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Abstract

Recently novel MT evaluation metrics
have been presented which go beyond
pure string matching, and which corre-
late better than other existing metrics with
human judgements. Other research in
this area has presented machine learning
methods which learn directly from human
judgements. In this paper, we present
a novel combination of dependency- and
machine learning-based approaches to au-
tomatic MT evaluation, and demonstrate
greater correlations with human judgement
than the existing state-of-the-art methods.
In addition, we examine the extent to
which our novel method can be generalised
across different tasks and domains.

1 Introduction

There is no doubt that the onset of automatic evalu-
ation metrics such as BLEU (Papineni et al., 2002)
has led directly to improvements in quality in ma-
chine translation (MT). Prior to their introduction,
most results were anecdotal, or researchers had to
conduct expensive human evaluations in order to
validate their work.

However, seven years after their introduction,
there is widespread recognition in MT that these
string-based metrics are not discriminative enough
to reflect the translation quality of today’s systems,
many of which have gone beyondn-grams (cf.
(Callison-Burch et al., 2006)).

With that in mind, a number of researchers have
come up with metrics which are not wholly string-
based. Perhaps the best-known alternative met-
ric is METEOR (Banerjee and Lavie, 2005), which
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while still being string-based, tries to improve on
the matching schemes of BLEU by incorporating
synonym matching via WordNet.

Given that many of today’s MT systems incor-
porate some kind of syntactic information (e.g.
(Chiang, 2005)), it was perhaps natural that other
researchers would seek to use syntax in automatic
MT evaluation as well. The first step in this di-
rection was by (Liu and Gildea, 2005), who used
syntactic structure and dependency information in
order to see past the surface phenomena. Two of
these metrics are based on matching syntactic sub-
trees between the translation and the reference, and
the third is based on matching headword chains,
but only for unlabelled dependencies. Since
then, (Owczarzak et al., 2007a; Owczarzak et al.,
2007b) have extended this line of research with
the use of a term-based encoding of LFGlabelled
dependency graphs into unordered sets of depen-
dency triples, and calculating precision, recall, and
f-measure on the sets corresponding to the transla-
tion and reference sentences. With the addition of
partial matching andn-best parses, (Owczarzak et
al., 2007a; Owczarzak et al., 2007b) considerably
outperform Liu and Gildea’s (2005) highest corre-
lations with human judgement.

Another line of research has led to machine
learning methods which learn directly from hu-
man judgements (Ye et al., 2007). In this pa-
per, we combine the syntax (dependency)-based
and the machine learning-based approaches, and
show greater correlations with human judgement
than (Owczarzak et al., 2007a; Owczarzak et al.,
2007b). We use both Ranking and Regression Sup-
port Vector Machines (SVMs) (Burges, 1998) in a
range of experiments on different language pairs
and data sets. We also examine the extent to which
our novel method can be generalised across differ-
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ent tasks and domains.
The remainder of the paper is organised as fol-

lows. In section 2, we outline approaches to au-
tomatic MT evaluation which are relevant to our
work. In particular, in section 3 we describe the
LFG labelled dependency approach of (Owczarzak
et al., 2007a; Owczarzak et al., 2007b). In section
4, we demonstrate how labelled dependencies can
be matched using SVMs, and describe the range of
experiments carried out in section 5. The paper
ends with our concluding remarks together with
avenues for further research.

2 Evaluation Metrics in MT

Automatic evaluation metrics enable researchers to
validate and optimise translation methods quickly.
Simplen-gram-based metrics such as BLEU (Pap-
ineni et al., 2002) are fundamental to the develop-
ment and tuning of MT systems. However, thesen-
gram-based metrics suffer from several shortcom-
ings, such as low correlation with human judge-
ment on the sentence level, exhibiting a bias to-
wards statistical systems (Callison-Burch et al.,
2006), and inconsistency in related evaluation sce-
narios (Chiang et al., 2008).

