-

sider a simple case: monotone decoding (Mariño

et al., 2006; Zens and Ney, 2004). Here, rewrite

rules are applied strictly from left to right on the

source sentence. Despite its simplicity, the search
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space can be very large—in the limit there could

be a translation for every possible segmentation

of the sentence, so there are exponentially many

possible derivations. Fortunately, we know that

monotone decoding can easily be cast as a dy-

namic programming problem. For any position i
in the source sentence f1...fI , we can freely com-

bine any partial derivation covering f1...fi on its

left with any partial derivation covering fi+1...fI

on its right to yield a complete derivation.

In our deductive program for monotone decod-

ing, an item simply encodes the index of the right-

most word that has been rewritten.

item form: [i]
goal: [I]

rule:
[i] R(fi+1...fi′/ej ...ej′)

[i′]

(Logic MONOTONE)

This is the algorithm of Zens and Ney (2004).

With a maximum phrase length of m, i′ will range

over [i+1,min(i+m, I)], giving a complexity of

O(Im). In the limit it is O(I2).

3.2 More Complex Decoders

Now we consider phrase-based decoders with

more permissive reordering. In the limit we al-

low arbitrary reordering, so our item must contain

a coverage vector. Let V be a binary vector of

length I; that is, V ∈ {0, 1}I . Le 0m be a vec-

tor of m 0’s. For example, bit vector 00000 will

be abbreviated 05 and bit vector 000110 will be

abbreviated 031201. Finally, we will need bitwise

AND (∧) and OR (∨). Note that we impose an ad-

ditional requirement that is not an item in the de-

ductive system as a side condition (we elaborate

on the significance of this in §4).

item form: [{0, 1}I ] goal: [1I ]

rule:

[V ] R(fi+1...fi′/ej ...ej′)
[V ∨ 0i1i′−i0I−i′ ]

V ∧ 0i1i′−i0I−i′ = 0I

(Logic PHRASE-BASED)

The runtime complexity is exponential, O(I22I).
Practical decoding strategies are more restrictive,

implementing what is frequently called a distor-

tion limit or reordering limit. We found that these

terms are inexact, used to describe a variety of

quite different strategies.2 Since we did not feel

that the relationship between these various strate-

gies was obvious or well-known, we give logics

2Costa-jussà and Fonollosa (2006) refer to the reordering
limit and distortion limit as two distinct strategies.

for several of them and a brief analysis of the

implications. Each strategy uses a parameter d,

generically called the distortion limit or reorder-

ing limit.

The Maximum Distortion d strategy (MDd)

requires that the first word of a phrase chosen for

translation be within d words of the the last word

of the most recently translated phrase (Figure 1).3

The effect of this strategy is that, up to the last

word covered in a partial derivation, there must be

a covered word in every d words. Its complexity

is O(I32d).
MDd can produce partial derivations that cannot

be completed by any allowed sequence of jumps.

To prevent this, the Window Length d strategy

(WLd) enforces a tighter restriction that the last

word of a phrase chosen for translation cannot be

more than d words from the leftmost untranslated

word in the source (Figure 1).4 For this logic we

use a bitwise shift operator (�), and a predicate

(α1) that counts the number of leading ones in a

bit array.5 Its runtime is exponential in parameter

d, but linear in sentence length, O(d22dI).
The First d Uncovered Words strategy

(FdUW) is described by Tillman and Ney (2003)

and Zens and Ney (2004), who call it the IBM

Constraint.6 It requires at least one of the leftmost

d uncovered words to be covered by a new phrase.

Items in this strategy contain the index i of the

rightmost covered word and a vector U ∈ [1, I]d

of the d leftmost uncovered words (Figure 1). Its

complexity is O(dI
(

I
d+1

)
), which is roughly ex-

ponential in d.

There are additional variants, such as the Maxi-

mum Jump d strategy (MJd), a polynomial-time

strategy described by Kumar and Byrne (2005),

and possibly others. We lack space to describe all

of them, but simply depicting the strategies as log-

ics permits us to make some simple analyses.

