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Abstract

Statistically estimated phrase-based mod-
els promised to further the state-of-the-art,
however, several works reported a perfor-
mance decrease with respect to heuristi-
cally estimated phrase-based models. In
this work we present a latent variable
phrase-based translation model inspired by
the hidden semi-Markov models, that does
not degrade the system. Experimental re-
sults report an improvement over the base-
line. Additionally, it is observed that both
Baum-Welch and Viterbi trainings obtain
the very same result, suggesting that most
of the probability mass is gathered into one
single bilingual segmentation.

1 Introduction

The machine translation problem is stated as the
problem of translating asource sentence,xJ

1
, into

a target sentence,yI
1
. In accordance with the sta-

tistical approach to machine translation, the opti-
mal translationŷ of a source sentencex is given
by the fundamental equation of statistical machine
translation (Brown and others, 1993)

ŷ = arg max
y∈Y⋆

p(x |y) p(y) (1)

where p(x |y) is approximated by aninverse
translation model andp(y) is modelled with alan-
guage model; which is usually instanced by an-
gram language model (Chen and Goodman, 1996).

The first approaches to model the translation
probability in Eq. (1), were based on word dic-
tionaries. These word-based models, the so-called
IBM translation models (Brown and others, 1993),
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tackled the problem with word-level dictionaries
plus alignments between words. However, current
systems model the inverse conditional probability
in Eq. (1) usingphrase dictionaries. A phrase is
understood here as any sequence of source or tar-
get words. This phrase-based methodology stores
specific sequences of target words (target phrase)
into which a sequence of source words (source
phrase) is translated.

However, a key concept of this approach is the
procedure through which these phrase pairs are
inferred. The common approach consists in us-
ing the IBM alignment models (Brown and others,
1993) to obtain a symmetrised alignment matrix
from which coherent phrases are extracted (Och
and Ney, 2004). Then, a simple count normalisa-
tion is carried out in order to obtain a conditional
phrase dictionary.

Alternatively, some approaches infer the phrase
dictionaries statistically. For instance, a joint prob-
ability model for phrase-based estimation is pro-
posed in (Marcu and Wong, 2002). In that work,
all possible segmentations were extracted using the
EM algorithm (Dempster et al., 1977), without any
matrix alignment constraint, in contrast to the ap-
proach followed in (Och and Ney, 2004). Based
on this work, another work (Alexandra Birch and
Koehn, 2006), constrained the EM to only con-
sider phrases which agree with the alignment ma-
trix, thus reducing the size of the phrase dictionar-
ies (or tables).

A possible drawback of the above phrase-
based models is that they are not conditional, but
joint models that require a re-normalisation post-
processing in order to obtain a conditional model.
However, a generative conditional phrase-based
model presented in (DeNero et al., 2006) showed
a worsening of phrase dictionaries.
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In this work, we propose a conditionalphrase-
based hidden semi-Markov model (PBHSMM) that
improves the phrase-dictionary estimation. Al-
though, the improvements are not impressive, bare
in mind that the main property of this model is its
clear theoretical foundation, since it is based on
a well-known statistical modelling technique, the
so-called HSMM (Ostendorf et al., 1996). This al-
low us to include several statistical improvements
into future revisions of the model (see section 5).
A previous work (Andrés-Ferrer and Juan-Cı́scar,
2007) already presented a conditional phrase-
based hidden Markov model (HMM). However our
model presents significant improvements, both in
theory and practice.

The model is detailed in section 2, while its EM-
based training algorithms are analysed in section 3.
Experiments are reported in section 4. Finally,
concluding remarks are gathered in section 5.

2 The model

In this section, we present ourphrase-based
hidden semi-Markov model (PBHSMM) for ma-
chine translation. Hidden semi-Markov models
(HSMMs) (Ostendorf et al., 1996) are a varia-
tion on HMM that allow the emission of segments
x

j+l−1

j at each state instead of constraining the
emission to one elementxj as HMM do. There-
fore, the probability of emitting an object sequence
x

j+l−1

j in any state depends on the segment length
l. Note that in hidden Markov models (HMMs),
the probability of emitting a segment of lengthl
staying in the same stateq, can only be simulated
by transitions to the same stateq. This yields the
exponential decaying length probability expressed
as follows

p(l | q) = [p(q | q)]l−1 , (2)

which is not appropriate for many situations.
The HSMM model introduced in this section

is clearly inspired in the phrase-based translation
models (Koehn et al., 2003). The idea behind this
model is to provided a well-defined monotonic for-
malism that, while remaining close to the phrase-
based models, explicitly introduces the statistical
dependencies needed to define a phrased mono-
tonic translation process. Although the mono-
tonic constraint is an obvious disadvantage for
this primer HSMM translation model, it can be
extended to non-monotonic processes. However,

these extensions lay far beyond the aim of this
work.

