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Abstract

We introduce SPMT, a new class of sta-
tistical Translation Models that use Syn-
tactified target language Phrases. The
SPMT models outperform a state of the art
phrase-based baseline model by 2.64 Bleu
points on the NIST 2003 Chinese-English
test corpus and 0.28 points on a human-
based quality metric that ranks translations
on a scale from 1 to 5.

1 Introduction

During the last four years, various implemen-
tations and extentions to phrase-based statistical
models (Marcu and Wong, 2002; Koehn et al.,
2003; Och and Ney, 2004) have led to signif-
icant increases in machine translation accuracy.
Although phrase-based models yield high-quality
translations for language pairs that exhibit simi-
lar word order, they fail to produce grammatical
outputs for language pairs that are syntactically
divergent. Recent models that exploit syntactic
information of the source language (Quirk et al.,
2005) have been shown to produce better outputs
than phrase-based systems when evaluated on rel-
atively small scale, domain specific corpora. And
syntax-inspired formal models (Chiang, 2005), in
spite of being trained on significantly less data,
have shown promising results when compared on
the same test sets with mature phrase-based sys-
tems. To our knowledge though, no previous re-
search has demonstrated that a syntax-based sta-
tistical translation system could produce better re-
sults than a phrase-based system on a large-scale,
well-established, open domain translation task. In
this paper we present such a system.

Our translation models rely upon and naturally
exploit submodels (feature functions) that have

been initially developed in phrase-based systems
for choosing target translations of source language
phrases, and use new, syntax-based translation and
target language submodels for assembling target
phrases into well-formed, grammatical outputs.

After we introduce our models intuitively, we
discuss their formal underpinning and parameter
training in Section 2. In Section 3, we present our
decoder and, in Section 4, we evaluate our models
empirically. In Section 5, we conclude with a brief
discussion.

2 SPMT: statistical Machine Translation
with Syntactified Phrases

2.1 An intuitive introduction to SPMT

After being exposed to 100M+ words of parallel
Chinese-English texts, current phrase-based statis-
tical machine translation learners induce reason-
ably reliable phrase-based probabilistic dictionar-
ies. For example, our baseline statistical phrase-
based system learns that, with high probabilities,
the Chinese phrases “ASTRO- -NAUTS”, “FRANCE

AND RUSSIA” and “COMINGFROM” can be trans-
lated into English as “astronauts”/“cosmonauts”,
“france and russia”/“france and russian” and
“coming from”/“from”, respectively. 1 Unfortu-
nately, when given as input Chinese sentence 1,
our phrase-based system produces the output
shown in 2 and not the translation in 3, which
correctly orders the phrasal translations into a
grammatical sequence. We believe this hap-
pens because the distortion/reordering models that
are used by state-of-the-art phrase-based systems,
which exploit phrase movement and ngram target

1To increase readability, in this paper, we represent Chi-
nese words using fully capitalized English glosses and En-
glish words using lowercased letters.
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language models (Och and Ney, 2004; Tillman,
2004), are too weak to help a phrase-based de-
coder reorder the target phrases into grammatical
outputs.

THESE 7PEOPLE INCLUDE COMINGFROM

FRANCE AND RUSSIA p-DE ASTRO- -NAUTS .
(1)

the 7 people including those from france

and the russian cosmonauts .
(2)

these 7 people include astronauts coming

from france and russia .
(3)

One method for increasing the ability of a de-
coder to reorder target language phrases is that
of decorating them with syntactic constituent in-
formation. For example, we may make ex-
plicit that the Chinese phrase “ASTRO- -NAUTS”

may be translated into English as a noun phrase,
NP(NNS(astronauts)); that the phrase FRANCE AND

RUSSIA may be translated into a complex noun-
phrase, NP(NP(NNP(france)) CC(and) NP(NNP(russia)));
that the phrase COMINGFROM may be translated
into a partially realized verb phrase that is look-
ing for a noun phrase to its right in order to be
fully realized, VP(VBG(coming) PP(IN(from) NP:x0));
and that the Chinese particle p-DE, when occurring
between a Chinese string that was translated into
a verb phrase to its left and another Chinese string
that was translated into a noun phrase to its right,
VP:x1 p-DE NP:x0, should be translated to noth-
ing, while forcing the reordering of the two con-
stituents, NP(NP:x0, VP:x1). If all these translation
rules (labeled r1 to r4 in Figure 1) were available
to a decoder that derives English parse trees start-
ing from Chinese input strings, this decoder could
produce derivations such as that shown in Fig-
ure 2. Because our approach uses translation rules
with Syntactified target language Phrases (see Fig-
ure 1), we call it SPMT.