Many approaches have been taken to over-
come the insufficiencies of BLEU. Word-
based metrics like METEOR (Banerjee and Lavie,
2005) try to improve on the matching scheme;
paraphrase-based methods such as ParaEval incor-
porate paraphrases extracted from an external data
source (Zhou et al., 2006); syntactic methods try to
use syntax information in hypothesis and reference
(cf. section 2.1); and machine learning methods
learn directly from human judgements (cf. section
2.2).

2.1 Dependency-based Metrics

The shortcomings ofn-gram metrics have led a
number of researchers to exploit more grammatical
information in the hypothesis and reference sen-
tences.

Syntactic features were first introduced in MT
evaluation in (Liu and Gildea, 2005), who de-
veloped several metrics using constituency or de-
pendency structure. (Owczarzak et al., 2007a;
Owczarzak et al., 2007b) improved on the depen-
dency matching of (Liu and Gildea, 2005) by us-
ing n-best labelled dependency triples produced by
an LFG parser, so that parser noise is reduced and
partial matchings can be found. (Kahn et al.,

2008) matchn-best head-modifier dependencies
extracted fromn-best constituency parses. They
also consider the probabilities given by the con-
stituency parser.

Dependency information is also used in met-
rics that incorporate different information sources.
(Giménez and Màrquez, 2008) experimented using
different levels of linguistic features and depen-
dency relation-based metrics are among their best
metrics at both system and sentence levels. Ma-
chine learning metrics such as (Ye et al., 2007)
and (Albrecht and Hwa, 2007) also use some
head-modifier dependency matches or dependency
chains as features.

2.2 Machine Learning-based Metrics

Three kinds of machine learning-based ap-
proaches have been used in MT evaluation: (i)
Classification-based approaches (Corston-Oliver
et al., 2001) train a classifier to discriminate be-
tween the reference and the hypothesis. The
higher the likelihood of a hypothesis being a ref-
erence, the better its quality is assumed to be; (ii)
Regression-based methods (Albrecht and Hwa,
2007) train a model to try to reproduce the hu-
man judgement scores for each translation hypoth-
esis; (iii) Ranking-based approaches (Ye et al.,
2007) train a model with the ranking of different
hypotheses on a particular sentence instead of the
values of the scores.

Among these three approaches, classification
only captures the difference between the hypothe-
ses and the reference but ignores any differences
in quality among these hypotheses. Both ranking-
and regression-based methods have been reported
to be successful in various MT evaluation tasks.
In our experiments we combine them with the
dependency-based method of (Owczarzak et al.,
2007a; Owczarzak et al., 2007b) and directly com-
pare them in a ranking task.

3 LFG Labelled Dependencies

Our work extends the method of (Owczarzak et
al., 2007a; Owczarzak et al., 2007b) who use la-
belled dependencies in Lexical-Function Grammar
(LFG). In LFG, a sentence is represented in both a
hierarchical tree structure (C-structure) which cap-
tures the organisation of a sentence, and a set of
labelled dependencies (F-structure). The depen-
dencies in LFG are attribute-value features such as
subj(arrive, Julie) or pers(Julie,
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3) which capture the grammatical relations be-
tween constituents. They are more precise than
head-modifier unlabelled dependencies. Here the
trigram (DEP, HEAD, MODIFIER) is called a triple.
In subj(arrive, Julie), DEP is subj,
HEAD is arrive and MODIFIER is Julie.

In (Owczarzak et al., 2007a; Owczarzak et
al., 2007b) it is shown that LFG F-structures can
capture variations between sentences. For ex-
ample, “Julie arrived yesterday.” and “Yesterday
Julie arrived.” have only one bigram(Julie,
arrived) in common but the same F-structures.
This feature can help us better judge how similar
a reference sentence and a hypothesis sentence are
in MT evaluation.

3.1 Matching of Dependency Triples

To utilise LFG dependencies in MT evaluation, we
use the LFG parser described in (Cahill et al.,
2004) to generate dependency triples and perform
matching on the triples. A hypothesis sentence
is considered of higher quality when it has more
triples matched with the reference sentence.

