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Abstract. Discriminative training methods are used in statistical machine translation to ef-
fectively introduce and combine additional knowledge sources within the translation proc-
ess. Although these methods are described in the accompanying literature and comparative 
studies are available for speech recognition, additional considerations are introduced when 
applying discriminative training to statistical machine translation. In this paper we pay spe-
cial attention to the comparison and formalization of discriminative training criteria and 
their respective optimization methods with the goal of improving translation performance 
measured by the corpus level BLEU metric for a Viterbi beam based decoder. We frame 
this work within the current trends in discriminative training and present reproducible re-
sults that highlight the potential as well as shortcomings of N-Best list based discriminative 
training. 

1. Introduction 
Statistical machine translation, like other natu-
ral language process tasks, has developed a set 
of unique evaluation metrics that go beyond 
simply evaluating the number of sentence errors 
that a system makes on a test set. While debates 
continue regarding the relative value of each 
competing metric, the BLEU [Papeneni, 2001] 
and NIST [Doddington, 2002] scores (which 
consider system performance at the corpus le-
vel) have shown their effectiveness in driving 
the development of statistical machine transla-
tion systems. These metrics have highlighted the 
need for more expressive models of translation 
and a framework to introduce additional knowl-
edge sources within the translation process. The 
direction translation [Och, 2002] approach [Brown 
et al, 1993] delivers this framework, and pro-
vides a necessary formalism to the process of 
combining and optimizing additional knowledge 
sources. Discriminative training considers com-
peting candidate translations from an N-Best 
list is used to find appropriate scaling factors 
for each additional knowledge source. The goal 
is to find scaling factors that improve the metric 
performance of the candidate translation chosen 
by the decoder [Vogel, 2003]. In this paper, we 

consider these scaling factors within the decod-
ing process rather than as a post processing re-
ranking step, thereby creating additional con-
siderations regarding the stability of the scaling 
factors. The choice of evaluation metric, the na-
ture of the additional knowledge sources within 
the decoding process and the implementation 
decisions taken in each component, determine 
the effectiveness of each discriminative method. 

This paper will focus on comparing the for-
malism and practical considerations involved with 
deploying Maximum Mutual Information [Bas-
sat,1982] and Minimum Classification Error 
[Huang, Katagiri, 1992] training within a statis-
tical machine translation context. We begin by 
framing the discriminative training task for sta-
tistical machine translation and survey direc-
tions of active research in the field. We discuss 
the impact that the corpus level BLEU score has 
on the discriminative training criteria and the 
implementation requirements for optimization 
methods that accommodate for such metrics. We 
describe the process of generating N-Best lists 
from a Viterbi decoding using partial and full 
translation based knowledge sources and then 
merging these lists across iterations along with 
experimental results on widely distributed train-
ing and test data sets. We conclude with a dis-
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cussion of future work and potentially promis-
ing directions in discriminative training. 

2. Direct Statistical Machine 
Translation 

Statistical machine translation presents the task 
of finding a target language (“English”) sequence 
of word tokens e = e1…eS that is the translation 
for a source language (“French”) sequence f = 
f1…fT. A zero-one loss function would suggest 
that a decision rule that selects the English sen-
tence that has the highest conditional probabil-
ity, choosing from the set of all possible target 
language sequences E as shown below. 

e*= argmaxe P e | f( )                        (1) 

where ( )feP |  refers to the true conditional dis-
tribution of e given f. Using this decision rule to 
select from within the search space of all possi-
ble candidate translations minimizes the num-
ber of decision errors made under a zero-one 
loss function (which implies there is one correct 
translation, and several incorrect translations). 
The decoder [Vogel, 2003] performs this search 
using a parameterized estimate ( )feP |θ  of 
( )feP | . The search is kept tractable by aggres-

sive pruning based on the estimated model. It is 
clear that this decision rule does not explicitly 
model performance on an evaluation metric, but 
rather leverages the effectiveness of estimate 