2.2 A formal introduction to SPMT

2.2.1 Theoretical foundations

We are interested to model a generative process
that explains how English parse trees π and their
associated English string yields E, foreign sen-
tences, F , and word-level alignments, A, are pro-
duced. We assume that observed (π, F,A) triplets
are generated by a stochastic process similar to

r1 :NP(NNS(astronauts))→ ASTRO- -NAUTS

r2 :NP(NP(NNP(france)) CC(and) NP(NNP(russia)))→

FRANCE AND RUSSIA

r3 :VP(VBG(coming) PP(IN(from) NP:x0))→

COMINGFROM x0

r4 :NP(NP:x0, VP:x1)→ x1 p-DE x0

r5 :NNP(france)→ FRANCE

r6 :NP(NP(NNP(france)) CC(and) NP:x0)→ FRANCE AND x0

r7 :NNS(astronauts)→ ASTRO- -NAUTS

r8 :NNP(russia)→ RUSSIA

r9 :NP(NNS:x0)→ x0

r10 :PP(IN:x0 NP:x1)→ x0 x1

r11 :NP(NP:x0 CC:x1 NP:x2)→ x0 x1 x2

r12 :NP(NNP:x0)→ x0

r13 :CC(and)→ AND

r14 :NP(NP:x0 CC(and) NP:x1)→ x0 AND x1

r15 :NP(NP:x0 VP(VBG(coming) PP(IN(from) NP:x1)))→

x1 COMINGFROM x0

Figure 1: Examples of xRS rules.

that used in Data Oriented Parsing models (Bon-
nema, 2002). For example, if we assume that the
generative process has already produced the top
NP node in Figure 2, then the corresponding par-
tial English parse tree, foreign/source string, and
word-level alignment could be generated by the
rule derivation r4(r1, r3(r2)), where each rule is
assumed to have some probability.

The extended tree to string transducers intro-
duced by Knight and Graehl (2005) provide a nat-
ural framework for expressing the tree to string
transformations specific to our SPMT models.
The transformation rules we plan to exploit are
equivalent to one-state xRS top-down transduc-
ers with look ahead, which map subtree patterns
to strings. For example, rule r3 in Figure 1 can
be applied only when one is in a state that has a
VP as its syntactic constituent and the tree pat-
tern VP(VBG(coming) PP(IN(from) NP)) immediately
underneath. The rule application outputs the string
“COMINGFROM” as the transducer moves to the
state co-indexed by x0; the outputs produced from
the new state will be concatenated to the right of
the string “COMINGFROM”.

Since there are multiple derivations that could
lead to the same outcome, the probability of a
tuple (π, F,A) is obtained by summing over all
derivations θi ∈ Θ that are consistent with the tu-
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Figure 2: English parse tree derivation of the Chi-
nese string COMINGFROM FRANCE AND RUSSIA p-

DE ASTRO- -NAUTS.

ple, c(Θ) = (π, F,A). The probability of each
derivation θi is given by the product of the proba-
bilities of all the rules p(rj) in the derivation (see
equation 4).

Pr(π, F,A) =
∑

θi∈Θ,c(Θ)=(π,F,A)

∏

rj∈θi

p(rj) (4)

In order to acquire the rules specific to our
model and to induce their probabilities, we parse
the English side of our corpus with an in-house
implementation (Soricut, 2005) of Collins pars-
ing models (Collins, 2003) and we word-align the
parallel corpus with the Giza++2 implementation
of the IBM models (Brown et al., 1993). We
use the automatically derived 〈English-parse-tree,
English-sentence, Foreign-sentence, Word-level-
alignment〉 tuples in order to induce xRS rules for
several models.