First, it should be clear that these reorder-

ing strategies define overlapping but not identical

search spaces: for most values of d it is impossi-

ble to find d′ such that any of the other strategies

would be identical (except for degenerate cases

3Moore and Quirk (2007) give a nice description of MDd.
4We do not know if WLd is documented anywhere, but

from inspection it is used in Moses (Koehn et al., 2007). This
was confirmed by Philipp Koehn and Hieu Hoang (p.c.).

5When a phrase covers the first uncovered word in the
source sentence, the new first uncovered word may be further
along in the sentence (if the phrase completely filled a gap),
or just past the end of the phrase (otherwise).

6We could not identify this strategy in the IBM patents.
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(1)
item form: [i, {0, 1}I ]

goal: [i ∈ [I − d, I], 1I ]
rule:

[i′′, V ] R(fi+1...fi′/ej ...ej′)
[i′, V ∨ 0i1i′−i0I−i′ ]

V ∧ 0i1i′−i0I−i′ = 0I , |i− i′′| ≤ d

(2)

item form: [i, {0, 1}d]
goal: [I, 0d]

rules:


[i, C] R(fi+1...fi′/ej ...ej′)

[i′′, C � i′′ − i]
C ∧ 1i′−i0d−i′+i = 0d, i′ − i ≤ d,
α1(C ∨ 1i′−i0d−i′+i) = i′′ − i

[i, C] R(fi′ ...fi′′/ej ...ej′)
[i, C ∨ 0i′−i1i′′−i′0d−i′′+i]

C ∧ 0i′−i1i′′−i′0d−i′′+i = 0d, i′′ − i ≤ d

(3) item form: [i, [1, I + d]d] goal: [I, [I + 1, I + d]]

rules:


[i, U ] R(fi′ ...fi′′/ej ...ej′)

[i′′, U − [i′, i′′] ∨ [i′′, i′′ + d− |U − [i′, i′′]|]]
i′ > i, fi+1 ∈ U

[i, U ] R(fi′ ...fi′′/ej ...ej′)
[i, U − [i′, i′′] ∨ [max(U ∨ i) + 1,max(U ∨ i) + 1 + d− |U − [i′, i′′]|]]

i′ < i, [fi′ , fi′′ ] ⊂ U

Figure 1: Logics (1) MDd, (2) WLd, and (3) FdUW. Note that the goal item of MDd (1) requires that the

last word of the last phrase translated be within d words of the end of the source sentence.

d = 0 and d = I). This has important ramifi-

cations for scientific studies: results reported for

one strategy may not hold for others, and in cases

where the strategy is not clearly described it may

be impossible to replicate results. Furthermore, it

should be clear that the strategy can have signifi-

cant impact on decoding speed and pruning strate-

gies (§7). For example, MDd is more complex

than WLd, and we expect implementations of the

former to require more pruning and suffer from

more search errors, while the latter would suffer

from more model errors since its space of possible

reorderings is smaller.

We emphasize that many other translation mod-

els can be described this way. Logics for the IBM

Models (Brown et al., 1993) would be similar to

our logics for phrase-based models. Syntax-based

translation logics are similar to parsing logics; a

few examples already appear in the literature (Chi-

ang, 2007; Venugopal et al., 2007; Dyer et al.,

2008; Melamed, 2004). For simplicity, we will

use the MONOTONE logic for the remainder of our

examples, but all of them generalize to more com-

plex logics.

4 Adding Local Parameterizations via

Semiring-Weighted Deduction

So far we have focused solely on unweighted log-

ics, which correspond to search using only rule-

sets. Now we turn our focus to parameterizations.

As a first step, we consider only local parame-

terizations, which make computing the score of a

derivation quite simple. We are given a set of in-

ferences in the following form (interpreting side

conditions B1...BM as boolean constraints).

