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Abstract

Constraint satisfaction inference is pre-
sented as a generic, theory-neutral infer-
ence engine for machine translation. The
approach enables the integration of many
different solutions to aspects of the output
space, including classification-based trans-
lation models that take source-side context
into account, as well as stochastic compo-
nents such as target language models. The
approach is contrasted with a word-based
SMT system using the same decoding al-
gorithm, but optimising a different objec-
tive function. The incorporation of source-
side context models in our model filters
out many irrelevant candidate translations,
leading to superior translation scores.

1 Introduction

The vast complexity of the translation task has led
designers of machine translation systems to del-
egate the task to multiple submodels. The cru-
cial task in these systems is the integration of
all available information in the best possible way.
In this paper we advocate and present an eclec-
tic, theory-neutral approach to machine translation
that employsconstraint satisfaction as the integra-
tor method, and that regards the translation task as
a structured prediction problem.

Structured prediction is a relatively new and
emerging field in machine learning in which
generic techniques are developed that explicitly
model structural properties of the output space
(Bakir et al., 2007). Statistical machine translation
systems can be seen as a forebearer of this field;
conditional random fields (Lafferty et al., 2001)
and Searn (Daumé III, 2006) are more recent ex-
ponents of the approach. The typical solution to
a structured prediction problem is to regard it as
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a combinatorial optimisation in an output space
that spans all possible outputs for a given input.
One or more learning components are responsible
for learning (parts of) an objective function, and a
search (or inference) component finds the output
structure that maximises the objective function.

Within statistical machine translation systems,
the probabilistic underpinning of all involved com-
ponents acts as a kind of industrial standard. This
has the positive effect that a substantial body of
work could be built using the same universal lan-
guage. At the same time, it makes the integra-
tion of non-stochastic components into statistical
machine translation systems sometimes unwieldy.
Yet, recent experiments on mixing local classifi-
cations of non-stochastic machine learners with
statistical MT models (Carpuat and Wu, 2007;
Stroppa et al., 2007), has shown its potential. Ar-
guably, it makes sense to investigate the gathering
of a mix of views on the objective function as in-
put to the final search or inference process, and this
mix should be eclectic—that is, theory-neutral—to
allow extremely different but successful partial so-
lutions to the objective function to participate.

As we argue in Section 2, the classic constraint
satisfaction framework offers the right apparatus
to offer such a theory-neutral basis. In Section 3
we describe our experimental setup; the outcomes
of a comparative study with an unconstrained but
otherwise equivalent word-level SMT system are
discussed in Section 4. In Section 5 we formulate
our conclusions.

2 Constraint satisfaction

In constraint satisfaction (Tsang, 1993) the goal is
to find values for a set of variables that satisfy cer-
tain constraints. While a variable’s domain dic-
tates the values a single variable is allowed to take,
the constraints of a constraint satisfaction problem
specify which simultaneous value combinations
over a number of variables are allowed. Here, we
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adopt a weighted constraint satisfaction approach.
Candidate solutions to a weighted constraint sat-
isfaction problem are scored according to the sum
of weights of the constraints they satisfy, and the
highest scoring solution is selected.

The constraint satisfaction approach presented
here is formulated as an extension of statistical
log-linear models (Berger et al., 1996; Papineni
et al., 1998)1. A typical log-linear model for
machine translation combines a number of fea-
ture functions, each of which measures the qual-
ity of a candidate translation according to some
aspect. Two feature functions tend to be part of
any SMT system; a translation model (TM), and a
target language model (LM ), measuring the faith-
fulness and the fluency of the translation, respec-
tively. Both are probability distributions, obtained
by maximum-likelihood estimation from training
data. The best translation is determined by max-
imising a weighted sum of those feature functions:

argmax
y

λTM log P (x|y) + λLM log P (y)

One of the problems with this traditional for-
mulation is that the translation model ignores the
context in which it is applied. This is the case for
the source sentence context, as well as for the tar-
get sentence context. It is expected that the lan-
guage model compensates for this. However, it is
questionable whether this is a reasonable expec-
tation. Since the language model does not take
into account the source side at all, it can only re-
solve source-side ambiguities indirectly by look-
ing at the translations of source words. This means
that the language model is not only used for at-
taining good fluency, but also in part for attaining
good faithfulness, the latter of which it might not
be good enough for. Our extension uses constraint
satisfaction to improve the translation model, by
having it take into account both source and target
sentence contexts.