2.2.2 SPMT Model 1

In our simplest model, we assume that each
tuple (π, F,A) in our automatically annotated
corpus could be produced by applying a com-
bination of minimally syntactified, lexicalized,
phrase-based compatible xRS rules, and mini-
mal/necessary, non-lexicalized xRS rules. We call
a rule non-lexicalized whenever it does not have
any directly aligned source-to-target words. Rules
r9–r12 in Figure 1 are examples of non-lexicalized
rules.

Minimally syntactified, lexicalized, phrase-
based-compatible xRS rules are extracted via a

2http://www.fjoch.com/GIZA++.html

simple algorithm that finds for each foreign phrase
F

j
i , the smallest xRS rule that is consistent with

the foreign phrase F
j
i , the English syntactic tree

π, and the alignment A. The algorithm finds for
each foreign/source phrase span its projected span
on the English side and then traverses the En-
glish parse tree bottom up until it finds a node
that subsumes the projected span. If this node has
children that fall outside the projected span, then
those children give rise to rules that have variables.
For example, if the tuple shown in Figure 2 is in
our training corpus, for the foreign/source phrases
FRANCE, FRANCE AND, FRANCE AND RUSSIA, and
ASTRO- -NAUTS, we extract the minimally syntac-
tified, lexicalized phrase-based-compatible xRS
rules r5, r6, r2, and r7 in Figure 1, respectively.
Because, as in phrase-based MT, all our rules have
continuous phrases on both the source and target
language sides, we call these phrase-based com-
patible xRS rules.

Since these lexicalized rules are not sufficient to
explain an entire (π, F,A) tuple, we also extract
the required minimal/necessary, non-lexicalized
xRS rules. The minimal non-lexicalized rules that
are licensed by the tuple in Figure 2 are labeled
r4, r9, r10, r11 and r12 in Figure 1. To obtain the
non-lexicalized xRS rules, we compute the set of
all minimal rules (lexicalized and non-lexicalized)
by applying the algorithm proposed by Galley et
al. (2006) and then remove the lexicalized rules.
We remove the Galley et al.’s lexicalized rules
because they are either already accounted for by
the minimally syntactified, lexicalized, phrase-
based-compatible xRS rules or they subsume non-
continuous source-target phrase pairs.

It is worth mentioning that, in our framework,
a rule is defined to be “minimal” with respect to a
foreign/source language phrase, i.e., it is the min-
imal xRS rule that yields that source phrase. In
contrast, in the work of Galley et al. (2004; 2006),
a rule is defined to be minimal when it is necessary
in order to explain a (π, F,A) tuple.

Under SPMT model 1, the tree in Figure 2 can
be produced, for example, by the following deriva-
tion: r4(r9(r7), r3(r6(r12(r8)))).

2.2.3 SPMT Model 1 Composed

We hypothesize that composed rules, i.e., rules
that can be decomposed via the application of a
sequence of Model 1 rules may improve the per-
formance of an SPMT system. For example, al-
though the minimal Model 1 rules r11 and r13 are
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Figure 3: Problematic syntactifications of phrasal
translations.

sufficient for building an English NP on top of two
NPs separated by the Chinese conjunction AND,
the composed rule r14 in Figure 1 accomplishes
the same result in only one step. We hope that the
composed rules could play in SPMT the same role
that phrases play in string-based translation mod-
els.

To test our hypothesis, we modify our rule ex-
traction algorithm so that for every foreign phrase
F

j
i , we extract not only a minimally syntactified,

lexicalized xRS rule, but also one composed rule.
The composed rule is obtained by extracting the
rule licensed by the foreign/source phrase, align-
ment, English parse tree, and the first multi-child
ancestor node of the root of the minimal rule. Our
intuition is that composed rules that involve the ap-
plication of more than two minimal rules are not
reliable. For example, for the tuple in Figure 2,
the composed rule that we extract given the for-
eign phrases AND and COMINGFROM are respec-
tively labeled as rules r14 and r15 in Figure 1.