A1...AL

C
B1...BM

Now suppose we want to find the highest-scoring

derivation. Each antecedent item A` has a proba-

bility p(A`): if A` is a rule, then the probability is

given, otherwise its probability is computed recur-

sively in the same way that we now compute p(C).
Since C can be the consequent of multiple deduc-

tions, we take the max of its current value (initially

0) and the result of the new deduction.

p(C) = max(p(C), (p(A1)× ...× p(AL))) (3)

If for every A` that is an item, we replace p(A`)
recursively with this expression, we end up with a

maximization over a product of rule probabilities.

Applying this to logic MONOTONE, the result will

be a maximization (over all possible derivations

D) of the algebraic expression in Equation 1.

We might also want to calculate the total prob-

ability of all possible derivations, which is useful

for parameter estimation (Blunsom et al., 2008).

We can do this using the following equation.

p(C) = p(C) + (p(A1)× ...× p(AL)) (4)
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Equations 3 and 4 are quite similar. This suggests

a useful generalization: semiring-weighted deduc-

tion (Goodman, 1999).7 A semiring 〈A,⊗,⊕〉
consists of a domain A, a multiplicative opera-

tor ⊗ and an additive operator ⊕.8 In Equa-

tion 3 we use the Viterbi semiring 〈[0, 1],×,max〉,
while in Equation 4 we use the inside semiring

〈[0, 1],×,+〉. The general form of Equations 3

and 4 can be written for weights w ∈ A.

w(C)⊕= w(A1)⊗ ...⊗ w(A`) (5)

Many quantities can be computed simply by us-

ing the appropriate semiring. Goodman (1999) de-

scribes semirings for the Viterbi derivation, k-best

Viterbi derivations, derivation forest, and num-

ber of paths.9 Eisner (2002) describes the expec-

tation semiring for parameter learning. Gimpel

and Smith (2009) describe approximation semir-

ings for approximate summing in (usually in-

tractable) models. In parsing, the boolean semir-

ing 〈{>,⊥},∩,∪〉 is used to determine grammati-

cality of an input string. In translation it is relevant

for alignment (§6.1).

5 Adding Non-Local Parameterizations

with the PRODUCT Transform

A problem arises with the semiring-weighted de-

ductive formalism when we add non-local parame-

terizations such as an n-gram model (Equation 2).

Suppose we have a derivation D = (d1, ..., dM ),
where each dm is a rule application. We can view

the language model as a function on D.

P (D) = f(d1, ..., dm, ..., dM ) (6)

The problem is that replacing dm with a lower-

scoring rule d′m may actually improve f due to

the language model dependency. This means that

f is nonmonotonic—it does not display the opti-

mal substructure property on partial derivations,

which is required for dynamic programming (Cor-

men et al., 2001). The logics still work for some

semirings (e.g. boolean), but not others. There-

fore, non-local parameterizations break semiring-

weighted deduction, because we can no longer use

7General weighted deduction subsumes semiring-
weighted deduction (Eisner et al., 2005; Eisner and Blatz,
2006; Nederhof, 2003), but semiring-weighted deduction
covers all translation models we are aware of, so it is a good
first step in applying weighted deduction to translation.

8See Goodman (1999) for additional conditions on semir-
ings used in this framework.

9Eisner and Blatz (2006) give an alternate strategy for the
best derivation.

the same logic under all semirings. We need new

logics; for this we will use a logic programming

transform called the PRODUCT transform (Cohen

et al., 2008).

We first define a logic for the non-local param-

eterization. The logic for an n-gram language

model generates sequence e1...eQ by generating

each new word given the past n− 1 words.10

item form: [eq, ..., eq+n−2] goal: [eQ−n+2, ..., eQ]

rule:
[eq, ..., eq+n−2]R(eq, ..., eq+n−1)

[eq+1, ..., eq+n−1]
(Logic NGRAM)

Now we want to combine NGRAM and MONO-

TONE. To make things easier, we modify MONO-

TONE to encode the idea that once a source phrase

has been recognized, its target words are gener-

ated one at a time. We will use ue and ve to denote

(possibly empty) sequences in ej ...e
′
j . Borrowing

the notation of Earley (1970), we encode progress

using a dotted phrase ue • ve.

item form: [i, ue • ve] goal: [I, ue • ve]

rules:

[i, ue•] R(fi+1...fi′/ejve)
[i′, ej • ve]

[i, ue • ejve]
[i, ueej • ve]

(Logic MONOTONE-GENERATE)

We combine NGRAM and MONOTONE-

GENERATE using the PRODUCT transform,

which takes two logics as input and essentially

does the following.11

1. Create a new item type from the cross-

product of item types in the input logics.