( )feP |θ  to rank competing candidate sequences. 
[Kumar, Byrnes, 2004] propose a Minimum Bayes 
Risk (MBR) decoding process that explicitly 
minimizes the expected value of the loss accord-
ing to an evaluation metric for a training set. As 
stated in [Kumar,Byrnes, 2004], performing the 
search process and computing the expectation 
of the loss over the true distributions is compu-
tationally prohibitive and they limit the use of 
their MBR decoder to re-ranking an N-Best list. 
[Shen, 2004] also proposes discriminative re-
ranking on N-Best lists that focus on separating 
“good” and “bad” translations according to an 
evaluation metric. Our discussion will not focus 
on N-Best list re-ranking, but instead, will in-
vestigate methods that use the N-Best list as an 
approximation of the search environment within 
the decoder. We limit our scope to MAP decoders 
and determining model scaling factors Mθθθ K1=  

for ( )feP |θ   that improve the decoder’s perfor-
mance on the BLEU metric.  

Under the source channel approach pre-
sented in [Brown et al, 1993], the decision rule 
(1) decomposed using the Bayes rules into 
( )efP |  and ( )eP , which can be individually es-

timated. These models are usually combined as 
a log linear model with scaling factors that are 
tuned to bias the performance of the system to-
wards a particular evaluation metric. [Och, 
2002] proposed modeling the direct translation 
probability ( )feP |θ  directly, allowing for ex-
tensions to the two model approach without loss 
of generality using the exponential model 
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where h  is a model feature score that represents 
some relationship between fe, . In the source chan-
nel model we could use log forms of the transla-
tion and language models as model features. 
Henceforth we will omit the individual model 
subscripts and simply refer to ),(. fehθ  to repre-
sent the linear combination of all scaling factors 
and their respective models features. We now 
discuss discriminative methods to find θ  on a 
training corpus such that decoding using the de-
cision rule in equation (1) to decode a test set 
will improve performance as measured by the 
BLEU metric.  

3. Discriminative Training 
[Normandin 1994] provided empirical evidence 
that discriminative training criteria could better 
recover from situations where incorrect model 
assumptions are made, since these criteria at-
tempt to separate the class conditional prob-
abilities of the correct class *e  from the alter-
native classes Ee∈'  from the N-Best list. 

3.1. Maximum Mutual Information 

The Maximum Mutual Information [Bassat, 
1982] uses the evaluation metric to label “cor-
rect” classes Ee ∈+  and attempts to find θ  for 

( )feP |θ  such that these correct classes are 
separated from the incorrect classes Ee ∈− . MMI 
defines the objective function over a set of N 
training source-target language sequence pairs. 
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Under the direct estimation approach, it is un-
necessary to decompose ( )feP |θ  further, and this 
method reduces to the conditional maximum 
likelihood criteria allowing simple gradient 
based optimization techniques. The discrimina-
tion is implicit in ( )feP |θ  since in log form we 
are separating the scores of the metric specified 
“correct” translations and the competing candi-
dates from the N-Best list. 
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with respect to each dimension m inθ . Several 
techniques for this kind of optimization are dis-
cussed in [Press et al, 2002]. 

3.2. Minimum Classification Error 
The Minimum Classification Error [Juang, Ka-
tagiri, 1992] criteria attempts to minimize the 
empirical error (as determined by the evaluation 
metric) of the decision rule. To explicitly model 
this condition, we can define our MCE criterion 
as shown in [Och,2003] as… 
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where ),( *
nn reError  is a function that assigns an 

error to the selected candidate sequence *
ne  with 

respect to a reference translation for nr that is 
available for each nf . Note that the decision rules 
used by both methods is the same, their differ-
ence lies in the objective function used to train 
the scaling factors. 