Under the SPMT composed model 1,
the tree in Figure 2 can be produced,
for example, by the following derivation:
r15(r9(r7), r14(r12(r5), r12(r8))).

2.2.4 SPMT Model 2

In many instances, the tuples (π, F,A) in our
training corpus exhibit alignment patterns that can
be easily handled within a phrase-based SMT
framework, but that become problematic in the
SPMT models discussed until now.

Consider, for example, the (π, F,A) tuple frag-
ment in Figure 3. When using a phrase-based
translation model, one can easily extract the
phrase pair (THE MUTUAL; the mutual) and use it
during the phrase-based model estimation phrase
and in decoding. However, within the xRS trans-

ducer framework that we use, it is impossible to
extract an equivalent syntactified phrase transla-
tion rule that subsumes the same phrase pair be-
cause valid xRS translation rules cannot be multi-
headed. When faced with this constraint, one has
several options:

• One can label such phrase pairs as non-
syntactifiable and ignore them. Unfortu-
nately, this is a lossy choice. On our par-
allel English-Chinese corpus, we have found
that approximately 28% of the foreign/source
phrases are non-syntactifiable by this defini-
tion.

• One can also traverse the parse tree upwards
until one reaches a node that is xRS valid, i.e.,
a node that subsumes the entire English span
induced by a foreign/source phrase and the
corresponding word-level alignment. This
choice is also inappropriate because phrase
pairs that are usually available to phrase-
based translation systems are then expanded
and made available in the SPTM models only
in larger applicability contexts.

• A third option is to create xRS compati-
ble translation rules that overcome this con-
straint.

Our SPMT Model 2 adopts the third option by
rewriting on the fly the English parse tree for each
foreign/source phrase and alignment that lead to
non-syntactifiable phrase pairs. The rewriting pro-
cess adds new rules to those that can be created
under the SPMT model 1 constraints. The process
creates one xRS rule that is headed by a pseudo,
non-syntactic nonterminal symbol that subsumes
the target phrase and corresponding multi-headed
syntactic structure; and one sibling xRS rule that
explains how the non-syntactic nonterminal sym-
bol can be combined with other genuine nonter-
minals in order to obtain genuine parse trees. In
this view, the foreign/source phrase THE MUTUAL

and corresponding alignment in Figure 3 licenses
the rules ?NPB? NN(DT(the) JJ(mutual)) → THE MU-

TUAL and NPB(?NPB? NN:x0 NN:x1) → x0 x1 even
though the foreign word UNDERSTANDING is
aligned to an English word outside the NPB con-
situent. The name of the non-syntactic nontermi-
nal reflects the intuition that the English phrase “the

mutual” corresponds to a partially realized NPB that
needs an NN to its right in order to be fully real-
ized.
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Our hope is that the rules headed by pseudo
nonterminals could make available to an SPMT
system all the rules that are typically available to
a phrase-based system; and that the sibling rules
could provide a sufficiently robust generalization
layer for integrating pseudo, partially realized con-
stituents into the overall decoding process.

2.2.5 SPMT Model 2 Composed

The SPMT composed model 2 uses all rule
types described in the previous models.

2.3 Estimating rule probabilities

For each model, we extract all rule instances that
are licensed by a symmetrized Giza-aligned paral-
lel corpus and the constraints we put on the model.
We condition on the root node of each rule and use
the rule counts f(r) and a basic maximum likeli-
hood estimator to assign to each rule type a condi-
tional probability (see equation 5).

p(r|root(r)) =
f(r)∑

r′:root(r′)=root(r) f(r′)
(5)

It is unlikely that this joint probability model
can be discriminative enough to distinguish be-
tween good and bad translations. We are not too
concerned though because, in practice, we decode
using a larger set of submodels (feature functions).

Given the way all our lexicalized xRS rules have
been created, one can safely strip out the syntac-
tic information and end up with phrase-to-phrase
translation rules. For example, in string-to-string
world, rule r5 in Figure 1 can be rewritten as “france

→ FRANCE”; and rule r6 can be rewritten as “france

and → FRANCE AND”. When one analyzes the lex-
icalized xRS rules in this manner, it is easy to as-
sociate with them any of the submodel probability
distributions that have been proven useful in statis-
tical phrase-based MT. The non-lexicalized rules
are assigned probability distributions under these
submodels as well by simply assuming a NULL
phrase for any missing lexicalized source or target
phrase.