Albeit there are several ways to formalise a
HSMM, we advocate for a similar formalisation
of that found in (Murhpy, 2007). Letx ∈ X ⋆

be the source sentence andy ∈ Y⋆ the target
sentence, then we start by decomposing the con-
ditional translation probability,p(x |y, I, J). We
assume that the monotonic translation process has
been carried out from left to right in sequences
of words orphrases. For this purpose, both sen-
tences should be segmented into the same amount
of phrases. Figure 1, depicts an example of a pos-
sible monotonic bilingual segmentation in which
the source sentence has a length of9 words, while
the target sentence is made up of11 words. Note
that each bilingual phrase makes up aconcept; for
instancec1, c2, c3 andc4 are concepts in Figure 1.
To represent the segmentation process, we use two
segmentation variables for both source,l, and tar-
get,m, sentences.

The target segmentation variablem stores each
target segment length at the position at which
the segment begins. Therefore, if the target seg-
ment length variablem has a value greater than
0 at position i, then a segment with lengthmi

starts at this positioni. For instance, the target
segmentation represented in Figure 1 is given by
m = m11

1
= (3, 0, 0, 3, 0, 0, 2, 0, 3, 0, 0). Note

that values for the segment length variable such
as, m = (3, 0, 0, 3, 0, 0, 2, 0, 1, 0, 0) or m =
(3, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0), are invalid. It is also
worth noting that the domain of the segmenta-
tion ranges among all the possible segmentation
lengths.

The source segmentation variablel represents
the length of eachsource segment at the position
at which its correspondingtarget segment ends. If
the source segment length variablel has a value
greater than0 at positioni; then the length of the
source segment corresponding to the target seg-
ment that starts at positioni, is li. For instance,
in Figure 1 the source segment length variable is
l = l11

1
= (3, 0, 0, 2, 0, 0, 3, 0, 1, 0, 0).

Given a target segmentation variable, saym, we
define its prefix counterpart,̄m as follows

m̄i =

i∑

k=1

mk i = 0, 1, . . . , I . (3)

In Figure 1, the prefix segments lengths are
m̄11

0
= (0, 3, 3, 3, 6, 6, 6, 8, 8, 11, 11, 11) and
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c1 c2 c3 c4

x1 x2 x3 x4 x5 x6 x7 x8 x9

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

Figure 1: A generative example of the phrase-based hidden semi-Markov model for machine translation.

l̄
11

0 = (0, 3, 3, 3, 5, 5, 5, 8, 8, 9, 9, 9), for target and
source segment length variables respectively.

Mathematically, we express the idea depicted in
Figure 1 unhiding the former segmentation length
variables

p(x |y) =
∑

l

∑

m

p(x, l,m |y, I, J) . (4)

The completed model in Eq. (4) is decomposed as
follows

p(x, l,m |y) :=p(m)p(l |m)p(x |m, l,y) (5)

where we have dropped the dependence ony for
the segment variables. Note that for clarity we
have omitted the dependency on the lengthsJ and
I in all probabilities; and we will henceforth pro-
ceed this way.

Both length probabilities in Eq. (5) are being de-
composed left-to-right. However, in order to keep
the training as fast as possible, a special decom-
position of such probabilities is going to be made.
We detail here the decomposition of the target seg-
ment length probability model, omitting details for
the remaining random variables.

The probability of the target segment length
variable is given by

p(m) =

I∏

i=1

p(mi |m
i−1

1
) . (6)

At first stage, we had assumed that each partial
probability in Eq. (6) does not depend neither on
y, nor on both lengths (I andJ). Hence, the prob-
ability p(mi |m

i−1

1
) is modelled as follows

p(mi |m
i−1

1
) =

{
p(mi) m̄i−1 + 1 = i, mi 6= 0

1 m̄i−1 + 1 6= i, mi = 0
(7)

Finally the segment length probability is ex-
pressed as follows

p(m) :=
∏

i∈Z(m)

1
∏

i6∈Z(m)

p(mi) , (8)

whereZ(m) or simplyZ stands for the set of po-
sitions t for which mt is 0. For instance, in the
example in Figure 1,Z is instanced toZ(m) =
{2, 3, 5, 6, 8, 10, 11}.