The MCE criterion can be smoothed into 
continuous, differentiable functions that can be 
optimized with respect to θ  using conjugate gra-
dient descents. This is usually accomplished by 
using a “softmax” operation to replace argmax 

as shown in [Schlueter, 2001] and a smooth er-
ror function, usually a sigmoid function to re-
place a zero-one loss function. The form shown 
in equation (2) however, would typically re-
quire gradient free optimization techniques such 
as Powell’s method or the Snelder-Mead sim-
plex method as described in [Press]. [Och2003] 
shows that a much simpler optimization method 
is available that leverages the form of ( )feP |θ  
to optimize each dimension of θ  much more ef-
ficiently. We provide the details later in this pa-
per. The criterion in equation (2) can be com-
pared to Falsifying Training as described in 
[Shleuter] where =α ∞ and the ),( *

nn reError is the 
smoothing function (albeit not smooth). This form 
allows us to accurately estimate the empirical 
error of the same decision rule (2) used in the 
decoder on the training data and optimize θ  to 
minimize this error. Although this method is not 
guaranteed to converge on a globally opti-
mal *θ , [Schlueter, 2001] shows that the MCE 
criterion achieves a tighter error bound on the 
true Bayes error rate.  

[Zens,Ney, 2003] propose an alternative 
method where the error surface is evaluated us-
ing only *

ne  without regard for the alternatives 
available in the N-Best list. The empirical error 
on the training data is estimated using the top 
candidate only. [Zens,Ney, 2003] present an it-
erative algorithm via the Simplex method de-
scribed in [Press et al, 2002], generating a lo-
cally optimal final parameter set. 

While the N-Best list based methods explore 
a larger region of the error surface after decod-
ing the training set, they select *

ne  from the N-
Best list only, which is an approximation to the 
true space of all candidate target language se-
quences. This approximation is potentially a 
function of several pruning and recombination 
parameters that drive the decoder through the 
search space and influence the final N-Best list. 
Since the method described in [Zens,Ney] works 
only with the top candidates, the decision rule 
used to search the space is a more accurate rep-
resentation of the decision process used in the 
decoding and optimization can operate on all 
parameters that play a role in the decoding, 
rather than just those that play a role in ( )feP |θ . 
The disadvantage of this method lies in the 
computational cost of repeatedly decoding and 
evaluating a training set especially when the Sim-
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plex method is typically one of the slowest to 
converge [Press et al, 2002].  

We will now consider the MMI and MCE 
criteria (both N-Best list based methods) and 
specific considerations when applying them to 
statistical machine translation. 

4. Effect of the Evaluation Metric 
Both the MMI and MCE methods are inherently 
related to the choice of metric used to evalua-
tion candidate translation. MMI uses the metric 
to label “correct” and “incorrect” translations, 
while the MCE explicitly evaluates candidates 
in the N-Best list that are chosen by the deci-
sion rule to minimize the error on these choices. 
Several evaluation metrics including word error 
rate, multi reference word error rate, BLEU and 
NIST are commonly used in statistical machine 
translation and [Och, 2003] presents empirical 
evidence that optimizing ( )feP |θ  using a par-
ticular metric will yield the most improved re-
sults when evaluating the decision rule using 
the same metric. BLEU and NIST however, are 
evaluated at the corpus level and are not addi-
tive over individual sentences. This makes 
choosing the “correct” translation from the N-
Best list for MMI difficult and ),( *

nn reError  for 
MCE irrelevant. We focus on the BLEU score 
for the remainder of this paper.  

As a reminder, to evaluate the BLEU score 
of a set of N translations *

Ne , against a set of ref-
erences Nr , we accumulate n-gram precision and 
closest reference length information for each *

ne  
from *

Ne  and compute the BLEU score as fol-
lows: 
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where ),( *
Nng reδ counts the number of g-grams 

matched between the candidate being evaluated 
and the corresponding reference, and ),( *

Nng rec  
counts the number of g-grams suggested in *

ne . 
G is the max n-gram size we want to consider. 

