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Abstract

In this paper we investigate unsuper-
vised name transliteration using compara-
ble corpora, corpora where texts in the two
languages deal in some of the same top-
ics — and therefore share references to
named entities — but are not translations
of each other. We present two distinct
methods for transliteration, one approach
using an unsupervised phonetic translit-
eration method, and the other using the
temporal distribution of candidate pairs.
Each of these approaches works quite
well, but by combining the approaches
one can achieve even better results. We
believe that the novelty of our approach
lies in the phonetic-based scoring method,
which is based on a combination of care-
fully crafted phonetic features, and empiri-
cal results from the pronunciation errors of
second-language learners of English. Un-
like previous approaches to transliteration,
this method can in principle work with any
pair of languages in the absence of a train-
ing dictionary, provided one has an esti-
mate of the pronunciation of words in text.

1 Introduction

As a part of a on-going project on multilingual
named entity identification, we investigate unsu-
pervised methods for transliteration across lan-
guages that use different scripts. Starting from
paired comparable texts that are about the same
topic, but are not in general translations of each
other, we aim to find the transliteration correspon-
dences of the paired languages. For example, if
there were an English and Arabic newspaper on
the same day, each of the newspapers would likely
contain articles about the same important inter-
national events. From these comparable articles

across the two languages, the same named enti-
ties such as persons and locations would likely be
found. For at least some of the English named
entities, we would therefore expect to find Ara-
bic equivalents, many of which would in fact be
transliterations.

The characteristics of transliteration differ ac-
cording to the languages involved. In particular,
the exact transliteration of say, an English name
is highly dependent on the language since this will
be influenced by the difference in the phonological
systems of the language pairs. In order to show the
reliability of a multi-lingual transliteration model,
it should be tested with a variety of different lan-
guages. We have tested our transliteration meth-
ods with three unrelated target languages — Ara-
bic, Chinese and Hindi, and a common source lan-
guage — English. Transliteration from English to
Arabic and Chinese is complicated (Al-Onaizan
and Knight, 2002). For example, while Arabic or-
thography has a conventional way of writing long
vowels using selected consonant symbols — ba-
sically <w>, <y> and <?>, in ordinary text
short vowels are rarely written. When transliter-
ating English names there is the option of repre-
senting the vowels as either short (i.e. unwrit-
ten) or long (i.e. written with one of the above
three mentioned consonant symbols). For exam-
ple London is transliterated as

���� ���� lndn, with no

vowels; Washington often as
����
	 ��������� wSnjTwn,

with <w> representing the final <o>. Transliter-
ations in Chinese are very different from the orig-
inal English pronunciation due to the limited syl-
lable structure and phoneme inventory of Chinese.
For example, Chinese does not allow consonant
clusters or coda consonants except [n, N], and this
results in deletion, substitution of consonants or
insertion of vowels. Thus while a syllable initial
/d/ may surface as in Baghdad ����� ba-ge-da,
note that the syllable final /d/ is not represented.
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Hindi transliteration is not well-studied, but it is
in principle easier than Arabic and Chinese since
Hindi phonotactics is much more similar to that of
English.

2 Previous Work

Named entity transliteration is the problem of pro-
ducing, for a name in a source language, a set
of one or more transliteration candidates in a tar-
get language. Previous work — e.g. (Knight and
Graehl, 1998; Meng et al., 2001; Al-Onaizan and
Knight, 2002; Gao et al., 2004) — has mostly as-
sumed that one has a training lexicon of translit-
eration pairs, from which one can learn a model,
often a source-channel or MaxEnt-based model.