Provided that one of the two products in Eq. (8)
simplifies to1, the segment length probability is
expressed as

p(m) :=
∏

i6∈Z

p(mi) . (9)

Since explicitly showing these details forces the
discourse to be awkward, we will omit these de-
tails. Therefore, we will use equations resembling
the following

p(m) :=
∏

t

p(mt) , (10)

where we have explicitly ommitted thatt ∈ Z,
and we have changed the indexi into t for sub-
tly summarising the whole previous simplification
process. This approach resembles the state prob-
ability decomposition in HSMM (Ostendorf et al.,
1996).

Similarly to the target segment length model, the
source segment length yields the following decom-
position

p(l |m) :=
∏

t

p(lt |mt) . (11)

Finally, knowing the length segment variables,
the emission probability is also decomposed left-
to-right as follows

p(x | l,m,y) :=
∏

t

p(x(t) |y(t)) , (12)

wherey(t) stands foryt+mt−1

t andx(t) stands for

xl̄t
l̄t−1+1

; i.e., thet-th “emitted” phrase and its re-
spectivet-th target phrase. Note that sincet is a
boundary of a target segment, thenl̄t is equal to
l̄t−1 + lt.
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Summarising, the proposed (completed) condi-
tional translation model is defined by

p(x, l,m |y) :=
∏

t

p(mt) p(lt |mt) p(x(t) |y(t))

(13)
Then, the incomplete model introduced in Eq. (4)
is parameterised as follows

p(x|y) :=
∑

l

∑

m

∏

t

p(mt) p(lt |mt) p(x(t)|y(t))

(14)
with the following parameter setθ

θ = {p(m),p(l |m),p(u |v)} (15)

wherel andm are positive integers,u is a source
phrase, i.e.,u ∈ X ⋆; andv is a target phrasev ∈
Y⋆.

It is important to smooth the phrase translation
probabilities to avoid over-training. For doing so,
we have used the IBM model 1 (Brown and others,
1993) as follows

p̃(u |v) = (1−ǫ) p(u |v)+ǫ pIBM1(u |v) (16)

Note that in this model, each target phrasey(t)
is understood as the “state” of a HSMM in which
the source phrasex(t) is emitted. Obviously this
is not a pure HSMM in which we have a latent
state variable. The omission of this latent variable
is more an assumption than a requirement. Recall
that in Figure 1 we have depicted each bilingual
phrase pair being emitted by aconcept. There-
fore, we could theoretically model this latent vari-
able as well. This inclusion would not significantly
change the algorithms proposed here. However,
this idea is left as future work, since it is firstly
needed to check whether this primer model de-
grades or not the system performance as some sim-
ilar works have previously reported (DeNero et al.,
2006; Marcu and Wong, 2002).

3 The training

Since the proposed PBHSMM assumes that the
segment length variables are not given in the train-
ing data, some approximate inference algorithm
such as the EM (Dempster et al., 1977) is needed.
We omit here the EM derivations which lead to
the well-known Baum-Welch algorithm (Rabiner,
1990). This algorithm follows the iterative scheme
of all the EM instantiations. First, we guess an ad-
equate parameter set,θ(0), as a start point. Then,

we compute the forward,α(0)

tl (x,y), and back-

ward, β
(0)

tl (x,y), recurrences for each sample.
These recurrences are used to compute the frac-
tional countsγ(0)

tlt′l′
(x,y); and afterwards, a new

θ(1) is estimated from those fractional counts. The
re-estimated parameter setθ(1) can be used again
to re-compute the recurrences, defining an iterative
process that ensures the log-likelihood to increase
in each iteration (or remain the same). This pro-
cess goes on until either convergence or a maxi-
mum number of iterations is achieved.

3.1 Forward recurrence

The forward recurrenceαtl is defined as the prefix
probability

αtl = αtl(x,y) = pθ(xl
1, l̄t = l, m̄t = t |y)

(17)
wherel̄t = l andm̄t = t mean that a source and
a target phrase end/start at positionl of the input
and t of the output. This prefix probability is re-
cursively computed as follows

αtl =






1 t = 0, l = 0
∑

t′

∑
l′ αt′l′ p(l′−l,t′−t) 0 < t ≤ I,

·p(xl
l′+1

|yt
t′+1

) 0 < l ≤ J

0 otherwise
(18)

where the sum overt′ ranges from0 to t − 1 and
likewise the sum overl′ ranges from0 to l−1; and
where we have usedp(l′ − l, t′ − t) to denote the
product of lengths

p(l′− l, t′−t) = p(t′−t) p(l′− l | t′−t) , (19)

in order to compress notation.