4.1. Effect on MMI 

For MMI we need to label a “correct” candidate 
translation for each source sentence from its 
corresponding N-Best list of candidates. We 
will call this set of choices a “configuration”. 
Determining a high scoring configuration be-
comes difficult under the BLEU metric since it 
operates on a configuration, rather than at the 
sentence level. Since BLEU scores are not cu-
mulative it is not sufficient to select candidates 
which are “locally correct” when only com-
pared to other candidates in the same N-Best 
list. Selecting the true optimal configuration on 
a training set would require a search through an 
exponential number of configurations, so we ap-
proximate this using an iterative approach. We 
begin with an initial configuration (usually the 
top ranked candidate in each N-Best list) and 
accumulate the relevant statistics for this con-
figuration. Starting with the first N-Best list, con-
sider the impact on the training set score when 
selecting an alternative translation by subtract-
ing the statistics for the current configuration 
choice from the accumulated statistics and add-
ing those for the alternative we are considering. 
Evaluate each alternative in the N-Best list in 
this fashion, settling on the one that results in 
the highest training set BLEU score. Repeat this 
process for the next source sentence, using the 
locally optimized configuration as a starting 
point and continue till there are no configura-
tion changes made on the entire corpus. This is 
effectively a greedy search through the space of 
configurations and on our training data using 4-
Gram BLEU evaluation we see convergence in 

Algorithm 1 identification 
Require: N-Best list E 
Generates: configuration c 
1: c ←0, c’ ← c  
2: b = calculateBLEU(c); 
3: while c’ != c 
4:    c=c’ 
4:    for (n=1,...N)  
5:        foreach (k in NBestList(n)) 
6:              b’ = calculateBLEU(c’(n) ←k) 
7:              if (b’> b) { b=b’  c(n) ← k } 
8:        end foreach 
9:     end for 
10: end while
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2-3 iterations. Pseudo-code detailing this search 
is shown below. It is important to note that this 
method will result in a locally optimal configu-
ration. This configuration specifies the “correct” 
candidate for each N-Best list, and ties repre-
sent multiple “correct” hypotheses within an N-
Best list. The configuration also provides an es-
timate of the upper bound for the BLEU score 
on the training set. 

4.2. Effect on MCE 
We need to refine our MCE criterion to account 
for the corpus level BLEU score. Instead of 
evaluating the error at each sentence, we evalu-
ate the error (negative BLEU score) on the con-
figuration selected by the decision process: 

),( *
NNMCE reErrorF =  

5. The Optimization Process 

5.1. MMI Optimization 
The MMI criterion is optimized using gradient 
based techniques. The only relevant considera-
tion is over/under flow that might result when 

computing the ∑
∈ nEk

ne

nf
k
nehe ),(.log θ  term. Depend-

ing on the sign and magnitude of the feature 
data term inside the sum might overflow or un-
derflow. We use the following decomposition 
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The arguments to the exponential terms are re-
stricted to be the difference in scaled model fea-
ture scores between k

ne and 1
ne , limiting the abil-

ity for the exponential calculation to underflow 
or overflow. This assumes that the scaled model 
features within a single N-Best list are rela-
tively similar.  

5.2. MCE Optimization 

The MCE criteria as applied in [Och, 2003] de-
fines a non-smooth error surface in M-dimen-

sional space corresponding to θ . Powell’s me-
thod selects a dimension to optimize, while keep-
ing all others fixed, and finds the value of mθ  
that minimizes the error on the training set, de-
fining a start point in M-dimensional space to 
begin optimizing the next dimension. [Och, 
2003] proposes an algorithm to significantly re-
duce the number of evaluations in this greedy 
search through the M-dimensional space. Each 
candidate for a given sentence can be repre-
sented: 
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with the goal of optimizing over dimension d . 
Each candidate translation in the N-Best list for 
a particular sentence defines a line in R2 with 
respect to d and the total score. The set of can-
didates in the N-Best list for a given sentence 
defines a set of lines in R2 and the decision rule 
in (2) states that at a given value of ^

dd θθ = , *
ne  

is the line with the highest value of the total 
score. The selection of *

ne for each sentence at 
^
dθ ultimately determines the error at ^

dθ . Our 
goal is to find *

dd θθ = such that the error is mi-
nimized at *

dθ . Powell’s method would have us 
evaluating at several values of dθ to approxi-
mate this error surface. As described in [Och, 
2003], we can significantly reduce the number 
of times we need to evaluate this error, by only 
focusing on values of dθ that could generate dif-
ferent error values. 