Comparable corpora have been studied exten-
sively in the literature — e.g.,(Fung, 1995; Rapp,
1995; Tanaka and Iwasaki, 1996; Franz et al.,
1998; Ballesteros and Croft, 1998; Masuichi et
al., 2000; Sadat et al., 2004), but transliteration
in the context of comparable corpora has not been
well addressed. The general idea of exploiting
time correlations to acquire word translations from
comparable corpora has been explored in several
previous studies — e.g., (Fung, 1995; Rapp, 1995;
Tanaka and Iwasaki, 1996). Recently, a Pearson
correlation method was proposed to mine word
pairs from comparable corpora (Tao and Zhai,
2005); this idea is similar to the method used in
(Kay and Roscheisen, 1993) for sentence align-
ment. In our work, we adopt the method proposed
in (Tao and Zhai, 2005) and apply it to the problem
of transliteration; note that (Tao and Zhai, 2005)
compares several different metrics for time corre-
lation, as we also note below — and see (Sproat et
al., 2006).

3 Transliteration with Comparable
Corpora

We start from comparable corpora, consisting of
newspaper articles in English and the target lan-
guages for the same time period. In this paper, the
target languages are Arabic, Chinese and Hindi.
We then extract named-entities in the English text
using the named-entity recognizer described in (Li
et al., 2004), which is based on the SNoW machine
learning toolkit (Carlson et al., 1999). To perform
transliteration, we use the following general ap-
proach: 1 Extract named entities from the English
corpus for each day; 2 Extract candidates from the
same day’s newspapers in the target language; 3

For each English named entity, score and rank the
target-language candidates as potential transliter-
ations. We apply two unsupervised methods —
time correlation and pronunciation-based methods
— independently, and in combination.

3.1 Candidate scoring based on
pronunciation

Our phonetic transliteration score uses a standard
string-alignment and alignment-scoring technique
based on (Kruskal, 1999) in that the distance is de-
termined by a combination of substitution, inser-
tion and deletion costs. These costs are computed
from a language-universal cost matrix based on
phonological features and the degree of phonetic
similarity. (Our technique is thus similar to other
work on phonetic similarity such as (Frisch, 1996)
though details differ.) We construct a single cost
matrix, and apply it to English and all target lan-
guages. This technique requires the knowledge of
the phonetics and the sound change patterns of the
language, but it does not require a transliteration-
pair training dictionary. In this paper we assume
the WorldBet transliteration system (Hieronymus,
1995), an ASCII-only version of the IPA.

The cost matrix is constructed in the following
way. All phonemes are decomposed into stan-
dard phonological features. However, phonolog-
ical features alone are not enough to model the
possible substution/insertion/deletion patterns of
languages. For example, /h/ is more frequently
deleted than other consonants, whereas no single
phonological feature allows us to distinguish /h/
from other consonants. Similarly, stop and frica-
tive consonants such as /p, t, k, b, d, g, s, z/ are
frequently deleted when they appear in the coda
position. This tendency is very salient when the
target languages do not allow coda consonants or
consonant clusters. So, Chinese only allows [n,
N] in coda position, and stop consonants in coda
position are frequently lost; Stanford is translit-
erated as sitanfu, with the final /d/ lost. Since
phonological features do not consider the posi-
tion in the syllable, this pattern cannot be cap-
tured by conventional phonological features alone.
To capture this, an additional feature “deletion
of stop/fricative consonant in the coda position”
is added. We base these observations, and the
concomitant pseudofeatures on pronunciation er-
ror data of learners of English as a second lan-
guage, as reported in (Swan and Smith, 2002). Er-
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rors in second language pronunciation are deter-
mined by the difference in the phonological sys-
tem of learner’s first and second language. The
same substitution/deletion/insertion patterns in the
second language learner’s errors appear also in
the transliteration of foreign names. For exam-
ple, if the learner’s first language does not have
a particular phoneme found in English, it is sub-
stituted by the most similar phoneme in their first
language. Since Chinese does not have /v/, it is
frequently substituted by /w/ or /f/. This sub-
stitution occurs frequently in the transliteration
of foreign names in Chinese. Swan & Smith’s
study covers 25 languages, and includes Asian
languages such as Thai, Korean, Chinese and
Japanese, European languages such as German,
Italian, French, and Polish and Middle Eastern
languages such as Arabic and Farsi. Frequent sub-
stitution/insertion/deletion patterns of phonemes
are collected from these data. Some examples are
presented in Table 1.