3.2 Backward recurrence

The backward recurrenceβtl is defined as the fol-
lowing suffix probability

βtl = βtl(x,y)=pθ(xJ
l+1

|l̄t = l, m̄t = t,y)
(20)

wherel̄t = l andm̄t = t mean that a source and a
target phrase ended/started at positionl of the input
andt of the output. The former suffix probability
is recursively computed as follows

βtl =






1 t = I, l = J
∑

t′

∑
l′ βt′l′ p(l′−l,t′−t) 0 ≤ t < I,

·p(xl′

l+1
|yt′

t+1
) 0 ≤ l < J

0 otherwise
(21)
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where the sum overt′ ranges fromt + 1 to I and
likewise the sum overl′ ranges froml + 1 to J .

These two recurrences answer the question of
which is the probability for a given pair of sen-
tences

pθ(x |y) = αIJ = β00 . (22)

Both the forward and backward recurrence re-
quire a matrix of sizeO(IJ). In order to compute
these recurrences a time complexity ofO(I2J2) is
required. However, it can be reduced toO(IJM2)
by defining a maximum phrase lengthM .

3.3 Fractional counts

Using the previously defined recursions, we can
compute the probability of segmenting a given
sample in the source positions(l, l′) and in the tar-
get positions(t, t′)

γtlt′l′=
αtl p(l′ − l, t′ − t) p(xl′

l+1
|yt′

t+1
)βt′l′

pθ(x,y)
(23)

This fractional count is very helpful through the
Baum-Welch training.

3.4 Re-estimation

Once we have computed the recurrences and the
fractional counts, the phrase translation probabili-
ties are re-estimated as follows

p(u |v) =
N(u,v)∑
u′ N(u′,v)

(24)

with

N(u,v) =
∑

n

∑

l<l′

∑

t<t′

γntlt′l′δ(x
l′

l+1
,u)δ(yt′

t+1,v)

(25)
where δ(a, b) is the Kronecker delta function
which is1 if a = b and0 otherwise.

The target phrase length probabilities are esti-
mated as follows

p(m) =
N(m)∑
m′ N(m′)

(26)

with

N(m) =
∑

n

∑

l<l′

∑

t

γn,t,l,(t+m),l′ (27)

Finally, the source phrase length probabilities
are re-estimated by

p(l |m) =
N(l,m)∑
l′ N(l′,m)

(28)

with

N(l,m) =
∑

n

∑

l′

∑

t

γn,t,l,(t+m),(l′+l) (29)

wherel denotes a source phrase length, andm a
target phrase length.

An alternative training algorithm is obtained
computing the maximum segmentation instead of
the recurrences. This training, the so-called Viterbi
training (Rabiner, 1990), is an iterative training
process as well. Each iteration comprises two
stages: computing the maximum segmentation and
re-estimating the parameters. The Viterbi recur-
sion is used to obtain the maximum segmentation

δtl =






1 t = 0, l = 0

maxt′,l′ {δt′l′ p(l′−l,t′−t) 0 < t ≤ I,

p(xl
l′+1

|yt
t′+1

)} 0 < l ≤ J

0 otherwise
(30)

A traceback of the decisions made to computeδIJ

provides the maximum segmentation̂m andl̂.
Afterwards, the re-estimation equations are the

similar to Eqs. (24), (26), and (28), but in this case
the countsN(u,u), N(m), andN(l,m) are the
actual counts since the latent segmentation is as-
sumed to be the maximum segmentation.

4 Experiments

The aim of the experimentation is to see how
the proposed method and algorithm improves the
quality of a any phrase dictionary given as in-
put. For doing so, we have tested our algorithm
in two corpora: the Europarl-10 and the Europarl-
20. The former comprises all the sentences from
the English-to-Spanish part of Europarl (version
3) (Koehn, 2005) with length equal or less than10.
The latter is made up of all the English-to-Spanish
Europarl sentences with length equal or less than
20. For both corpora we have randomly selected
5000 sentences for testing the algorithms. Note
that we have constrained the training length of the
standard Europarl because of the time requirement
for training the proposed PBHSMM. Table 1 gath-
ers some basic statistics of the training partition;
and Table 2 is the counterpart for testing.