We perform three kinds of dependency match-
ings in our experiment: exact matching, partial
matching, and WordNet extended matching. In
exact matching all three elements in the triple
must be the same to complete a match. With re-
spect to the previous example, in partial matching,
two triples can have different HEAD or MODIFIER

values, whereas in WordNet extended matching,
HEAD and MODIFIER can be substituted by syn-
onyms in WordNet.

We only perform partial and WordNet ex-
tended matching on PREDICATE-ONLY dependen-
cies (Owczarzak et al., 2007a; Owczarzak et al.,
2007b). Both exact and partial matches on depen-
dency typex are counted as one match on type
x. A WordNet extended match is counted as one
match on typex WN .

3.2 Parser Noise and Matching in n-best
Parses

The outputs of MT systems are often syntactically
ill-formed and this makes it difficult for parsers to
generate plausible parses. To compensate for this
problem, we parse the hypothesis and reference
translations to obtain the 50-best parses of each.
Using the 50-best parses increases the chance of
finding the correct match between the hypotheses
and references.

For each pair of parses, we match the depen-
dency triples, and select the pair of parses that
has the highest F-score (cf. (3)) as matching
and output the matching detail of this pair. De-
tails on the effect of multiple parses can be found
in (Owczarzak et al., 2007a; Owczarzak et al.,
2007b).

3.3 Calculation of Matching Percentage

There are two ways of normalising the number of
matchings. We can normalise with respect to the
total number of triples in the hypothesis sentence
(precision matching), as in (1):

P =
#matching triples

#triples in hypothesis
(1)

or the total number of triples in the reference sen-
tence (recall matching), as in (2):

R =
#matching triples

#triples in reference
(2)

In (Owczarzak et al., 2007a; Owczarzak et al.,
2007b), precision matching and recall matching
are combined into an F-score, as in (3):

F =
2PR

P + R
(3)

When using this combination, the relative
weights of precision and recall are implicitly set
to 1:1. In our experiment this combination is not
necessary, as we can use both precision and recall
values as features and let the SVM determine the
respective weights of precision and recall.

4 Combining Labelled Dependency
Matches with SVM

4.1 SVM in MT Evaluation

We use Ranking and Regression Support Vector
Machines (Burges, 1998) in our experiments.
Both Ranking and Regression SVMs assign a
score to an input instancez, as in (4):

f(z) =

m∑

i=1

αiyiΦ(xi) · Φ(z) + b (4)

where(xi, yi) is the training example andΦ is the
transformation function which transforms the in-
put space to the feature space. However, the quan-
titative value from a ranking SVM is meaningless
and only indicates its ranking.

The output of a ranking SVM aims at producing
the correct rank of input examples, whereas regres-
sion SVMs aim at producing a value corresponding
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to the input. Thus the ranking SVM maximisesτ

on a training set, whereri is the metric ranking of
systems on sentencei andr∗i is the human ranking
on sentencei, as in (5):

1

n

n∑

i=1

τ (ri, r
∗

i ) (5)

Note that Kendall’sτ measures the relevance of
two rankings:τ(ra, rb) = P−Q

P+Q
, whereP andQ

are the amount of concordant and discordant pairs
in ra andrb.

Regression SVMs, by contrast, are directly
modelled on the human judgement scores by min-
imising (6):

1

2

m∑

i=1

(yi − f(xi))
2 (6)

4.2 Kernels of SVM

We can often find a kernel functionK in (4) with
K(x, z) = Φ(x) · Φ(z). Kernel functions im-
plicitly transform the input space into the feature
space, while computation is still done in the input
space.

We use three kinds of kernels in our experi-
ments: (i)Linearkernels, the simplest form of ker-
nel which do not transform the input space:

K(x, z) = x · z (7)

(ii) Polynomialkernels:

K(x, z) = (α + βx · z)p (8)

In our experimentsα andβ are set to 1, andp is
set to 3.

(iii) Radial Basis Function (RBF)kernels:

K(x, z) = exp(−γ||x− z||
2) (9)

The RBF kernel is the most complex kernel of
the three. In some NLP tasks such as text categori-
sation (Joachims, 1998), RBF kernels are shown
to capture the characteristics of the training data
more accurately than linear or polynomial kernels.
In our experimentsγ is set to 1.