Twenty phonological features and 14 pseud-
ofeatures are used for the construction of the cost
matrix. All features are classified into 5 classes.
There are 4 classes of consonantal features —
place, manner, laryngeality and major (conso-
nant, sonorant, syllabicity), and a separate class
of vocalic features. The purpose of these classes
is to define groups of features which share the
same substitution/insertion/deletion costs. For-
mally, given a class C, and a cost CC , for each
feature f ∈ C, CC defines the cost of substitut-
ing a different value for f than the one present in
the source phoneme. Among manner features, the
feature continuous is classified separately, since
the substitution between stop and fricative con-
sonants is very frequent; but between, say, nasals
and fricatives such substitution is much less com-
mon. The cost for frequent sound change pat-
terns should be low. Based on our intuitions, our
pseudofeatures are classified into one or another
of the above-mentioned five classes. The substitu-
tion/deletion/insertion cost for a pair of phonemes
is the sum of the individual costs of the features
which are different between the two phonemes.
For example, /n/ and /p/ are different in sonorant,
labial and coronal features. Therefore, the substi-
tution cost of /n/ for /p/ is the sum of the sonorant,
labial and coronal cost (20+10+10 = 40). Features
and associated costs are shown in Table 2. Sam-
ple substitution, insertion, and deletion costs for

/g/ are presented in Table 3.
The resulting cost matrix based on these prin-

ciples is then used to calculate the edit distance
between two phonetic strings. Pronunciations for
English words are obtained using the Festival text-
to-speech system (Taylor et al., 1998), and the tar-
get language words are automatically converted
into their phonemic level transcriptions by various
language-dependent means. In the case of Man-
darin Chinese this is based on the standard pinyin
transliteration system. For Arabic this is based
on the orthography, which works reasonably well
given that (apart from the fact that short vowels
are no represented) the script is fairly phonemic.
Similarly, the pronunciation of Hindi can be rea-
sonably well-approximated based on the standard
Devanagari orthographic representation. The edit
cost for the pair of strings is normalized by the
number of phonemes. The resulting score ranges
from zero upwards; the score is used to rank can-
didate transliterations, with the candidate having
the lowest cost being considered the most likely
transliteration. Some examples of English words
and the top three ranking candidates among all of
the potential target-language candidates are given
in Table 4.1 Starred entries are correct.

3.2 Candidate scoring based on time
correlation

Names of the same entity that occur in different
languages often have correlated frequency patterns
due to common triggers such as a major event. For
example, the 2004 tsunami disaster was covered
in news articles in many different languages. We
would thus expect to see a peak of frequency of
names such as Sri Lanka, India, and Indonesia in
news articles published in multiple languages in
the same time period. In general, we may expect
topically related names in different languages to
tend to co-occur together over time. Thus if we
have comparable news articles over a sufficiently
long time period, it is possible to exploit such cor-
relations to learn the associations of names in dif-
ferent languages.

The idea of exploiting time correlation has been
well studied. We adopt the method proposed in
(Tao and Zhai, 2005) to represent the source name
and each name candidate with a frequency vector
and score each candidate by the similarity of the

1We describe candidate selection for each of the target
languages later.
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Input Output Position
D D, d, z everywhere
T T, t, s everywhere
N N, n, g everywhere

p/t/k deletion coda

Table 1: Substitution/insertion/deletion patterns for phonemes based on English second-language
learner’s data reported in (Swan and Smith, 2002). Each row shows an input phoneme class, possi-
ble output phonemes (including null), and the positions where the substitution (or deletion) is likely to
occur.