In the experiments described in this paper, we
use the following submodels (feature functions):
Syntax-based-like submodels:

• proot(ri) is the root normalized conditional
probability of all the rules in a model.

• pcfg(ri) is the CFG-like probability of the
non-lexicalized rules in the model. The lexi-
calized rules have by definition pcfg = 1.

• is lexicalized(ri) is an indicator feature func-
tion that has value 1 for lexicalized rules, and
value 0 otherwise.

• is composed(ri) is an indicator feature func-
tion that has value 1 for composed rules.

• is lowcount(ri) is an indicator feature func-
tion that has value 1 for the rules that occur
less than 3 times in the training corpus.

Phrase-based-like submodels:

• lex pef(ri) is the direct phrase-based con-
ditional probability computed over the for-
eign/source and target phrases subsumed by
a rule.

• lex pfe(ri) is the inverse phrase-based condi-
tional probability computed over the source
and target phrases subsumed by a rule.

• m1(ri) is the IBM model 1 probability com-
puted over the bags of words that occur on
the source and target sides of a rule.

• m1inv(ri) is the IBM model 1 inverse prob-
ability computed over the bags of words that
occur on the source and target sides of a rule.

• lm(e) is the language model probability of
the target translation under an ngram lan-
guage model.

• wp(e) is a word penalty model designed to
favor longer translations.

All these models are combined log-linearly dur-
ing decoding. The weights of the models are
computed automatically using a variant of the
Maximum Bleu training procedure proposed by
Och (2003).

The phrase-based-like submodels have been
proved useful in phrase-based approaches to
SMT (Och and Ney, 2004). The first two syntax-
based submodels implement a “fused” translation
and lexical grounded distortion model (proot) and
a syntax-based distortion model (pcfg). The indi-
cator submodels are used to determine the extent
to which our system prefers lexicalized vs. non-
lexicalized rules; simple vs. composed rules; and
high vs. low count rules.
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3 Decoding

3.1 Decoding with one SPMT model

We decode with each of our SPMT models using
a straightforward, bottom-up, CKY-style decoder
that builds English syntactic constituents on the
top of Chinese sentences. The decoder uses a bina-
rized representation of the rules, which is obtained
via a syncronous binarization procedure (Zhang et
al., 2006). The CKY-style decoder computes the
probability of English syntactic constituents in a
bottom up fashion, by log-linearly interpolating all
the submodel scores described in Section 2.3.

The decoder is capable of producing nbest
derivations and nbest lists (Knight and Graehl,
2005), which are used for Maximum Bleu train-
ing (Och, 2003). When decoding the test cor-
pus, the decoder returns the translation that has the
most probable derivation; in other words, the sum
operator in equation 4 is replaced with an argmax.

3.2 Decoding with multiple SPMT models

Combining multiple MT outputs to increase per-
formance is, in general, a difficult task (Matusov
et al., 2006) when significantly different engines
compete for producing the best outputs. In our
case, combining multiple MT outputs is much
simpler because the submodel probabilities across
the four models described here are mostly iden-
tifical, with the exception of the root normalized
and CFG-like submodels which are scaled differ-
ently – since Model 2 composed has, for example,
more rules than Model 1, the root normalized and
CFG-like submodels have smaller probabilities for
identical rules in Model 2 composed than in Model
1. We compare these two probabilities across the
submodels and we scale all model probabilities to
be compatible with those of Model 2 composed.

With this scaling procedure into place, we pro-
duce 6,000 non-unique nbest lists for all sentences
in our development corpus, using all SPMT sub-
models. We concatenate the lists and we learn a
new combination of weights that maximizes the
Bleu score of the combined nbest list using the
same development corpus we used for tuning the
individual systems (Och, 2003). We use the new
weights in order to rerank the nbest outputs on the
test corpus.