4.3 Normalisation of Features

The features in our experiments are the match-
ing percentages on different types of dependencies.
We propose two ways of normalising the value:
horizontal and vertical. In horizontal normalisa-
tion, the number of matches on a certain depen-
dency type are normalised by the total number of

triples in the test/reference (based on whether pre-
cision or recall dependency matching is used) sen-
tence, as in (10):

H(i) =
#matching depType(i)

#allT ypes
(10)

In vertical normalisation, only the number of de-
pendencies of the same type are considered, as in
(11):

V (i) =
#matching depType(i)

#depType(i)
(11)

In horizontal normalisation, dependency types
x andx WN are counted separately. However, in
vertical normalisationx WN is counted asx, as
x WN is produced during matching, and we do
not have this dependency type in the test or refer-
ence sentences.

Our horizontal normalisation is equivalent to the
approach of (Ye et al., 2007). The vertical nor-
malisation is a more radical approach to reflect the
relative ratio of matches on different dependency
types.

5 Experiments

5.1 Data

We use two data sets in our experiments. We
use the WMT08 evaluation shared task dataset for
Ranking SVM training and testing. We use 3,249
human rankings on outputs from different MT sys-
tems. The rankings are just a reflection of the rel-
ative quality of these systems; no absolute scores
are given. We use 177 sentences from the Czech–
English News Commentary task and 123 sentences
from the Czech–English News task as our develop-
ment set (DEV). We use 358 Czech–English News
task sentences as the test set (TEST).

For the regression SVM we use the MTC4 cor-
pus from LDC. The corpus consists of human-
assigned fluency and adequacy scores to 11,028
outputs of MT systems. We remove the outputs
that cause parser errors, leaving 11,004 segments,
of which 2,000 sentences are used as our DEV set,
2,004 are used as the TEST set and the remaining
7,000 are used for training.

For generalisablity testing we also run exper-
iments on WMT08 data with regression models
generated from MTC4 data, and we run cross-
language and cross-domain tests on WMT08 data.
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Table 1: Ranking SVM: Different Kernels. Cons.:
Consistency percentage; Corr.: Spearman’s coeffi-
cient

Cons. Corr. Cons. Corr.
DEV DEV TEST TEST

BLEU-4 0.3397 0.1896 0.2515 0.1297
BLEU-4s 0.5251 0.0909 0.5480 0.1427
LFG-F 0.5892 0.2521 0.5565 0.1796
PR-HV-L 0.6325 0.2753 0.6055 0.2057
PR-HV-P 0.6083 0.2548 0.5202 0.0806
PR-HV-R 0.5667 0.2008 0.5117 -0.0006

Table 2: Ranking SVM: Different Data Represen-
tation

Cons. Corr. Cons. Corr.
DEV DEV TEST TEST

BLEU-4 0.3397 0.1896 0.2515 0.1297
BLEU-4s 0.5251 0.0909 0.5480 0.1427
LFG-F 0.5892 0.2521 0.5565 0.1796
P-V-L 0.5632 0.1599 0.5373 0.1227
P-H-L 0.5407 0.1315 0.5437 0.1565
R-V-L 0.6152 0.2815 0.5287 0.1656
R-H-L 0.5771 0.1988 0.5309 0.1903
PR-V-L 0.6170 0.2686 0.5884 0.2206
PR-H-L 0.6048 0.2178 0.6055 0.1939
P-HV-L 0.5685 0.1764 0.5415 0.1039
R-HV-L 0.6153 0.2751 0.5522 0.2068
PR-HV-L 0.6325 0.2753 0.6055 0.2057

5.2 Experimental Settings

We tested the ranking SVM with different types
of feature representation. Normalisation (Norm) is
performed with the horizontal (H), vertical (V) or
both (HV) methods. Dependency matching (DEP)
is computed in terms of precision (P), recall (R) or
both (PR). We test with SVMs of linear (L), poly-
nomial (P) and RBF (R) kernels (KERNEL) using
the SVMLight software. Each configuration is de-
noted with{NORM}-{DEP}-{KERNEL} in both
ranking and regression experimental results.