All the experiments were carried out using a
4-gram language model computed with the stan-
dard tool SRILM (Stolcke, 2002), and a modi-
fied Kneser-Ney smoothing. To define a trans-
lation baseline, we compare our results with
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Training Europarl-10 Europarl-20
En Sp En Sp

sentences 76, 996 306, 897
avg. length 7.01 7.0 12.6 12.7
running words 546K 540K 3.86M 3.91M
voc. size 16K 22K 37K 58K

Table 1: Basic statistics of the training sets.

Test Europarl-10 Europarl-20
En Sp En Sp

sentences 5, 000 5, 000
avg. length 7.2 7.0 12.8 13.0
running words 35.8K 35.2K 62.1K 63.0K
ppl (3-gram) 53.4 64.4 77.6 86.8

Table 2: Basic statistics of the test sets.

Moses (Koehn and others, 2007) but constrain-
ing the model to only use a phrase-based inverse
model.

For evaluating the quality of the translations we
have used two error measures: bilingual evalua-
tion understudy (BLEU) (Papineni et al., 2001),
and translation edit rate (TER) (Snover and others,
2006).

The proposed training algorithms need an initial
guess. To this aim, we have computed the IBM
word models alignments with GIZA++ (Och and
Ney, 2003), for both translation directions. Then,
we have computed the simmetrisation heuris-
tic (Och and Ney, 2004) and extracted all thecon-
sistent phrases (Och and Ney, 2004). Afterwards,
we have computed our initial guess by counting
the occurrences of each bilingual phrase and then
normalising the counts. Instead of directly using
the Moses system to do this work, we have imple-
mented our own version of this process.

Since the training algorithm highly depends on
the maximum phrase length, for most of the ex-
perimentation we have limited it to4. In Table 3,
the results obtained for both translation directions
are summarised for the Europarl-10. Surprisingly,
Viterbi training obtains almost the same results
that the Baum-Welch training; probably because
most of the sentences accumulate all the probabil-
ity mass in just one possible segmentation. Maybe
that is why our algorithm is not able to obtain
a large improvement with respect to the initiali-
sation. Note that since the proposed system and
Moses use different phrase-tables, the comparison
of this two numbers is not fair. Therefore, the

Iterations En→ Sp Sp→ En
TER BLEU TER BLEU

Mosesp(x |y) baseline
50.0 32.9 47.2 32.7

Iterations Baum-Welch
0 51.4 31.9 48.2 33.2
1 51.4 31.9 47.9 33.1
2 51.5 31.9 47.9 33.1
4 51.2 32.6 48.1 33.1
8 51.4 31.8 48.0 33.0

Iterations Viterbi
0 51.4 31.9 48.2 33.2
1 51.4 31.9 47.9 33.1
2 51.1 32.6 48.0 33.2
4 51.2 32.6 48.0 33.0
8 51.4 31.8 48.0 33.0

Table 3: Results obtained with the Europarl-10
corpus with a maximum phrase length of4.

Moses baseline is only given as a reference and not
as a system to improve. The important question
is whether the model produces an improvement
with respect to the initialisation, i.e., the result on
iteration 0. Note that this corpus is small, and
although its complexity allow us to check some
PBHSMM properties, we cannot to obtain further
conclusions.

On the other hand, Table 4 summarises the re-
sults obtained with the Europarl-20. This Table
only report results for the Viterbi training since
again Baum-Welch training has no advantage with
respect to it. Typically, over4 iterations suffices
to avoid over-training, and maximise the system
performance. The results show a minor improve-
ment over the initialisation. Although the improve-
ment is small, its magnitude is similar to the im-
provement obtained when extending the maximum
phrase length as shown in Table 5. For instance, it
is seen that extending the maximum phrase length
from 4 to 5 incurs in the same improvement that
performing4 Viterbi iterations with a maximum
phrase length of4. In most of the cases the Viterbi
training improves the translation quality.

Although, in most cases the training does not
incur in a significant improvement over the base-
line; in practice the quality of the translations is
increased by the training. In Table 6, we have se-
lected some translation examples. A detailed anal-
ysis of the system translations suggest that most
cases belong to the cases A or B.
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Case A Training improves evaluation measures

REF. I sincerely believe that the aim of the present directive is astep in the right direction .