4 Experiments

4.1 Automatic evaluation of the models

We evaluate our models on a Chinese to English
machine translation task. We use the same training
corpus, 138.7M words of parallel Chinese-English
data released by LDC, in order to train several
statistical-based MT systems:

• PBMT, a strong state of the art phrase-based
system that implements the alignment tem-
plate model (Och and Ney, 2004); this is the
system ISI has used in the 2004 and 2005
NIST evaluations.

• four SPMT systems (M1, M1C, M2, M2C)
that implement each of the models discussed
in this paper;

• a SPMT system, Comb, that combines the
outputs of all SPMT models using the pro-
cedure described in Section 3.2.

In all systems, we use a rule extraction algo-
rithm that limits the size of the foreign/source
phrases to four words. For all systems, we use
a Kneser-Ney (1995) smoothed trigram language
model trained on 2.3 billion words of English. As
development data for the SPMT systems, we used
the sentences in the 2002 NIST development cor-
pus that are shorter than 20 words; we made this
choice in order to finish all experiments in time for
this submission. The PBMT system used all sen-
tences in the 2002 NIST corpus for development.
As test data, we used the 2003 NIST test set.

Table 1 shows the number of string-to-string or
tree-to-string rules extracted by each system and
the performance on both the subset of sentences in
the test corpus that were shorter than 20 words and
the entire test corpus. The performance is mea-
sured using the Bleu metric (Papineni et al., 2002)
on lowercased, tokenized outputs/references.

The results show that the SPMT models clearly
outperform the phrase-based systems – the 95%
confidence intervals computed via bootstrap re-
sampling in all cases are around 1 Bleu point. The
results also show that the simple system combina-
tion procedure that we have employed is effective
in our setting. The improvement on the develop-
ment corpus transfers to the test setting as well.

A visual inspection of the outputs shows signif-
icant differences between the outputs of the four
models. The models that use composed rules pre-
fer to produce outputs by using mostly lexicalized
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System # of rules Bleu score Bleu score Bleu score
(in millions) on Dev on Test on Test

(4 refs) (4 refs) (4 refs)
< 20 words < 20 words

PBMT 125.8 34.56 34.83 31.46
SPMT-M1 34.2 37.60 38.18 33.15
SPMT-M1C 75.7 37.30 38.10 32.39
SPMT-M2 70.4 37.77 38.74 33.39
SPMT-M2C 111.1 37.48 38.59 33.16
SPMT-Comb 111.1 39.44 39.56 34.10

Table 1: Automatic evaluation results.

rules; in contrast, the simple M1 and M2 mod-
els produce outputs in which content is translated
primarily using lexicalized rules and reorderings
and word insertions are explained primarily by the
non-lexical rules. It appears that the two strategies
are complementary, succeeding and failing in dif-
ferent instances. We believe that this complemen-
tarity and the overcoming of some of the search
errors in our decoder during the model rescoring
phase explain the success of the system combina-
tion experiments.

We suspect that our decoder still makes many
search errors. In spite of this, the SPTM outputs
are still significantly better than the PBMT out-
puts.

4.2 Human-based evaluation of the models

We also tested whether the Bleu score improve-
ments translate into improvements that can be per-
ceived by humans. To this end, we randomly se-
lected 138 sentences of less than 20 words from
our development corpus; we expected the transla-
tion quality of sentences of this size to be easier to
assess than that of sentences that are very long.

We prepared a web-based evaluation interface
that showed for each input sentence:

• the Chinese input;

• three English reference translations;

• the output of seven “MT systems”.

The evaluated “MT systems” were the six systems
shown in Table 1 and one of the reference trans-
lations. The reference translation presented as
automatically produced output was selected from
the set of four reference translations provided by
NIST so as to be representative of human transla-
tion quality. More precisely, we chose the second
best reference translation in the NIST corpus ac-
cording to its Bleu score against the other three

reference translations. The seven outputs were
randomly shuffled and presented to three English
speakers for assessment.

The judges who participated in our experiment
were instructed to carefully read the three refer-
ence translations and seven machine translation
outputs, and assign a score between 1 and 5 to
each translation output on the basis of its quality.
Human judges were told that the translation qual-
ity assessment should take into consideration both
the grammatical fluency of the outputs and their
translation adequacy. Table 2 shows the average
scores obtained by each system according to each
judge. For convenience, the table also shows the
Bleu scores of all systems (including the human
translations) on three reference translations.