We use the following three metrics as base-
lines: BLEU (BLEU-4), add-one BLEU (BLEU-
4s) and the labelled LFG-based metric (LFG-F) as
described in (Owczarzak et al., 2007a; Owczarzak
et al., 2007b). Note that the result of the LFG-F
metric would have among the highest correlations
with human judgement in the WMT08 shared eval-
uation task.

5.3 Experiments on Ranking SVM

We train ranking SVMs on WMT08 data to pro-
duce rankings of different system outputs on the
same sentence.

Usually, the correlation between a metric and
human rankings can be measured by Spearman’s

rank order correlation, defined in (12), whered

is the difference between corresponding values in
rankings andn is the length of the rankings:

ρ = 1− (
6
∑

d2

n(n2 − 1)
) (12)

However, in (Callison-Burch et al., 2008), it
is argued that averagingρ is meaningless, and so
pair-wise consistent percentage is used instead to
measure correlations in the WMT08 shared evalu-
ation task. The pair-wise consistent percentage is
equal to the number of correct pair-wise compar-
isons made by a metric divided by the total number
of pair-wise comparisons to make.

We report both consistent percentage and
sentence-level Spearman’s correlation in our ex-
periments. The Spearman’s correlation is first
computed on each ranking, and then averaged.

We explore the choice of different{KERNEL}s
(Table 1) with PR-HV data representation (the
best representation) and the choice of different
{NORM}alization and{DEP}endency matching
schemes (Table 2) with linear kernel (the best ker-
nel).

In our experiments, PR-HV-L, the metric that
uses all variations of features, yields the best over-
all results and outperforms the baseline on both
DEV and TEST sets. A number of observations
present themselves: (i) In Table 2, recall-based de-
pendency match rates appear to be better features
than precision-based rates. This pattern is also ob-
served in other metrics such as METEOR. This is
another example of the importance of recall in MT
evaluation; (ii) In Table 1, more sophisticated ker-
nels such as Polynomial and RBF kernels do not
increase the performance of the metric and some-
times even decrease it. This might appear surpris-
ing, yet recall that we reserved all Czech–English
translations for the development and test sets, so
the SVM is not exposed to any human judgements
on this language pair during training. We did this
in order to show the generality of our machine
learning-based method, but in so doing we may
have caused the more sophisticated kernels to over-
fit on other language pairs. It tells us that selection
of features is more important for our method than
the learning algorithm itself; (iii) Vertical match
features produce some good results but are more
prone to overfitting. Using the RBF kernel on ver-
tical match features often leads to lower correla-
tions. The problem with the vertical match feature
is that it ignores the total number of dependencies
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Table 3: Regression SVM: Different Kernels. F/A
Corr.: Correlation on fluency/adequacy

F Corr. A Corr. F Corr. A Corr.
DEV DEV TEST TEST

BLEU-4 0.0679 0.145 0.1179 0.2087
BLEU-4s 0.0919 0.2077 0.1724 0.2499
LFG-F 0.1076 0.2926 0.2453 0.3779
R-H-L 0.0812 0.2987 0.2506 0.3992
R-H-P 0.0869 0.2998 0.2322 0.3948
R-H-R 0.0880 0.2996 0.2302 0.3935

Table 4: Regression SVM: Different Data Repre-
sentation

F Corr. A Corr. F Corr. A Corr.
DEV DEV TEST TEST

BLEU-4 0.0679 0.145 0.1179 0.2087
BLEU-4s 0.0919 0.2077 0.1724 0.2499
LFG-F 0.1076 0.2926 0.2453 0.3779
P-V-L 0.0961 0.2025 0.1993 0.2723
P-H-L 0.1030 0.2331 0.2040 0.2723
R-V-L 0.0694 0.2698 0.2222 0.3894
R-H-L 0.0812 0.2987 0.2506 0.3992
PR-V-L 0.0793 0.2669 0.2189 0.3827
PR-H-L 0.0989 0.3027 0.2436 0.3934
P-HV-L 0.1040 0.2165 0.2112 0.2894
R-HV-L 0.0850 0.2867 0.2307 0.3999
PR-HV-L 0.0933 0.2828 0.2288 0.3911