We know that the error can only change if 
we move to a dθ where the highest line is a dif-
ferent line than before, implying that we only 
have to evaluate the error at values in between 
the intersections that line the top surface of the 
cluster of lines representing the N-Best list for 
each source sentence. The intersection between 
any two candidate lines 1e and 2e is found at: 

^
dθ =

fefe

fefe

bb
aa

,,'

,',

−

−  

If we decide to search for these intersection 
points within a range [ ]rl, then we can start with 
the highest line fee t ,maxarg at ld =θ and search 
for intersections with all lines that have a steeper 
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slope than this initial line. The intersection point 
^
dθ that is closest to l , represents a critical value 

of dθ over which the top candidate for this sen-
tence changes. Mark this intersection and repeat 
the process, looking for intersections on the new 
candidate line. Repeat until the right boundary 
is reached. 

Each N-Best list generates a set of “critical” 
values of ^

dθ  across which the error contribution 
from *

ne  might change. We then merge the set 
of critical values for all sentences by concate-
nating and sorting them all. In between pairs of 
boundaries, we know the error must stay con-
stant since the same candidates are selected for 
all values of dθ  within this boundary. This im-
plies that we only have to evaluate the error 
within each pair of non-identical boundaries 
once, to get a complete representation of the er-
ror surface with respect to dθ . When moving 
onto the next dimension, we set dθ  to the value 
that generated the lowest error. 

Although this implementation significantly 
reduces the number of times the error needs to 
be evaluated, we can improve timed perform-
ance further with some additional book keep-
ing. Evaluating the training set error at a given 

dθ  involves evaluating *
ne  for each source sen-

tence and then accumulating statistics from *
Ne  

to compute the BLEU score.  
The selection information has already been 

computed when evaluating the intersection 
points. Starting at ld =θ  we considered intersec-
tions with all lines that have a steeper slope. 
Finding an intersection with a line with a steeper 
slope implies that the configuration will change 
over the intersection point. We can define a pair  
that Errorid ∆,,θ associates the change in error 

data that occurs when crossing over the thi inter-
section. For the BLEU score we can store, for 
each n-gram size, the number of correct and 
suggested n-grams, as well as the length of the 
closest reference. Error deltas are then a set of 
deltas for each relevant statistic. 

Figure 1 represents the N-Best list for a sin-
gle sentence when separating a single dimen-
sion. The solid dots on the horizontal axis 
would be values at which we should evaluate 
the error. The empty circles are values at which 
the candidate selection changes. 

 
Figure 1. Candidate translation in dimension d, and the 
critical intersections of one source sentence. Labeling 
on the d-axis indicates the candidate that the decision 
rule would choose. 

When the Errorid ∆,,θ  pairs are merged over all 

source sentences and sorted according to the in-
tersection, we can simply sum the error deltas 
as we cross intersection boundaries to track the 
current value of each statistic. If there are du-
plicate intersection points in the merged list, we 
must only consider the error once, since the er-
ror data has been summed for all duplicate in-
tersection points (corresponding to changes in 
the configuration from multiple source sen-
tences). Select *

dθ  as the midpoint of the interval 
corresponding to the lowest error and continue 
with the next direction. Termination conditions 
can be based on the number of iterations or suc-
cessive reduction of error across iterations.  