IT. 0 I am convinced that the aim of this directive is a step in the right direction .

IT. 4 I sincerely believe that the aim of the directive before us isa step in the right direction .

MOSES I sincerely believe that the aim behind the directive is alsoa step in the right direction .

Case B Training improves translation but not evaluation measures

REF. Mr president , i wish to endorse mr posselt ’s comments .

IT. 0 Mr president , i support for to our .

IT. 4 Mr president , i join in good faith to our colleague , mr posselt .

MOSES mr president , i would like to join in good faith in the words ofour colleague , mr rbig .

Case C Training degrades evaluation measures

REF. BSE has already cost the uk gbp 1.5 billion in lost exports .

IT. 0 BSE has cost the uk 1.5 million losses exports .

IT. 4 BSE already has cost in the uk alone 1500 million pounds into loss of exports .

MOSES BSE has already claimed to britain 1500 million pounds into loss of trade .

Case D Other cases

REF. Are there any objections to amendment nos 3 and 14 being considered as null and void from now on ?

IT. 0 Are there any objections to give amendments nos 3 and 14 .

IT. 4 Are there any objections to adopt amendments nos 3 and 14 ?

MOSES Are there any objections to consider amendments nos 3 and 14 ?

Table 6: Some translation examples (Sp→ En) before and after training the phrase table4 iterations with
the Viterbi training and maximum phrase length of4.

Iterations En→ Sp Sp→ En
TER BLEU TER BLEU

Mosesp(x |y) baseline
57.3 23.5 55.1 24.10

Iterations Viterbi
0 57.7 25.0 56.0 26.0
1 57.7 25.1 55.8 26.4
2 57.7 25.1 55.9 26.4
4 57.7 25.2 55.8 26.5
8 57.7 25.2 55.8 26.5

Table 4: Results obtained with the Europarl-20
corpus with a maximum phrase length of4.

5 Conclusions and Future work

We have presented a phrase-based hidden semi-
Markov model for machine translation inspired
on both phrase-based models and classical hidden
semi-Markov models. The idea behind this model
is to provide a well-defined monotonic formalism
that explicitly introduces the statistical dependen-
cies needed to define the monotonic translation
process with theoretical correctness and without
moving away from the phrase-based models.

A detailed practical analysis showed a slight im-
provement by applying the estimation algorithms

Iterations En→ Sp Sp→ En
TER BLEU TER BLEU

Iterations Maximum phrase length2
0 60.5 21.2 57.9 23.5
4 60.5 21.2 58.1 23.5

Iterations Maximum phrase length3
0 58.6 24.1 56.1 25.7
4 58.3 24.1 56.4 25.5

Iterations Maximum phrase length4
0 57.7 25.0 56.0 26.0
4 57.7 25.1 55.8 26.5

Iterations Maximum phrase length5
0 57.7 25.1 55.8 26.6
4 57.4 25.3 55.3 26.9

Iterations Maximum phrase length6
0 57.7 25.4 55.9 26.6
4 57.3 25.6 55.4 26.8

Table 5: Results obtained with the Europarl-20
corpus for several maximum phrase lengths.
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with respect to the baseline. Surprisingly, we have
observed that both trainings, Viterbi and Baum-
Welch, obtain the same practical behaviour. There-
fore, we recommend the use of the fastest: the
Viterbi training. However, we have not used the
proposed PBHSMM as a feature inside a log-linear
model as most of the current state-of-the-art sys-
tems. We leave this comparison as a future work.

As discussed in section 2, one outstanding and
simple extension to the proposed model is to un-
hide theconcept variable by having a mixture of
phrase-based dictionaries,p(x |y, c). Actually,
the requirements of this modification would not
significantly affect to the proposed estimation al-
gorithms. We are already extending the model to-
wards this direction.

Finally, the most undesirable property of the
proposed model is its monotonicity at phrase level.
Although the monotonic constraint is a clear dis-
advantage for this primer PBHSMM translation
model, it can be extended to non-monotonic pro-
cesses. However, we leave these extensions as fu-
ture work.

Acknowledgement

Work partially supported by the Spanish research
programme Consolider Ingenio 2010: MIPRCV
(CSD2007-00018), by the EC (FEDER), the Span-
ish MEC under grant TIN2006-15694-CO2-01 and
the Valencian “Conselleria d’Empresa, Universitat
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