in a sentence. As a result, an output that correctly
translatessubj in a simple sentence with 2 depen-
dencies will receive the same score as an output
that only translatessubj correctly in a compound
sentence of 20 dependencies. This leads to prob-
lematic features and the problem might be exacer-
bated during learning; and (iv) When H, V, P and R
are all used as features, we obtain the best overall
result. This suggests that our different methods of
normalisation and dependency matching are com-
plementary in our ranking experiment.

5.4 Experiments on Regression SVM

In the regression SVM experiment, we use SVM
to learn the scores which are assigned by human
judges. The models for predicting fluency and ad-
equacy scores are trained separately.

We calculate Pearson’s correlation on both flu-
ency and adequacy. Pearson’s correlation is de-
fined as:

r =
1

n− 1

∑
(
xi − X̄

sX

)(
yi − Ȳ

sY

) (13)

wherexi is the value of theith score,X̄ is the
mean score andsX is the standard deviation.

The results on different kernels and different
data representation are reported in Table 3 and Ta-
ble 4 respectively. For the regression task, we

test the choice of kernels on the R-V representa-
tion, which performs better than PR-HV in this
task. In this experiment, we do not see a particular
metric that consistently outperforms the baseline
with respect to fluency. However, all metrics that
are based on horizontal normalisation and recall-
style dependency matching perform better than the
baseline with respect to adequacy, for several rea-
sons. Firstly, the features of our SVM models are
the decomposed parts of LFG-F. LFG-F is better
at evaluating adequacy than fluency (Owczarzak
et al., 2007a; Owczarzak et al., 2007b). Thus we
have better features for our adequacy-predicting
SVM model.

Secondly, note that the fluency correlation on
the DEV set is generally at a very low level, which
indicates that the sentences in our DEV set are very
hard to judge with respect to fluency. At this level,
many trivial reasons can lead to an increase or de-
crease in correlation. In general, we can consider
our R-H-L and PR-H-L metrics to be on a par with
the baseline as far as fluency is concerned.

Except for the variance in fluency and adequacy,
many tendencies observed in our ranking exper-
iment still apply here. The recall-based features
still prevail and sophisticated kernels do not im-
prove performance. Vertical normalisation has a
bigger negative impact in this experiment. It sug-
gests that regression is more error-prone than rank-
ing, perhaps because regression is harder.

5.5 Cross-Task Generalisability

We choose the two best-performing (R-H-L, PR-
H-L) as well as two somewhat mediocre (R-HV-
L, PR-HV-L) regression models and use them to
compute scores for our ranking DEV and TEST
set. We do not run this experiment in the oppo-
site direction, because the MTC4 data is not col-
lected in a ranking scenario and we consider it in-
comparable to the results on WMT08. We calcu-
late Spearman’s coefficient between the rankings
induced from these regression scores and the hu-
man rankings to validate the generalisability of our
learning method. For regression SVMs trained on
MTC4, WMT08 is a corpus that is different with
respect to language pair, domain, and evaluation
criterion. The results are shown in Table 5.

Basically all four metrics trained on MTC4 out-
perform the LFG F-Score baseline on the TEST
set, but are on a par or inferior on the DEV set. We
consider this tendency to be related to the differ-
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Table 5: Cross-Task Experiments
Cons. Corr. Cons. Corr.
DEV DEV TEST TEST

BLEU-4 0.3397 0.1896 0.2515 0.1297
BLEU-4s 0.5251 0.0909 0.5480 0.1427
LFG-F 0.5892 0.2521 0.5565 0.1796
R-H 0.5875 0.2269 0.5714 0.2471
PR-H 0.5823 0.2152 0.5991 0.2084
R-HV 0.5649 0.1526 0.5479 0.1931
PR-HV 0.5719 0.1700 0.5714 0.1638