2. Create inference rules for the new item type

from the cross-product of all inference rules

in the input logics.

3. Constrain the new logic as needed. This is

done by hand, but quite simple, as we will

show by example.

The first two steps give us logic MONOTONE-

GENERATE ◦ NGRAM (Figure 2). This is close to

what we want, but not quite done. The constraint

we want to apply is that each word written by logic

MONOTONE-GENERATE is equal to the word gen-

erated by logic NGRAM. We accomplish this by

unifying variables eq and en−i in the inference

rules, giving us logic MONOTONE-GENERATE +
NGRAM (Figure 2).

10We ignore start and stop probabilities for simplicity.
11The description of Cohen et al. (2008) is much more

complete and includes several examples.
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(1)

item form: [i, ue • ve, eq, ..., eq+n−2]
goal: [I, ue•, eQ−n+2, ..., eQ]

rules:

[i, ue•, eq, ..., eq+n−2] R(fi...fi′/ejue) R(eq, ..., eq+n−1)
[i′, ej • ue, eq+1, ..., eq+n−1]

[i, ue • ejve, eq, ..., eq+n−2] R(eq, ..., eq+n−1)
[i, ueej • ve, eq+1, ..., eq+n−1]

(2)

item form: [i, ue • ve, ej , ..., ej+n−2]
goal: [I, ue•, eJ−n+2, ..., eJ ]

rules:

[i, ue•, ej−n+1, ..., ej−1] R(fi...fi′/ejve) R(ej−n+2...ej)
[i′, ej • ve, ej−n+2, ..., ej ]

[i, ue • ei+n−1ve, ei, ..., ei+n−2] R(ej−n+2...ej)
[i+ 1, ueej • ve, ej−n+2, ..., ej ]

(3) item form: [i, ue • ve, ei, ..., en−i−2] goal: [I, ue•, eI−n+2, ..., eI ]

rule:
[i, ej−n+1, ..., ej−1] R(fi...fi′/ej ...ej′)R(ej−n+1, ..., ej)...R(ej′−n+1...ej′)

[i′, ej′−n+2...ej′ ]

Figure 2: Logics (1) MONOTONE-GENERATE ◦ NGRAM, (2) MONOTONE-GENERATE + NGRAM and

(3) MONOTONE-GENERATE + NGRAM SINGLE-SHOT.

This logic restores the optimal subproblem

property and we can apply semiring-weighted de-

duction. Efficient algorithms are given in §7, but

a brief comment is in order about the new logic.

In most descriptions of phrase-based decoding,

the n-gram language model is applied all at once.

MONOTONE-GENERATE+NGRAM applies the n-

gram language model one word at a time. This

illuminates a space of search strategies that are to

our knowledge unexplored. If a four-word phrase

were proposed as an extension of a partial hypoth-

esis in a typical decoder implementation using a

five-word language model, all four n-grams will

be applied even though the first n-gram might have

a very low score. Viewing each n-gram applica-

tion as producing a new state may yield new strate-

gies for approximate search.

We can derive the more familiar logic by ap-

plying a different transform: unfolding (Eisner

and Blatz, 2006). The idea is to replace an item

with the sequence of antecedents used to pro-

duce it (similar to function inlining). This gives

us MONOTONE-GENERATE+NGRAM SINGLE-

SHOT (Figure 2).

We call the ruleset-based logic the minimal

logic and the logic enhanced with non-local pa-

rameterization the complete logic. Note that the

set of variables in the complete logic is a superset

of the set of variables in the minimal logic. We

can view the minimal logic as a projection of the

complete logic into a smaller dimensional space.