To do this, we replace the language model by a
constraint model. The score assigned to a candi-
date translation by this model corresponds to the
sum of weights of satisfied constraints according
to a constraint satisfaction problem. The score for-
mula is adapted as follows:

1The log-linear formulation of the objective function can be
shown to be equivalent to a weighted constraint satisfaction
problem, but we choose to follow this formulation, since it
eases the comparison with SMT systems.

argmax
y

λCMfCM(y) (1)

+ λLM log P (y) (2)

+ λNM

∑

i

[yi = ∅] log P (yi = ∅|xi) (3)

+ λLP |y| (4)

The constraint model feature function (1,CM)
scores the satisfied soft constraints. Consider-
ing the difficulty of the translation task, we aug-
ment the objective function with three more feature
functions. The language model (2,LM ) is a stan-
dard back-off trigram language model, estimated
using the SRILM toolkit (Stolcke, 2002). Two
more feature functions are intended to compensate
for the effect thatn-gram language models tend to
prefer shorter translations. The first, which we call
the null model (3,NM), multiplies the translation
probability of those source-language words that
are translated to∅, i.e. words for which no corre-
sponding word is generated in the target-language
sentence. It is estimated using relative frequencies,
and is in fact similar to the translation model of
SMT systems, with the exception that it only ap-
plies to source-language words left untranslated.
The final feature function, the length penalty (4,
LP), counts the number of target-language words.
Given a positive weightλLP, it is in fact a length
bonus rather than a penalty.

For the implementation of the constraint model,
we define a weighted constraint satisfaction prob-
lem over a solution space of possible translations.
Therefore, two questions need to be answered.
First, how do we restrict the solution space? We
aim at excluding most candidate solutions before
the inference even starts. Defining this solution
space is done by introducing variables and pop-
ulating their domains, and by formulating certain
hard constraints that every valid translation has to
satisfy. Second, what soft constraints are added to
the constraint satisfaction problem? We would like
those constraints to improve the faithfulness of the
translation by taking into account both source sen-
tence context and target sentence context.

2.1 Solution space

Efficient approaches to machine translation have
to make strong assumptions about the parts of the
output space that are actually worth exploring. The
approach presented here is sufficiently restricted
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to allow for efficient decoding, while remaining
expressive enough to attain good translation per-
formance. To represent a solution space, we start
by distinguishing two sub-problems that have to
be solved as part of the translation task. First,
source-language words have to be translated to the
correct target-language word. Secondly, the trans-
lated words may need to be reordered—possibly
new words have to be inserted as well—to make
the translation a natural sentence according to the
target language.

2.1.1 Representing word translations

For modelling the translation of words in the
source sentence, we adopt the assumption that
each word in the source sentence is translated to
exactly one word in the target sentence. In our con-
straint satisfaction framework it is naturally repre-
sented by introducing one variable for each source
word. During inference, the target-language words
that are part of the domain of a variable will be
considered as possible translations of the corre-
sponding source word. If domains are constructed
simply by listing all possible translations for the
given source word as found in the training corpus,
the solution space of our model would be rather
similar to that of word-based SMT systems. In
constraint satisfaction inference, however, we em-
ploy classifiers to predict the translations to con-
sider. These predictions implicitly filter out all
other possible outcomes, rendering the solution
space potentially much smaller. We elaborate on
how this is done later in the paper.

A few additional issues need to be dealt with.
First of all, spurious words in the source sentence
should not be translated to a target-language word.
This is resolved by translating the word to a special
∅ symbol instead. By definition, this∅ symbol will
be part of the domain of all variables. As a result,
any source-language word may be left untranslated
in the target translation. A second issue is the fact
that several source-language words might be trans-
lated by only one target word. In this case, all cor-
responding variables are assigned that same word.
The fact that those matching words are actually a
single token in the target sentence is dealt with in
the target sentence realisation.