Class Feature Cost

Major features and Consonant Del consonant 20
sonorant

consonant deletion
Place features and Vowel Del coronal 10

vowel del/ins
stop/fricative consonant del at coda position

h del/ins
Manner features nasal 5

dorsal feature for palatal consonants
Vowel features and Exceptions vowel height 3

vowel place
exceptional

Manner/ Laryngeal features continuous 1.5
voicing

Table 2: Examples of features and associated costs. Pseudofeatures are shown in boldface. Exceptional
denotes a situation such as the semivowel [j] substituting for the affricate [dZ]. Substitutions between
these two sounds actually occur frequently in second-language error data.

two frequency vectors. This is very similar to the
case in information retrieval where a query and a
document are often represented by a term vector
and documents are ranked by the similarity be-
tween their vectors and the query vector (Salton
and McGill, 1983). But the vectors are very dif-
ferent and should be constructed in quite differ-
ent ways. Following (Tao and Zhai, 2005), we
also normalize the raw frequency vector so that
it becomes a frequency distribution over all the
time points. In order to compute the similarity be-
tween two distribution vectors ~x = (x1, ..., xT )
and ~y = (y1, ..., yT ), the Pearson correlation co-
efficient was used in (Tao and Zhai, 2005). We
also consider two other commonly used measures
– cosine (Salton and McGill, 1983), and Jensen-
Shannon divergence (Lin, 1991), though our re-
sults show that Pearson correlation coefficient per-
forms better than these two other methods. Since
the time correlation method and the phonetic cor-

respondence method exploit distinct resources, it
makes sense to combine them. We explore two ap-
proaches to combining these two methods, namely
score combination and rank combination. These
will be defined below in Section 4.2.

4 Experiments

We evaluate our algorithms on three compara-
ble corpora: English/Arabic, English/Chinese, and
English/Hindi. Data statistics are shown in Ta-
ble 5.

From each data set in Table 5, we picked out all
news articles from seven randomly selected days.
We identified about 6800 English names using the
entity recognizer from (Carlson et al., 1999), and
chose the most frequent 200 names as our English
named entity candidates. Note that we chose the
most frequent names because the reliability of the
statistical correlation depends on the size of sam-
ple data. When a name is rare in a collection,
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Source Target Cost Target Cost

g g 0 r 40.5
kh 2.5 e 44.5

cCh 5.5 del 24
tsh 17.5 ins 20
N 26.5

Table 3: Substitution/deletion/insertion costs for /g/.

English Candidate
Script Worldbet

Philippines 1
���� � � � � �� f l b y n

*2 �� � � ��
	 � � � � �� f l b y n y t

3 � � �� � � � � � �� f l b y n a

Megawati *1  ���� �� � m h a f th

2 � ���  �� � �� � � ��� m i j a w a t a

3  � �� ��� � �� m a k w z a

English Candidate
Script Romanization Worldbet

Belgium *1 ������ �"!$# beljiyam b e l j i y a m
2 ���%'&(# beraham b e 9 a h a m
3 ) *+%'# phoram ph o 9 a m

Paraguay 1 ,+��%.-/! paricay p a 9 i c a y
*2 ,0+%'1�2�3� pairaagve p a i 9 a g v e

3 �5476 �+8:9 bhir.egii bh i rr e g i

English Candidate
Script Pinyin Worldbet

Angola *1 ;=<?> an-ge-la a n k & l a
1 ; �=> an-ge-la a n k & l a
2 @ �=> a-ge-la a k & l a

Megawati *1 A=B?C?D me-jia-wa-ti m & i cC j a w a t i
2 E?F=G mi-jie-ji m i cC j & u cC i
3 HJI"D?K ma-ha-ti-er m a x a t i & r

Table 4: Examples of the three top candidates in the transliteration of English/Arabic, English/Hindi and
English/Chinese. The second column is the rank.

one can either only use the phonetic model, which
does not depend on the sample size; or else one
must expand the data set and hope for more oc-
currence. To generate the Hindi and Arabic can-
didates, all words from the same seven days were
extracted. The words were stemmed all possible
ways using simple hand-developed affix lists: for
example, given a Hindi word c1c2c3, if both c3 and
c2c3 are in our suffix and ending list, then this sin-
gle word generates three possible candidates: c1,
c1c2, and c1c2c3. In contrast, Chinese candidates
were extracted using a list of 495 characters that
are frequently used for foreign names (Sproat et
al., 1996). A sequence of three or more such char-
acters from the list is taken as a possible name.
The number of candidates for each target language
is presented in the last column of Table 5.