It is important to note that complete logic is sub-

stantially more complex than the minimal logic,

by a factor of O(|VE |n) for a target vocabulary of

VE . Thus, the complexity of non-local parameteri-

zations often makes search spaces large regardless

of the complexity of the minimal logic.

6 Other Uses of the PRODUCT Transform

The PRODUCT transform can also implement

alignment and help derive new models.

6.1 Alignment

In the alignment problem (sometimes called con-

strained decoding or forced decoding), we are

given a reference target sentence r1, ..., rJ , and

we require the translation model to generate only

derivations that produce that sentence. Alignment

is often used in training both generative and dis-

criminative models (Brown et al., 1993; Blunsom

et al., 2008; Liang et al., 2006). Our approach to

alignment is similar to the one for language mod-

eling. First, we implement a logic requiring an
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input to be identical to the reference.

item form: [j]
goal: [J ]

rule:
[j]

[j + 1]
ej+1 = rj+1

(Logic RECOGNIZE)

The logic only reaches its goal if the input is iden-

tical to the reference. In fact, partial derivations

must produce a prefix of the reference. When we

combine this logic with MONOTONE-GENERATE,

we obtain a logic that only succeeds if the transla-

tion logic generates the reference.

item form: [i, j, ue • ve] goal: [I, j, ue•]

rules:


[i, j, ue•] R(fi...fi′/ej ...ej′)

[i′, j, •ej ...ej′ ]

[i, j, ue • ejve]
[i, j + 1, ueej • ve]

ej+1 = rj+1

(Logic MONOTONE-ALIGN)

Under the boolean semiring, this (minimal) logic

decides if a training example is reachable by the

model, which is required by some discriminative

training regimens (Liang et al., 2006; Blunsom et

al., 2008). We can also compute the Viterbi deriva-

tion or the sum over all derivations of a training

example, needed for some parameter estimation

methods. Cohen et al. (2008) derive an alignment

logic for ITG from the product of two CKY logics.

6.2 Translation Model Design

A motivation for many syntax-based translation

models is to use target-side syntax as a language

model (Charniak et al., 2003). Och et al. (2004)

showed that simply parsing the N -best outputs

of a phrase-based model did not work; to ob-

tain the full power of a language model, we need

to integrate it into the search process. Most ap-

proaches to this problem focus on synchronous

grammars, but it is possible to integrate the target-

side language model with a phrase-based transla-

tion model. As an exercise, we integrate CKY

with the output of logic MONOTONE-GENERATE.

The constraint is that the indices of the CKY items

unify with the items of the translation logic, which

form a word lattice. Note that this logic retains the

rules in the basic MONOTONE logic, which are not

depicted (Figure 3).

The result is a lattice parser on the output of the

translation model. Lattice parsing is not new to

translation (Dyer et al., 2008), but to our knowl-

edge it has not been used in this way. Viewing

(1)

(2)

Figure 4: Example graphs corresponding to a sim-

ple minimal (1) and complete (2) logic, with cor-

responding nodes in the same color. The state-

splitting induced by non-local features produces in

a large number of arcs which must be evaluated,

which can be reduced by cube pruning.

translation as deduction is helpful for the design

and construction of novel models.

7 Algorithms

Most translation logics are too expensive to ex-

haustively search. However, the logics conve-

niently specify the full search space, which forms

a hypergraph (Klein and Manning, 2001).12 The

equivalence is useful for complexity analysis:

items correspond to nodes and deductions corre-

spond to hyperarcs. These equivalences make it

easy to compute algorithmic bounds.

Cube pruning (Chiang, 2007) is an approxi-

mate search technique for syntax-based translation

models with integrated language models. It op-

erates on two objects: a −LM graph containing

no language model state, and a +LM hypergraph

containing state. The idea is to generate a fixed

number of nodes in the +LM for each node in

the −LM graph, using a clever enumeration strat-

egy. We can view cube pruning as arising from

the interaction between a minimal logic and the

state splits induced by non-local features. Figure 4

shows how the added state information can dra-

matically increase the number of deductions that

must be evaluated. Cube pruning works by con-

sidering the most promising states paired with the

most promising extensions. In this way, it easily

fits any search space constructed using the tech-

nique of §5. Note that the efficiency of cube prun-

ing is limited by the minimal logic.