2.1.2 Representing target sentence realisation

Target sentence realisation involves three differ-
ences between the source language and the tar-
get language that have to be dealt with and rep-

Figure 1: Example of a Dutch-English aligned sen-
tence pair.

resented: (1) word order differences; (2) zero-
fertility words, and (3) multi-fertility words.

Word order differences To cope with arbitrary
word reorderings in the translation, the inference
procedure needs to consider every permutation of
translated source words. For a compact representa-
tion of the search space yielded as a result of this,
consider a complete directed graph in which the
words of the source sentence are represented by
vertices, and one additional vertexv0 corresponds
to the start and end of the sentence. A directed arc
from vertexvi to vertexvj means the translation of
the word corresponding tovj directly follows the
translation of the word represented byvi. In addi-
tion, a directed arc fromv0 to vi, or from vi to v0

means that the translation of the word correspond-
ing to vi is the first or last word of the sentence re-
spectively. The space of all candidate translations
corresponds to all cycles that start and end atv0.
Such a cycle is not required to visit every vertex in
the graph, i.e. it does not have to be a hamiltonian
cycle. Cycles that do not visit a certain vertexvi

correspond to translation candidates in which the
source word represented byvi is not translated. In
that case, the translation variable corresponding to
this source word should have the value∅, which
can easily be enforced by a hard constraint.

Given this graph representation of the candidate
translation space, it can be reformulated for the
constraint satisfaction framework by introducing a
set of(n + 1) × (n + 1) variables, wheren is the
length of the source-language sentence, that corre-
spond to the adjacency matrix of the graph just in-
troduced. The domains of all those variables com-
prise two values, signalling whether or not the cor-
responding arc is included in the candidate trans-
lation cycle. Appropriate constraints have to be
added to the constraint satisfaction problem to en-
sure that every candidate considered is indeed a cy-
cle of the graph. Informally, this is the case if for
everyi ∈ {1, 2, . . . , n}, either theith row and col-
umn do not contain any positive value at all, or they
both contain exactly one positive value. Moreover,
the0th row and columnshould contain exactly one
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Figure 2: Visualisation of the connectivity matrix
of the path corresponding to the correct translation
of the Dutch sentence in Figure 1. The “•” in the
row labelled with “Maar” and the column labelled
with “vooral” denotes that the translation of the lat-
ter follows that of the former in the English target
sentence. The word “all” is a zero-fertility word.

positive value. To illustrate all of the above, Fig-
ure 2 shows a matrix representing the correct trans-
lation order for the sample sentence in Figure 1.

Zero-fertility words A common approach to
zero-fertility word insertion is to keep a list of fre-
quent zero-fertility words and attempting to insert
words from this list at arbitrary positions in the
translation. This leads to a substantial expansion of
the output space, which was already large to start
with. As an alternative to common practice, we
choose to attempt insertion of zero-fertility words
only if there is evidence that doing so would make
sense in the context of the current sentence. This
evidence is to be provided by classifier predictions.
More specifically, those predictions will be used to
collect zero-fertility words that are candidates for
insertion between the translations of two source
words. In our representation at most one zero-
fertility word can separate two fertile words.

Modelling this is possible by a straightforward
extension of the adjacency matrix introduced be-
fore. In addition to the two values that signify
whether or not two translated words are adjacent
in the target sentence, a matrix element can also be
assigned a word. Such an assignment encodes the
case where two translated words are separated by
the zero-fertility word stored in the matrix. In Fig-
ure 2, the matrix element that connects the trans-

Figure 3: The Dutch example sentence from Fig-
ure 1 and the English trigrams that are to be pre-
dicted for the words in the sentence. No training
example is created for the word “de”, because it is
aligned with the∅ token.

lations of “vooral” and “Maastricht” has the value
“all”, which denotes that the translation of the lat-
ter follows that of the former, separated by the
word “all”. The constraints that ensure that only
cycles of the order graph are considered as candi-
date solutions can be extended easily to this new
setting. The zero-fertility word values can simply
be treated as positive values.

Multi-fertility words To account for many-to-
one mappings, i.e. mappings of more than one
source word to a single target word, we introduce
one final value that can be assigned to order ma-
trix entries, signalling overlap between two source
words mapped to the same target word.