We measured the accuracy of transliteration
by Mean Reciprocal Rank (MRR), a measure
commonly used in information retrieval when

there is precisely one correct answer (Kantor and
Voorhees, 2000).

We attempted to create a complete set of an-
swers for 200 English names in our test set, but
a small number of English names do not seem to
have any standard transliteration in the target lan-
guage according to the resources that we looked
at, and these names we removed from the evalua-
tion set. Thus, we ended up having a list of less
than 200 English names, shown in the second col-
umn of Table 6 (All). Furthermore some correct
transliterations are not found in our candidate list
for the second language, for two reasons: (1) The
answer does not occur at all in the target news arti-
cles; (Table 6 # Missing 1) (2) The answer is there,
but our candidate generation method has missed it.
(Table 6 # Missing 2) Thus this results in an even
smaller number of candidates to evaluate (Core);
this smaller number is given in the fifth column
of Table 6. We compute MRRs on the two sets
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Languages News Agency Period # days # Words # Cand.
Eng/Arab Xinhua/Xinhua 08/06/2001–11/07/2001 150 12M/1.8M 12466
Eng/Chin Xinhua/Xinhua 08/06/2001– 11/07/2001 150 12M/21M 6291
Eng/Hind Xinhua/Naidunia 08/01/1997–08/03/1998 380 24M/5.5M 10169

Table 5: Language-pair datasets.

Language # All # missing 1 # missing 2 # Core
Arabic 192 113 9 70
Chinese 186 83 1 82
Hindi 147 82 0 62

Table 6: Number of evaluated English NEs.

of candidates — those represented by the count
in column 2, and the smaller set represented by
the count in column 5; we term the former MRR
“AllMRR” and the latter “CoreMRR”.2 It is worth
noting that the major reason for not finding a can-
didate transliteration of an English name in the tar-
get language is almost always because it is really
not there, rather than because our candidate gen-
eration method has missed it. Presumably this re-
flects the fact that the corpora are merely compa-
rable, rather than parallel. But the important point
is that the true performance of the system would
be closer to what we report below for CoreMRR,
if we were working with truly parallel data where
virtually all source language names would have
target-language equivalents.

4.1 Performance of phonetic method and
time correlation method

The performance of the phonetic method and the
time correlation method are reported in Table 7,
top and middle panels, respectively. In addition to
the MRR scores, we also report another metric —
CorrRate, namely the proportion of times the first
candidate is the correct one.

Each of the two methods has advantages and
disadvantages. The time correlation method relies
more on the quality of the comparable corpora.
It is perhaps not surprising that the time correla-
tion method performs the best on English/Chinese,
since these data come from the same source
(Xinhua). Because the English and Hindi cor-
pora are from different new agencies (Xinhua and
Naidunia), the method performs relatively poorly.
On the other hand, the phonetic method is less af-
fected by corpus quality, but is sensitive to differ-

2We are aware that the resulting test set is very small,
but we believe that it is large enough to demonstrate that the
method is effective.

ences between languages. As discussed in the in-
troduction, Hindi is relatively easy, and so we see
the best MRR scores there. The performance is
worse on Chinese and Arabic. It makes sense then
to consider combining the two methods.

4.2 Method combination

In this section, we evaluate the performance of
such a combination. We first use the phonetic
method to filter out unlikely candidates, and then
apply both the phonetic method and the time cor-
relation method to rank the candidates.