Table 6: Cross-Language Pair Experiments
French Other

Cons. Corr. Cons. Corr.
BLEU 0.2795 0.1913 0.3652 0.1827
BLEU-4s 0.5818 0.2255 0.5675 0.1980
LFG-F 0.6204 0.2550 0.5994 0.2503
PR-V-L 0.6159 0.2420 0.5813 0.1848
PR-H-L 0.6522 0.3131 0.5844 0.2118
PR-HV-L 0.6227 0.2706 0.5896 0.1931

ence in domains. The ranking DEV set is domi-
nated by commentary data, but the TEST set con-
sists of news data only, which is identical to the
MTC4 corpus we use to train the Regression SVM.

The results show that our method is general-
isable to different tasks and evaluation criteria.
When tested on similar domains, our regression
SVM not only performs better than a very high
baseline, but also approaches the performance of
the best SVM trained specially for Ranking. Fur-
thermore, the better performing metrics on MTC4
continue to perform well on WMT08.

However, our method is quite sensitive to do-
main change. The regression SVM trained on a
completely different domain performs worse than
the Ranking SVM on the DEV set, whereas on
the TEST set it performs better than the Ranking
SVM, which is trained on a multi-domain corpus.

5.6 Cross-Language Pair and Cross-Domain
Generalisability

We carried out more experiments on the WMT08
data to explore the generalisability of our method
over different language pairs and different do-
mains. As far as language pair generalisability is
concerned, we divide the dataset by language pairs
into French–English and Other–English parts. We
train the metrics on half of the French–English
data, and test the model on the other half as well
as Other–English data. The results are provided in
Table 6.

For domain generalisability, we train the metrics
on half of the News data and test them on the other

Table 7: Cross-Domain Experiments
News Non-News

Cons. Corr. Cons. Corr.
BLEU 0.3035 0.1653 0.4739 0.2906
BLEU-4s 0.5548 0.2013 0.6277 0.2992
LFG-F 0.6112 0.2905 0.6313 0.3007
PR-V-L 0.6102 0.2540 0.5858 0.2088
PR-H-L 0.6208 0.2957 0.6129 0.2745
PR-HV-L 0.6134 0.2694 0.5996 0.2285

half, as well as non-News data. The results are
shown in Table 7. In both experiments we test with
three metrics: PR-V-L, PR-H-L and PR-HV-L.

In both tests our methods do not outperform the
baseline on different language pairs or domains.
This is because our training set is very small. We
are actually using a model trained on just hundreds
of samples to rank thousands of samples in a dif-
ferent language pair/domain. In this context, all
the tested methods obtain consistent percentages
very close to the baseline in the cross-language
pair experiment. It confirms that our method is
more generalisable over different language pairs,
and is somewhat more sensitive to changes in do-
mains.

The shortcomings of vertical normalisation are
magnified in these experiments. The correlations
of our metrics on out-of-domain test sets follows
the pattern of H> HV > V, which indicates that
vertical normalisation causes performance to dete-
riorate. It accords with our assumption in the re-
gression experiment that vertical normalisation is
more prone to error on harder tasks.

6 Conclusion and Further Work

In this paper, we have presented a novel approach
to automatic MT evaluation, where the labelled de-
pendency approach of (Owczarzak et al., 2007a;
Owczarzak et al., 2007b) is combined with the use
of both Ranking and Regression Support Vector
Machines (SVMs) (Burges, 1998). In our ap-
proach, we learn the required labelled dependen-
cies, and show that our method improves over the
approach of (Owczarzak et al., 2007a; Owczarzak
et al., 2007b) with respect to correlation with hu-
man judgements. In addition, we demonstrate
that our method is generalisable over different lan-
guage pairs, but is somewhat more sensitive to
changes in domains.

As far as extensions to this work are concerned,
we aim to experiment with more features to im-
prove cross-domain adaptability and to prevent any
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overfitting. In addition, a more in-depth analysis
needs to be carried out in order to discover which
particular features contribute most to the correla-
tion with human judgement.
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