2.2 Constraints

We choose the constraints for machine translation
to cover up to three consecutive target-language
words. These constraints are created by predict-
ing a trigram of target-language words for each
word in the source sentence. Figure 3 illustrates
this process for the sentence pair in Figure 1. The
middle word of the predicted trigrams is the hy-
pothesised translation of the source word in focus.
The left and right parts are the words surround-
ing the translation in the target sentence. Note that
no training example is created for the Dutch word
“de” in Figure 1. Nevertheless, when translating
a sentence, trigrams are predicted for all words in
the source-language sentence—whether a word is
aligned with∅ is unknown for new sentences.

Given a predicted trigram, two types of con-
straints are extracted from it. First, a trigram con-
straint covering the translated word and the two
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words surrounding it in the target-language sen-
tence. Secondly, two bigram constraints defined
on the translated word and either one of the two
surrounding words.

2.3 Solving the CSP

The solution space of the constraint satisfaction
problem defined in this section has immense pro-
portions. Even if a base classifier perfectly pre-
dicts the correct translations of all source words,
which is already overly optimistic, the inference
procedure still has to consider every possible per-
mutation of those translated words as a candidate
translation. Unfortunately, no further restrictions
or assumptions can be made that would restrict the
solution space sufficiently to allow for exhaustive
solving. Approximate solving is the only option.

With this in mind, we choose the greedy decod-
ing algorithm of Germann (2003) as the basis for
the constraint solver. The algorithm starts with a
complete candidate translation; for example, one
where all source words are mapped to their most
likely translations and added to the target sentence
in original order. Subsequently, a hill-climbing
search is started in which simple transformations
of the current translation are attempted and the one
leading to the highest score increase is actually ap-
plied. New transformations are tried until no fur-
ther improvement can be attained. The following
transformations are considered:

• Change the translation of a source-language
word. If the target word currently aligned
with it has a fertility greater than one, a
new target word is inserted in the transla-
tion at the position maximising the translation
score; otherwise, the current translation is
changed, while its position is left unchanged.
Among the translation candidates tried is also
∅, which results in the word being removed
from the candidate translation.

• Insert a zero-fertility word. According to our
model, zero-fertility words are only inserted
in between two fertile words.

• Erase a zero-fertility word.

• Join two target-language words, i.e., remov-
ing one of the words from the translation and
aligning with the remaining word all words
previously aligned with the word that was re-
moved.

• Swap two non-overlapping segments of the
target sentence.

Although the algorithm has been proposed in
the context of statistical machine translation, it can
more generally be seen as optimising an arbitrary
objective function defined over candidate transla-
tions. By replacing the noisy-channel equations
optimised originally by a credit function based on
constraint weights, the algorithm can be employed
for solving our constraint satisfaction problem.

3 Experimental setup

3.1 Data

For our study we use four different corpora cov-
ering a diverse range of genres. From each of the
four corpora, we prepare data sets for the transla-
tion pair Dutch to English:

EuroParl The EuroParl corpus (Koehn, 2005) is
a multi-lingual parallel corpus extracted from
the proceedings of the European Parliament.
The Dutch-English parallel subcorpus con-
sists of 1,313,111 sentence pairs.

JRC-Acquis The JRC-Acquis corpus (Stein-
berger et al., 2006) comprises a large col-
lection of legislative texts extracted from the
Acquis Communautaire. The Dutch-English
parallel subcorpus provides 1,235,878 bilin-
gual sentence pairs.

EMEA The EMEA data set is composed of texts
made available by the European Medicines
Agency. It is one of the corpora included
in the OPUS parallel corpus (Tiedemann and
Nygaard, 2004). The parallel texts for Dutch
and English cover 751,602 sentence pairs.

OpenSubtitles The OpenSubtitles corpus, also
part of OPUS, provides aligned movie sub-
titles in various different languages. For the
language pair Dutch-English, it comprises
288,160 sentence pairs.