We explore two combination methods: score
combination and rank combination. In score com-
bination, since the scores of two methods are not
on the same scale, we first normalize them into the
range [0,1] where the 1 is the best transliteration
score and 0 the worst. Given a phonetic score p

and a time correlation score t on the same translit-
eration pairs, the final combination score f would
be: f = α× p+ (1−α)× t, where α ∈ [0, 1] is a
linear combination parameter. For the rank combi-
nation, we take the unnormalized rankings of each
candidate pair by the two methods and combine as
follows: rcombined = α× rp +(1−α)× rt, where
rp and rt are the phonetic and temporal rankings,
respectively.

The bottom panel of Table 7 shows the
CoreMRR scores for these combination methods.
In the second and third column, we repeat the pho-
netic and time correlation scores for ease of com-
parison. The fourth column and the sixth column
represent the combination results with α = 0.5
for both combination methods. The fifth column
and the last column are the best MRR scores that
we can achieve through tuning α’s. Score combi-
nation, in particular, significantly outperforms the
individual phonetic and time correlation methods
alone.

Figure 1 plots the performance for all three lan-
guages with a variety of α’s for the score combi-
nation method. Note that a higher α puts more
weight on the phonetic model. As we have noted
above, favoring the phonetic model is an advan-
tage in our English/Hindi evaluation where the
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Language AllMRR ALLCorrRate CoreMRR CoreCorrRate
Arabic 0.226 0.120 0.599 0.320
Chinese 0.281 0.203 0.637 0.462
Hindi 0.309 0.259 0.727 0.610

Language AllMRR AllCorrRate CoreMRR CoreCorrRate
Arabic 0.246 0.164 0.676 0.450

Chinese 0.363 0.292 0.824 0.662
Hindi 0.212 0.158 0.499 0.372

Language Phonetic Time ScoreComb ScoreComb RankComb RankComb
Correlation α = 0.5 best α α = 0.5 best α

Arabic 0.599 0.676 0.733 0.788 0.733 0.754
Chinese 0.637 0.824 0.864 0.875 0.811 0.843
Hindi 0.727 0.499 0.749 0.761 0.689 0.765

Table 7: MRRs and CorrRate for the pronunciation method (top) and time correlation method (middle).
The bottom table shows the scores for the combination (CoreMRR).
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Figure 1: CoreMRR scores with different α values
using score combination. A higher α puts more
weight on the phonetic model.

phonetic correspondence between the two lan-
guages is fairly close, but the data sources are
quite different; whereas for Arabic and Chinese
we observe the opposite tendency. This sug-
gests that one can balance the α scores accord-
ing to whether one trusts one’s data source versus
whether one trusts in the similarity of the two lan-
guages’ phonotactics.3

3A reviewer notes that we have not compared our method
to state-of-the-art supervised transliteration models. This
is true, but in the absence of a common evaluation set for
transliteration, such a comparison would be meaningless.
Certainly there are no standard databases, so far as we know,
for the three language pairs we have been considering.

5 Conclusions and Future Work

In this paper we have discussed the problem of
name transliteration as one component of a system
for finding matching names in comparable cor-
pora. We have proposed two unsupervised meth-
ods for transliteration, one that is based on care-
fully designed measures of phonetic correspon-
dence and the other that is based on the temporal
distribution of words. We have shown that both
methods yield good results, and that even better
results can be achieved by combining the methods.

One particular area that we will continue to
work on is phonetic distance. We believe our
hand-assigned costs are a reasonable starting point
if one knows nothing about the particular pair
of languages in question. However one could
also train such costs, either from an existing
list of known transliterations, or as part of an
iterative bootstrapping method as, for example,
in Yarowsky and Wicentowski’s (2000) work on
morphological induction.

The work we report is ongoing and is part of a
larger project on multilingual named entity recog-
nition and transliteration. One of the goals of this
project is to develop tools and resources for under-
resourced languages. Insofar as the techniques we
have proposed have been shown to work on three
language pairs involving one source language (En-
glish) and three unrelated and quite different target
languages, one can reasonably claim that the tech-
niques are language-independent. Furthermore, as
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the case of Hindi shows, even with data from com-
pletely different news agencies we are able to ex-
tract useful correspondences.
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