6. Re-Decoding with *θ  

Decoding the training set with *θ  from MMI or 
MCE training will generate a new N-Best list 
for each source sentence. Depending on the na-
ture of the pruning and recombination parame-
ters applied within the decoder, this second list 
might differ considerably from the N-Best list 
generated by initial θ , reflecting the local ap-
proximation of the candidate space represented 
by the N-Best list. N-Best lists can be merged 
across iterations to create a more complete rep-
resentation of the target sequence search the 
space. There are two cases to deal with when 
merging N-Best lists. 

Case 1: A new target language candidate se-
quence is generated – Add the candidate se-
quence to the merged N-Best list using a dic-
tionary based structure like a trie to conserve 
space and store the model feature data and rele-
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vant BLEU statistics at the leaf node for this 
target sequence. 

Case 2: A target sequence is generated that 
matches one already in the trie. – Compare the 
model feature data to those already at the leaf 
node corresponding to the target sequence and 
store the additional feature data. This new path 
corresponds to a different set of decision made 
by the decoder to generate the same sequence.  

Removing duplicate phrase or word transla-
tion pairs from the translation models used to 
decode the training data can reduce the number 
of candidate data points that have different 
model feature data but identical target sequences. 

It is also important that the choice of *θ  does 
not affect general parameters of the decoding 
process. The common Viterbi beam search cri-
terion is particularly affected by changes in *θ . 
For example, one variety of beam search re-
stricts the number of partial hypotheses that are 
expanded over the source sequence by only 
considering those that have scores within a 
fixed delta from the top partial hypothesis score 
at a given source word. The effect of this fixed 
delta beam changes as the scale of the partial 
hypothesis scores change. Changes to θ  affect 
the partial hypothesis scores within the decod-
ing process thereby modified the pruning effect 
of the beam. In addition, if feature scores are 
dependant on the length of the candidate hy-
pothesis, then the beam has a different effect on 
sentences of different lengths.  

To keep the number of hypotheses consid-
ered in each decoding iteration constant, with 
respect toθ , we use a beam that considers a 
fixed number of partial hypotheses at each source 
word. 

7. Experimental Results 
We evaluate the impact the MMI and MCE cri-
terion have toward improvement on the BLEU 
score for Chinese to English translation in the 
newswire domain using data available in the 
DARPA TIDES evaluations. We use three mo-
del features in ( )feP |θ , the log score of a lan-
guage model built on a 20 million word mono-
lingual corpus, the log score of a translation 
model, and a sentence length model which sim-
ply counts the number of words generated.  

We use the decoder and transducers as de-
scribed in [Vogel, 2003] with the beam modifi-
cation described earlier. Table 1 details the data 
characteristics on the small and large track cor-
pora from which transducers are built, and the 
training and set test, on which *θ is trained and 
tested. 

Track #Pairs Chinese English 
Small 3540 90K 115K 
Large 77558 2.46M 2.69M 
Training 878 24360 – 
Test 919 26223 – 

Table 1: Corpus figures indicating no. of sentence pairs 
and number of Chinese and English word. 

On the Small and Large data track we begin 
with initial scaling factors [ ]1,1,1=θ , a fixed 
number of hypotheses beam of size 100, recom-
bination factors that consider the number of 
words translated; the coverage pattern; the lan-
guage model state as described in [Vogel, 2003]. 
We report the improvements in BLEU score 
due to each method as well as the locally opti-
mal (max) BLEU score, for the small and large 
track for the training and test data along with 
the respective generating parameters. 

We fix the translation model parameter at 1 
to get a better impression of the relative impor-
tance of each model. Summary statistics are 
shown in Tables 2,3 and a graph that details 
relevant scores across iterations is shown in 
Figure 1 where TM=Translation Model, LM=Lan-
guage Model, SL=Sentence Length Model. 