The results in Table 2 show that the human
judges are remarkably consistent in preferring the
syntax-based outputs over the phrase-based out-
puts. On a 1 to 5 quality scale, the difference be-
tween the phrase-based and syntax-based systems
was, on average, between 0.2 and 0.3 points. All
differences between the phrase-based baseline and
the syntax-based outputs were statistically signif-
icant. For example, when comparing the phrase-
based baseline against the combined system, the
improvement in human scores was significant at
P = 4.04e−6(t = 4.67, df = 413).

The results also show that the LDC reference
translations are far from being perfect. Although
we selected from the four references the second
best according to the Bleu metric, this human ref-
erence was judged to be at a quality level of only
4.67 on a scale from 1 to 5. Most of the translation
errors were fluency errors. Although the human
outputs had most of the time the right meaning,
the syntax was sometimes incorrect.

In order to give readers a flavor of the types
of re-orderings enabled by the SPMT models, we
present in Table 3, several translation outputs pro-
duced by the phrase-based baseline and the com-
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System Bleu score Judge 1 Judge 2 Judge 3 Judge
on Dev avg
(3 refs)

< 20 words
PBMT 31.00 3.00 3.34 2.95 3.10
SPMT-M1 33.79 3.28 3.49 3.04 3.27
SPMT-M1C 33.66 3.23 3.43 3.26 3.31
SPMT-M2 34.05 3.24 3.45 3.10 3.26
SPMT-M2C 33.42 3.24 3.48 3.13 3.28
SPMT-Combined 35.33 3.31 3.59 3.25 3.38
Human Ref 40.84 4.64 4.62 4.75 4.67

Table 2: Human-based evaluation results.

bined SPMT system. The outputs were selected to
reflect both positive and negative effects of large-
scale re-orderings.

5 Discussion

The SPMT models are similar to the models pro-
posed by Chiang (2005) and Galley et al. (2006).
If we analyze these three models in terms of ex-
pressive power, the Galley et al. (2006) model is
more expressive than the SPMT models, which
in turn, are more expressive than Chiang’s model.
The xRS formalism utilized by Galley et al. (2006)
allows for the use of translation rules that have
multi-level target tree annotations and discontin-
uous source language phrases. The SPMT mod-
els are less general: they use translation rules that
have multi-level target tree annotations but require
that the source language phrases are continuous.
The Syncronous Grammar formalism utilized by
Chiang is stricter than SPMT since it allows only
for single-level target tree annotations.

The parameters of the SPMT models presented
in this paper are easier to estimate than those of
Galley et al’s (2006) and can easily exploit and
expand on previous research in phrase-based ma-
chine translation. Also, the SPMT models yield
significantly fewer rules that the model of Galley
et al. In contrast with the model proposed by Chi-
ang, the SPMT models introduced in this paper are
fully grounded in syntax; this makes them good
candidates for exploring the impact that syntax-
based language models could have on translation
performance.

From a machine translation perspective, the
SPMT translation model family we have proposed
in this paper is promising. To our knowledge,
we are the first to report results that show that a
syntax-based system can produce results that are
better than those produced by a strong phrase-
based system in experimental conditions similar

to those used in large-scale, well-established in-
dependent evaluations, such as those carried out
annually by NIST.

Although the number of syntax-based rules
used by our models is smaller than the number
of phrase-based rules used in our state-of-the-art
baseline system, the SPMT models produce out-
puts of higher quality. This feature is encouraging
because it shows that the syntactified translation
rules learned in the SPMT models can generalize
better than the phrase-based rules.

We were also pleased to see that the Bleu
score improvements going from the phrase- to the
syntax-based models, as well as the Bleu improve-
ments going from the simple syntax-based models
to the combined models system are fully consis-
tent with the human qualitative judgments in our
subjective evaluations. This correlation suggests
that we can continue to use the Bleu metric to fur-
ther improve our models and systems.
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