In four experiments, the translation system has
been trained and tested on texts within the same
corpus. For this evaluation, as well as for tuning
the system, from each of the four corpora, two sets
of 1,000 sentences each have been selected for test-
ing and development purposes respectively; the re-
mainder is used for training. This training data has
subsequently been aligned at the word level using
GIZA++ (Och and Ney, 2000).
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Figure 4: Visualisation of the search space result-
ing from a set of base classifier predictions. Top:
the correct alignment of a Dutch-English example
sentence pair. Middle: trigram predictions for the
words in the Dutch sentence. Bottom: the com-
plete graph connecting all Dutch words. Any valid
translation is a directed cycle in this graph that
starts and ends in the BEGIN/END node.

3.2 Constraint prediction

For predicting the soft constraints of our trans-
lation model, we need to map each word of the
source sentence to a trigram of target words. The
middle word of that trigram is the translation of the
source word in focus; the left and right words are
the two target words surrounding it.

Several recent studies (Carpuat and Wu, 2007;
Chan et al., 2007; Giménez and Màrquez,
2007; Stroppa et al., 2007) have experimented
with classification-based alternatives to traditional
translation models that take into account contex-
tual information of the word in the source sen-
tence, similarly to the way word-sense disam-
biguation is performed. Our constraint predictor
is similar to the classifiers used in these studies in
the sense that contextual information is used to im-
prove the suggested translations.

We follow (Stroppa et al., 2007) in using the
k-nearest neighbor classifier as implemented in
the TiMBL software package (Daelemans et al.,

2007). The feature set used in our classifier is sim-
pler, though. In specific, the features used corre-
spond to a word window of length three centred
on the focus word. As a consequence of the small
number of features and the large number of classes,
it will often be the case that the classifier finds
several classes that have the same score for an in-
put sentence. Classes that are assigned the same
score by a base classifier are the perfect example
of uncertainty that cannot be resolved locally, and
thus should be delegated to the inference proce-
dure. Therefore, for the experiments described in
this paper, we disable tie-breaking in the base clas-
sifier, and extract domain values and constraints
from all classes that have the maximum score.

The target-word trigrams predicted by the base
classifier are used to add constraints to the in-
ference, as well as to compose the domains of
the variables. Constraints are derived from the
predicted trigrams: the predicted trigram itself is
turned into a constraint, but also the two bigrams
covered by the predicted trigram.

The constraint satisfaction inference procedure
is illustrated in Figure 4, where in the absence
of tie-breaking in the classifier, two trigrams have
been predicted for each source-language word.
Since for all words, both trigrams suggest a unique
translation, the domains of the three words,D1,
D2, andD3, each contain two candidate transla-
tions, as well as the symbol∅, which is always in-
cluded as a possible translation.

The variable domains for the order variables al-
ways contain at least the two values that signal
that the two corresponding words do or do not fol-
low one another in the translated sentence. In Fig-
ure 4, these variables correspond to the edges of
the graph depicted at the bottom of the figure. The
two symbolsFOLLOWS and NONE are included
in all domains. Furthermore, the model also al-
lows for an overlap value or a zero-fertility word
as value for order variables. As for the former, the
overlap value is only added to the domain of the
order variableyij if words i and j can be trans-
lated to the same target word, or more formally, if
their domains overlap,Di ∩ Dj 6= ∅. As an il-
lustration,D2 andD3 both contain the word “im-
possible”, and therefore,D23 andD32 contain the
symbolOVERLAPS.

Potential zero-fertility words are added to a do-
main only if base classifier predictions provide suf-
ficient evidence for that. Specifically, the zero-
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fertility words included in the domain of the order
variableyij are those words that appear both as the
right part of the trigram predicted for wordi, and
as the left part of the trigram for wordj. In the
example, the words “That is” predicted for “Dat”
overlap with the words “is impossible”, predicted
for both “kan” and “niet”. For this reason, “is” is
made a potential zero-fertility word if the transla-
tion of either “kan” or “niet” were to follow that of
“Dat”. Similarly, “can” is a potential zero-fertility
word between the translations of “Dat” and “niet”,
since “It can” has been predicted for the former,
and “can ’t” for the latter source-language word.