Stack decoding is a search heuristic that simpli-

fies the complexity of searching a minimal logic.

Each item is associated with a stack whose signa-

12Specifically a B-hypergraph, equivalent to an and-or
graph (Gallo et al., 1993) or context-free grammar (Neder-
hof, 2003). In the degenerate case, this is simply a graph, as
is the case with most phrase-based models.
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item forms: [i, ue • ve], [A, i, ue • ve, i
′, u′e • v′e] goal: [S, 0, •, I, ue•]

rules:

[i, ue•] R(fi+1...fi′/ejve) R(A→ ej)
[A, i, ue•, i′, ej • ve]

[i, ue • ejve] R(A→ ej)
[A, i, ue • ejve, i, ueej • ve]

[B, i, ue • ve, i
′′, u′′e • v′′e ] [C, i′′, u′′e • v′′e , i′, u′e • v′e] R(A→ BC)

[A, i, ue • ve, i′, u′e • v′e]

Figure 3: Logic MONOTONE-GENERATE + CKY

ture is a projection of the item signature (or a pred-

icate on the item signatures)—multiple items are

associated to the same stack. The strength of the

pruning (and resulting complexity improvements)

depending on how much the projection reduces the

search space. In many phrase-based implemen-

tations the stack signature is just the number of

words translated, but other strategies are possible

(Tillman and Ney, 2003).

It is worth noting that logic FdUW (§3.2), de-

pends on stack pruning for speed. Because the

number of stacks is linear in the length of the in-

put, so is the number of unpruned nodes in the

search graph. In contrast, the complexity of logic

WLd is naturally linear in input length. As men-

tioned in §3.2, this implies a wide divergence in

the model and search errors of these logics, which

to our knowledge has not been investigated.

8 Related Work

We are not the first to observe that phrase-based

models can be represented as logic programs (Eis-

ner et al., 2005; Eisner and Blatz, 2006), but to

our knowledge we are the first to provide explicit

logics for them.13 We also showed that deductive

logic is a useful analytical tool to tackle a variety

of problems in translation algorithm design.

Our work is strongly influenced by Goodman

(1999) and Eisner et al. (2005). They describe

many issues not mentioned here, including con-

ditions on semirings, termination conditions, and

strategies for cyclic search graphs. However,

while their weighted deductive formalism is gen-

eral, they focus on concerns relevant to parsing,

such as boolean semirings and cyclicity. Our work

focuses on concerns common for translation, in-

cluding a general view of non-local parameteriza-

tions and cube pruning.

13Huang and Chiang (2007) give an informal example, but
do not elaborate on it.

9 Conclusions and Future Work

We have described a general framework that syn-

thesizes and extends deductive parsing and semir-

ing parsing, and adapts it to translation. Our goal

has been to show that logics make an attractive

shorthand for description, analysis, and construc-

tion of translation models. For instance, we have

shown that it is quite easy to mechanically con-

struct search spaces using non-local features, and

to create exotic models. We showed that differ-

ent flavors of phrase-based models should suffer

from quite different types of error, a problem that

to our knowledge was heretofore unknown. How-

ever, we have only scratched the surface, and we

believe it is possibly to unify a wide variety of

translation algorithms. For example, we believe

that cube pruning can be described as an agenda

discipline in chart parsing (Kay, 1986).

Although the work presented here is abstract,

our motivation is practical. Isolating the errors

in translation systems is a difficult task which can

be made easier by describing and analyzing mod-

els in a modular way (Auli et al., 2009). Fur-

thermore, building large-scale translation systems

from scratch should be unnecessary if existing sys-

tems were built using modular logics and algo-

rithms. We aim to build such systems.
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