 Params(TM, LM,SL) Max Train Test 
Base 1.00 1.00 1.00 0.224 0.159 0.163 
MCE 1.00 3.72 -0.04 0.261 0.180 0.182 
MMI 1.00 4.36 0.59 0.264 0.178 0.180 

Table 2: Small track results for the final *θ  

 Params(TM, LM,SL) Max Train Test 
Base 1.00 1.00 1.00 0.300 0.243 0.231 
MCE 1.00 1.97 -0.31 0.369 0.260 0.251 
MMI 1.00 NA NA NA NA NA 

Table 3: Large track results for the final *θ  

The MMI method attempts to separate the top 
metric scoring hypothesis from competing hy-
pothesis. The top metric scoring hypothesis ty-
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pically represents translations with lower model 
costs (higher scores) than the other translations. 
This effect when considered on large data sets 
could lead to negative model scores. While good 
for N-Best list re-ranking this effect would pre-
vent the decoder from exploring the target lan-
guage search space efficiently. We experienced 
this issue here, and were unable to generate large 
track results for the MMI method. We consider 
this a shortcoming of the MMI method when 
applied to the translation task using a beam de-
coder. 

1 2 3 4 5 6 7 8 9
0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

 
Figure 2 Small track training and test scores, MCE: 

solid line, MMI dashed line, test score indicated with * 
on line.  

BLEU scores for both models are significantly 
higher than the initial parameters and the MCE 
criterion seems to outperform the MMI criterion 
as expected on the small track and was able to 
generate large track results, while MMI was un-
able to. Significance testing shows that the im-
provements over the baseline are statistically 
significant over this data [Zhang, Vogel, 2004]. 
The difference between MMI and MCE in the 
small track is not statistically significant, (0.005 
is the threshold on this dataset).  

Small changes in training set scores match 
quite closely with changes in test set scores im-
plying that the optimal parameters do generalize 
over test sets. The progress of the MMI method 
over iterations is significantly more erratic than 
the MCE method. We believe this comes from 
the model attempting to further separate already 
high ranking top candidates, effectively over 
fitting on the N-Best list, and creating extreme 
parameter settings that are not effective in re-
decoding the training data (an effect which is 

crippling on the large track). We see evidence 
of this effect when we look into the parameter set-
ting that caused the plunge in score after the first 
iteration in the MMI criteria. [ ]4.31,2.182,1=θ  af-
ter the first iteration. While these values have 
significantly discriminated the top scoring can-
didate from the alternatives, they are not effec-
tive in the translation process.  

This problem could be addressed by using a 
sigmoid smoothing function to limit the effect 
of severe positive and negative discriminations 
in the MMI criterion. The MMI criterion is also 
inherently impaired since a localized selection 
criterion that must be employed to determine 
“correct” candidates. By selecting only one can-
didate, the MMI criterion must discriminate this 
candidate from all other alternative, regardless 
of their relative scores. This effect is due to the 
implied zero-one loss criterion employed in MMI. 
Alternative approaches could include taking 
into account relative rank in the N-Best list to 
weight the contribution to the discriminative 
criterion. 

8. Conclusions 
Discriminative training applied to N-Best lists 
is an effective way to quickly approximate and 
model the error surface with respect to model 
parameters. In this work we have compared the 
formal models as well as empirical results from 
two classes of discriminative training with the 
aim of providing a clear framework for repro-
duction and discussion of results. Our contribu-
tions come in the form of detailing the impor-
tant differences in formalism and practical con-
siderations required to deliver improvements with 
these methods in the translation domain.  

Inspecting the maximum BLEU scores pos-
sible on the small and large data tracks showed 
that while discriminative training has moved us 
towards these values, we are still significantly far 
away from making optimal use of the data avail-
able in the training corpora. It will be valuable 
to create methods to determine model specific 
upper bounds on discriminative training criteria 
with respect to specific evaluation metrics in the 
style of [Schlueter, 2001], allowing researchers 
to focus their efforts towards more accurate es-
timation of component models or more effec-
tive model combination and optimization tech-
niques. We expect to continue our work in show-
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ing the relationship between the formal and em-
pirical aspects of discriminative training when 
applied to statistical machine translation and hope 
that this work will promote this process in the 
community. 
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