4 Results

To evaluate our constraint satisfaction approach
to machine translation, we trained and tested the
system using the four Dutch to English data sets
described in Section 3.1. In addition, we imple-
mented a word-based SMT system based on the
ISI ReWrite decoder, which uses the greedy de-
coding algorithm of Germann (2003). Comparing
with this system is especially interesting since the
decoding algorithm is the same as the one used
in our constraint satisfaction system. Therefore,
the differences that are observed can be attributed
to the modelling choices underlying the two sys-
tems. First, the constraint satisfaction system uses
a richer objective function based on the constraint
model that replaces the translation model. Second,
constraint satisfaction inference searches a smaller
solution space than the ReWrite system, which
does not restrict its solution space in advance.

Table 1 lists the BLEU scores (Papineni et
al., 2002) and exact Meteor scores (Banerjee and
Lavie, 2005) for both systems on each of the four
data sets. The two systems are closest in perfor-
mance on the EuroParl data, though constraint sat-
isfaction inference outperforms ReWrite in terms
of both metrics. On EMEA, ReWrite outperforms
constraint satisfaction inference; on JRC-Acquis
and OpenSubtitles, constraint satisfaction infer-
ence outperforms ReWrite again.

The relative performance differences are rather
diverse among the four data sets. This may be
attributed to the underlying search algorithm, a
greedy hill-climbing search, which is known to
risk ending up in suboptimal local optima. Con-
straint satisfaction inference seems to deal with
this circumstance better than ReWrite. On the
one hand, the richer objective function used by

constraint satisfaction inference, based on the pre-
dicted constraint model, may account for the better
performance of constraint satisfaction inference.
On the other hand, though, the smaller solution
space searched by constraint satisfaction inference
may also be expected to have fewer local optima.

The fact that on the EMEA corpus the ReWrite
system performs better may be rooted in the fact
that sentences in EMEA are largely formulaic and
on average rather short: 9 tokens. Apparently, the
hill-climbing algorithm only needs a few transfor-
mation operations to reach good translations. Con-
straint satisfaction inference’s objective function
causes it to perform more transformation opera-
tions than it should.

5 Conclusions

Machine translation systems deal with huge out-
put spaces that are costly to search. Their trans-
lation quality depends strongly on the quality of
the inference imposed on the search in the output
space. One strategy, presented in this paper, is to
feed a theory-neutral inference mechanism, con-
straint satisfaction inference, with several different
inputs of arbitrary types.

The decoding algorithm chosen for the experi-
ments in this paper is an important ingredient for
achieving the above objective. Since the algorithm
is a local hill-climbing method, at any moment at
which the objective function evaluates a hypothe-
sis, there is a complete, rather than a partial trans-
lation as would be the case in A* or Viterbi search.
As a result, the objective function can take into ac-
count arbitrary structural dependencies. The pos-
sibilities for such dependencies are virtually un-
limited. In this paper, we experimented with only
one type of constraint, which models trigrams of
target-language words. We expect that large im-
provements can be achieved by introducing addi-
tional constraints. For example, constraints that
model phrase-based translations, word reordering
in the target sentence, or explicit syntactic struc-
ture of the target sentence.

A potential weakness caused by using a greedy
search method is the risk of ending up with sub-
optimal solutions as a result of local optima in
the search space. Although there is nothing that
can really be done about this, one can make sure
that the search space in which the decoder oper-
ates already has a certain minimum quality. Our
constraint satisfaction inference approach uses a
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EuroParl JRC-Acquis EMEA OpenSubtitles
BLEU Meteor BLEU Meteor BLEU Meteor BLEU Meteor

ReWrite 0.198 0.449 0.450 0.611 0.395 0.650 0.083 0.304
CSI 0.211 0.469 0.513 0.650 0.302 0.540 0.200 0.444

Table 1: BLEU and Meteor (exact) scores for constraint satisfaction inference and the ReWrite SMT
system on the four Dutch to English translation tasks.

context-model classifier to define the exact solu-
tion space searched by the decoder. As the most
important benefit of this, all candidate translations
that are part of the solution space are predicted
and filtered based on the context of the source-
language word in the input sentence. The intended
effect is that candidate translations that are irrele-
vant for the current sentence are not considered by
the decoder, and thus local optima based on such
translations are made impossible. Results from our
comparative experiment show that this effect can
indeed be attained.
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